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Abstract: This article develops a group decision framework with intuitionistic preference relations.
An approach is first devised to rectify an inconsistent intuitionistic preference relation to derive an
additive consistent one. A new aggregation operator, the so-called induced intuitionistic ordered
weighted averaging (IIOWA) operator, is proposed to aggregate individual intuitionistic fuzzy
judgments. By using the mean absolute deviation between the original and rectified intuitionistic
preference relations as an order inducing variable, the rectified consistent intuitionistic preference
relations are aggregated into a collective preference relation. This treatment is presumably able to
assign different weights to different decision-makers’ judgments based on the quality of their inputs
(in terms of consistency of their original judgments). A solution procedure is then developed for
tackling group decision problems with intuitionistic preference relations. A low carbon supplier
selection case study is developed to illustrate how to apply the proposed decision model in practice.

Keywords: intuitionistic preference relation; consistency; induced intuitionistic ordered weighted
averaging operator; group decision making; low carbon supplier selection

1. Introduction

In recent years, increasingly frequent red alerts of hazardous smog in China have created
significant concerns for public health and the unsustainability of its current economic development
modes [1]. Rapid increase of carbon emissions has caused climate change and resulted in global
warming in the past decades. This challenge has prompted many governments and environmentalists
to take actions to curb pollution. As the largest manufacturer in the world, China’s manufacturing
industry reached a total value of $2.9 trillion in 2014 alone [2]. Nowadays, manufacturers in China
are facing increasing pressure to develop green technology and reduce carbon emissions [3]. In this
process, a critical stage is to select low carbon suppliers. Generally speaking, supplier selection
requires input from different departments within the organization and judgments or preferences for
comparing different suppliers are often vague and uncertain. To address this important issue, this
paper first proposes a general framework to handle group decision problems where decision-makers’
(DMs’) preferences are provided by intuitionistic fuzzy judgments and the DMs’ weights are
unknown. The proposed approach is then applied to a case study concerning low carbon supplier
selection problems.

Since Atanassov [4] extended the fuzzy set theory to intuitionistic fuzzy sets (IFSs) by introducing
both membership and non-membership functions, IFSs and their applications to decision modeling
have received increasing attention from researchers. Thanks to their flexibility in characterizing inherent
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vagueness and hesitancy in the human decision making process, IFSs have been extensively studied in
the area of multiple attribute decision making [5–9]. A common multiattribute decision framework is to
take pairwise comparison preference relations as basic input. Along this line, Szmidt and Kacprzyk [10]
represent an intuitionistic preference relation as a combination of a fuzzy preference matrix and a
hesitancy matrix, and investigate how to aggregate individual DMs’ intuitionistic preference relations
in a group decision making (GDM) setting. Xu [11] employs intuitionistic fuzzy numbers (IFNs) to
describe DMs’ pairwise judgments, thereby defining intuitionistic preference relations. Subsequently,
Xu [12] introduces a compatibility measure between intuitionistic preference relations, and applies it to
develop a consensus reaching procedure in GDM. When a pairwise comparison matrix is employed to
depict a DM’s preference, a critical issue is the consistency of the preference relation [13]. In the context
of intuitionistic preference relations, different consistency definitions have been proposed [14,15].
For instance, based on IFNs operations [16], Xu [11] defines multiplicative consistent intuitionistic
preference relations, and introduces an intuitionistic fuzzy weighted averaging (IFWA) operator to
develop an approach to GDM with intuitionistic preference relations, in which the weights of DMs
are known. Subsequently, Xu et al. [17] point out the deficiency of the multiplicative transitivity
condition in Xu [11]. Motivated by the multiplicative consistency equivalence formula of fuzzy
preference relations, Xu et al. [17] furnish a new multiplicative consistency definition for intuitionistic
preference relations. On the other hand, Gong et al. [18] introduce an additive consistency definition
for intuitionistic preference relations and investigate how to derive priority weights by establishing a
goal programming model and a least squares model. Wang [19] shows that the additive consistency in
Gong et al. [18] is defined in an indirect manner, and the matrix based on the consistency transformation
equations therein may not necessarily be an intuitionistic preference relation. As such, Wang [19]
introduces a new additive consistency definition by employing membership and non-membership of
the DM’s intuitionistic judgments and establishes goal programming models to derive intuitionistic
fuzzy weights.

In GDM, an important topic is to aggregate individual preference values into a group
preference [20–23]. The ordered weighted averaging (OWA) [24] and the induced ordered weighted
averaging (IOWA) [25] operators have been extended to situations where decision inputs are provided
as IFNs. These extensions range from the intuitionistic fuzzy ordered weighted averaging (IFOWA)
operator [16], to the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator [26], the
induced intuitionistic fuzzy ordered weighted geometric (IIFOWG) operator [27], the induced
intuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator [28], and the induced generalized
intuitionistic fuzzy ordered weighted averaging (IG-IFOWA) operator [29]. These aggregation
operators take different operational laws to treat membership and non-membership information.
The drawback of this treatment is that these aggregation operators do not necessarily possess
the desired monotonic property as per the ranking based on the score and accuracy functions.
The implication is that, even if all individual intuitionistic preference relations are consistent,
the aggregated one may not be consistent. Another drawback is that the complement property
(see Theorem 5 in Section 4) will not be maintained by employing these aggregation operators,
implying that it is difficult to use them for aggregating individual intuitionistic preference relations.
On the other hand, in the process of GDM, it is often the case that the intuitionistic preference relations
provided by the DMs are inconsistent. To obtain a reasonable decision result, it is necessary to first
rectify consistency of these intuitionistic preference relations. By employing the additive consistency
definition introduced by Wang [19], this paper puts forward a consistency rectification framework to
tackle GDM problems with intuitionistic preference relations. The proposed procedure consists of three
stages: (1) Rectification of individual inconsistent intuitionistic preference relations; (2) Aggregation
of the rectified consistent intuitionistic preference relations; (3) Ranking of alternatives based on
aggregated preference values. More specifically, an innovative approach is first proposed to rectify any
inconsistent intuitionistic preference relation. An induced intuitionistic ordered weighted averaging
(IIOWA) operator is then developed to aggregate individual IFNs, in which the same weighted
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averaging scheme is applied to both the membership and non-membership of IFNs. Subsequently, the
mean absolute deviation (MAD) between the original and rectified intuitionistic preference relations
is adopted as an order inducing variable of the IIOWA operator to aggregate the rectified consistent
intuitionistic preference relations. A key objective of this treatment is to assign different weights
to different DMs’ judgments as per the quality of the inputs (in terms of consistency of the DMs’
original judgments). Finally, a solution procedure is summarized for handling GDM with intuitionistic
preference relations and applied to a low carbon supplier selection problem to illustrate its applