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Abstract: Microwave plasma torches (MPTs) can be used as simple and low power-consumption
ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some
metal elements, the metallic ions exhibit some novel features which are significantly different with
those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and
may be helpful for metal element analysis. As the representative elements of group IVA, titanium and
zirconium are both of importance and value in modern industry, and they have impacts on human
health. Here, we first provide a study on the complex anions of titanium and zirconium in water
by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex
anions were produced in the plasma flame by an aqueous solution flowing through the central tube of
the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode
to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions
in multi-step collision- induced dissociation processes have been explained. Under the optimized
conditions, the limit of detection (LOD) using the MS2 (the second tandem mass spectrometry)
procedure was estimated to be at the level of 10 µg/L for titanium and 20 µg/L for zirconium with
linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0–500 µg/L and
20–200 µg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising
and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in
many fields, such as environmental control, hydrogeology, and water quality inspection. In addition,
MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions.

Keywords: microwave plasma torch; ambient mass spectrometry; titanium; zirconium

1. Introduction

Titanium and zirconium are both important transition metal elements and have been extensively
used in modern industry, scientific research, daily life and health applications [1–4]. Titanium often
appears in high-powered alloys. Zirconium can be used as a strategic metal with good plasticity and
strong resistance to corrosion. Meanwhile, with the wide use of a large number of materials containing
zirconium or titanium, these metals inevitably enter the environment, drinking water and living
organisms. Thus developing the simple and convenient detection methods for these metal elements
will be of great significance for environmental protection and further studying the role of titanium and
zirconium in new application fields.
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The analytical methods for metal element analysis, including elements the titanium and zirconium,
are mainly traditional ones, including inductively coupled plasma atomic emission spectrometry
(ICP-AES) [5–7], spectrophotometry [8,9], atomic absorption spectrometry (AAS) [10,11], polarographic
catalytic wave[12,13] and inductively coupled plasma-mass spectrometry (ICP-MS) [14–16]. ICP-MS is
a quite sensitive elemental analysis method and can determine the contents of titanium and zirconium.
Nevertheless, in the current field analytical sense, ICP-MS is limited due to the general essential
tedious chemical pretreatment, expensive and cumbersome equipment [17–19]. Microwave plasma
torch (MPT)-mass spectrometry is one of the recently developed ambient mass spectrometric techniques
with numerous merits. The construction of this device is simple, as is the operation [20]. The power
dissipation of MPT is usually low, less than 200 W, thus it is promising for use in the coming portable
analysis fields. The plasma technique possesses strong excitation ability and good universality,
hence MPT has been used widely as a powerful light source in spectrometric instruments [21–26],
and even then been applied in the direct analysis of solid samples [27]. Our previous studies have
showed that the MPT, as an ambient ion source, coupled with a linear ion trap mass spectrometer,
can be a potential analytical tool in various fields, especially in the analysis of metal elements [17–20,28].
By adopting a desolvation unit, and injecting aqueous samples through the central-tube of the MPT
unit, MPT-mass spectrometry has been applied to detect directly and sensitively many kinds of metal
elements in water without tedious sample pretreatment procedures [29–31]. Meanwhile, the positive
and negative modes of the LTQ (linear ion trap) mass spectrometer can both couple with the MPT
source to perform the detection of metal elements. However, for transition metal elements, the negative
mode usually exhibits lower background and simpler spectral structure [28] due to the fact that less
complex metallic anions (containing several OH and H2O groups) produced in the MPT plasma are
superposed with their corresponding isotopes, such as in the typical examples, zinc and cadmium [17].
Moreover, some transition metal elements, including titanium, zirconium and noble metals, have no
obvious signal in positive mode. Although the mechanism is unknown till now, we have made efforts
to study almost all transition metal elements and summarize phenomenologically the rules of their
ion formation, and those results showed that MPT-mass spectrometry can be used as a supplement to
ICP-MS and has potential applications in field analysis.

To further expand the applications of MPT-MS in metallic element determination in water,
especially in the detection of titanium and zirconium, in-depth studies of the features of the MPT
mass spectra of titanium and zirconium are necessary. This article presents the MPT mass spectra of
titanium and zirconium in negative mode of a linear ion trap (LTQ) mass spectrometer, and explains
the formation rule of the ions of titanium and zirconium complexes characterized by multistage
collision-induced dissociation (CID) experiments. Moreover, the first results show that the LOD
(limit of detection) for the detection of titanium and zirconium in water is at the level of 10−5 g/L.
These results establish a basis for the practical application of MPT-mass spectrometry in the fields of
environment control and water quality in section for the elements titanium and zirconium.

2. Materials and Methods

2.1. Materials and Reagents

The 2450 MHz microwave field was provided by a microwave generator (YY1–50 W-2450) which
was purchased from the Nanjing Electronic Technology Co., Ltd. (Nanjing, China). The MPT was
provided by the Yu group at Jilin University. Titanium and zirconium standard solutions (1000 µg/mL
titanium and zirconium in 1.0 mol/L HNO3) were purchased from the General Research Institute for
Nonferrous Metals (Beijing, China). Deionized water was manufactured in the chemistry facilities
in Shangrao Normal University. These aqueous samples were directly analyzed by the MPT mass
spectrometer without any other pretreatment except signal attenuation.
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2.2. Experimental Conditions

The MPT device was described previously [32,33]. In brief, the MPT consists of three concentric
tubes, including an outer tube for microwave input, the central tube for carrying the gas flow,
and the intermediate tube for the supporting gas flow. This is a beneficial dual-flow system to optimize
the plasma jet shape. The outer tube and intermediate tube were made of copper. The central tube
was made of quartz. Sampling microwaves with a maximum power of 200 W were introduced into
the intermediate tube through a coaxial cable and propagated in the annulus between the intermediate
tube and outer tube.

Experiments were carried out using a LTQ-XL mass spectrometer (Finnigan, San Jose, CA,
USA) equipped with the MPT ion source and the home-made pneumatic nebulization sampling
system, as shown in Figure 1. The LTQ mass spectrometer was set to work in negative-ion detection
mode. MS spectra were recorded in the range of 230–270 m/z and 280–450 m/z for titanium and
zirconium, respectively. The temperature of the ion-transport capillary was 150 ◦C. High purity
argon gas (purity ≥ 99.999%) from a gas cylinder was divided into two routes, one of which was
used for nebulizing the sample solution and carrying the dry aerosol into the central tube of MPT;
and the other route was used as the supporting gas of MPT. The MPT assembly was mounted on
a 3-D adjustable stage and produced stable visible and cone-shaped plasma jet on the top opening
of the MPT. The distance between the tip of plasma and the MS inlet was optimized to be 1.5 mm.
The full scan mass spectra were recorded using the Xcalibur software of the LTQ-MS instrument.
In collision-induced dissociation (CID) experiments, the isolation width and activation time were set
at 1.2 Da and 30 ms, respectively. CID was set with 30% collision energy, and other parameters were
automatically optimized by the LTQ-MS system. All the mass spectra were recorded with an average
duration time of 0.2 min, followed by background subtraction.
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Figure 1. The schematic diagram of the microwave plasma torch (MPT) source coupled with
the desolvation system. Abbreviations: MI, Microwave Input; SG, Supporting Gas Input; CG, Caring
Gas; SI, Sample input; WI, Water in; WO, Water out; PN, Pneumatic Nebulizer; CU, Condenser Unit;
SC, Spray Chamber; D, Drain; H, Heater; d: (the distance between the tip of MPT plasma and the inlet
of LTQ); MS: (LTQ mass spectrometer).

3. Results and Discussion

3.1. The MPT Mass Spectra of Titanium

In the LTQ negative working mode, the characteristic mass spectrum of titanium in the range of
m/z 230–270 Th can be obtained with a 500 µg/L titanium standard solution, as shown in Figure 2a.
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Obviously, there are two similar mass spectral bands, with main peaks at m/z 234 and 250, respectively.
Each spectral band comprises more than five peaks and the corresponding differences of the five peaks
in these two spectral bands are 16 Th, i.e., the small band is the result of the large band losing an atom
of oxygen. This mass spectral feature shows preliminarily that these signals are owing to the element
titanium. In fact, titanium is a polyisotopic element, having five natural stable isotopes. The upper
most one is 48Ti, with an abundance of 73.8%; the other four are 46Ti, 47Ti, 49Ti and 50Ti, accounting for
8.0%, 7.3%, 5.5% and 5.4%, respectively. Therefore, the theoretical intensity ratio of the five natural
isotopes from left to right is 11:10:100:8:7. However, the intensity ratio of the five peaks in the band at
m/z 250 in turn is 13:17:100:12:18. These two ratio vales agree well. In the other aspect, based on our
previous studies on MPT-mass spectrometry, the mass spectral peak of m/z 250 can be easy assigned to
(TiO(NO3)3)− and the peak at m/z 234 to (Ti(NO3)3)−.
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Figure 2. The negative-mode MPT mass spectra. (a) titanium; (b) zirconium.

To further confirm the signal shown in Figure 2a, tandem mass spectrometry experiments are
necessary. Figure 3 showed the MSn mass spectral sequence of the m/z 250 ions. Figure 3a is the MS2

mass spectrum, where the precursor ions of m/z 250 produce a single fragment at m/z 204 by the loss of
NO2, a 46-Da group.
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Figure 3. MSn LTQ mass spectra (the tandem linear ion trap mass spectra) of titanium showing
the dissociation sequence of the precursor ions of m/z 250, n = 2–5 in a–d, respectively.
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The NO2 group had been found frequently in the collision-induced dissociation processes of
nitrate complexes of many transition metal elements in both positive and negative mode. The fragments
of m/z 204 can be further dissociated to generate mainly the sub-fragment at m/z 158 by losing a second
NO2 group, as shown in Figure 3b. The following dissociation of the subfragment of m/z 158 yields
ions at m/z 144 and m/z 126 by expelling a 14-Da group and a 32-Da group, respectively (Figure 3c).
The 14-Da group is a N atom and the 32-Da group is O2 which both originate from the residual NO3

groups by loss of the NO2 group. The ions of m/z 126 can still be further fragmented to produce
the final ions of m/z 96. This dissociation sequence proves that the ions of m/z 250 are (48TiO(NO2)3)−

so then the precursor ions of m/z 234 are doubtlessly (48Ti(NO2)3)−. The final ions of m/z 96 cannot be
further dissociated since it can be assigned to (48TiO3)− from the above deduction. This structure is
compact and hard to fragment.
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3.2. The MPT Mass Spectra of Zirconium

Figure 2b shows the MPT-LTQ mass spectrum of zirconium complex anion obtained by using
a 1 mg/L zirconium standard solution. Similarly, there are two analogue spectral bands with central
locations at m/z 292 and m/z 400. The band of m/z 292 includes five evident peaks located at m/z
292, 293, 294, 296 and 298, corresponding to the five natural isotopic distribution: 90Zr(51.45%),
91Zr(11.22%), 92Zr(17.15%), 94Zr(17.38%), 96Zr(2.80%). The values in the parentheses represent
the relevant abundance. The intensity ratio of these five peaks in the band of m/z 292 is 100:24:36:28:5,
very close to the theoretical value 100:22:33:34:5. Therefore, this band can be assigned preliminarily
to (ZrO(NO3)3)−, which may be the dissociated product of the other band of m/z 400, corresponding
to (Zr(NO3)5)−. This inference can be further supported by the following series tandem mass
spectrometry experiments of precursor ions m/z 292 and 294, as shown in Figure 4a–d.

In Figure 4a, the ion m/z 292 dissociated a NO2 to generate the fragment m/z 246, and the fragment
m/z 246 further produce the sub fragments m/z 218 and 200 by losing a 28-Da (2N atoms) and a 46-Da
(NO2), respectively. The weak peaks of m/z 186 and 168 may be the double-products of m/z 218 and 200
by throwing the residual O2 groups. Figure 4c,d, showing the dissociation mechanism of the precursor
ion m/z 294, are analogous completely to Figure 4a,b, which exhibits the fine isotopic characters.
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From the MPT mass spectra of titanium and zirconium, the common features can be concluded
as follows: these IVB elements generate complex anions in the form of (M(NO3)n)− in the MPT
plasma, here M represents the metal element. This feature is similar with that of molybdenum [16],
a nearby transition metal element. However, this complex anion often dissociates to produce
(M(NO2)(NO3)n−1)− through the fragmentation of a NO3

− ligand and is a little different from
the familiar transition metal elements, such as copper, zinc and so on. Obviously, the formation
rules of transition metal elements in negative mode MPT-mass spectrometry are closely related to
the location in the periodic table.

3.3. Semi-Quantitative Analysis

The negative mode MPT mass spectra of transition metal elements usually exhibit lower
background noise and more regular mass spectral structures than positive mode ones, thus they
are more suitable for qualitative and quantitative analysis [15–18,26]. To improve the sensitivity of
this analysis method, the quantifications of titanium and zirconium were performed based on their
respective characteristic fragments in the MPT-MS2 experiments of their main peaks, i.e., the fragment
at m/z 204 for titanium and m/z 246 for zirconium, respectively. The plots of the measured MS2 fragment
intensities versus the concentrations in water solutions display a good linear relationship with the linear
correlation square coefficients 0.98983 for titanium and 0.996 for zirconium with the linear range of
10–500 µg/L and 20–100 µg/L, respectively, as shown in Figure 5a,b.
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Based on the standard formula LOD = 3cσ/S [34], where c is the concentration of titanium or
zirconium in the aqueous sample, σ is the standard deviation of all the measurements performed on
the blank sample, and S is the mean value of the signals repeatedly measured, the calculated limit of
detection (LOD) values for titanium and zirconium are 10 µg/L for titanium and 20 µg/L for zirconium,
respectively. These quantitative data are summarized in Table 1. For easily comparison, Table 2
summarized the limit of detection values for several common analysis methods. Although the values
obtained by this work were higher than that obtained with the ICP-MS and polarographiccatalytic
wave methods, MPT-MS was obviously still on the same level as ICP-AES and spectrophotometry
in detecting titanium and zirconium in water. Therefore, these results show that this negative mode
MPT-mass spectrometry technique provides an alternative approach for field analysis and can meet
the real requirements in detection of metal elements in water. In addition, the analysis of a single water
sample can be finished in 5–6 min.
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Table 1. Summary of the performance of MPT-LTQ-MS (microwave plasma torch-linear ion trap mass
spectrometry) for quantitative detection of leadin aqueous solution.

Metal Element Linear Fitting Equation Related R2 Linear Range (µg/L) LOD (Limit of Detection) (µg/L)

Ti y = 9.53158x + 58.2165 0.98983 10–500 10
Zr y = 0.134x + 0.105 0.996 20–100 20

Table 2. Comparison of the limit of detection (LOD) for several methods in detecting the elements Ti
and Zr in water.

Element ICP-MS ICP-AES [35] Polarographic Catalytic Wave Spectrophotometry This Work

Ti 0.46 20 4 20 10

Zr 0.04 10 <10 18 20

Unit: µg/L.

4. Conclusions

Without sample pretreatment, a direct method for detecting titanium and zirconium in water has
been developed based on an MPT ion source coupled with a LTQ ion trap mass spectrometer working
in the negative mode. By using pneumatic nebulization and sample injection through the central tube
of the MPT device, these methods are sensitive and the detection limits for titanium and zirconium
are 10 µg/L for titanium and 20 µg/L for zirconium, respectively, both at trace levels. The analysis
speed is high enough to allow the direct detection of titanium and zirconium through the confidence of
the characteristic peaks of the complex anions present in the MPT plasmas of titanium and zirconium
within six minutes with minimum sample pretreatment. Therefore, the analysis of real samples showed
that this method will have high potential applications in quality monitoring of titanium and zirconium
ions in water. More promisingly, MPT-MS can be used as a supplement to ICP-MS for the detection of
trace metal elements in aqueous solutions.
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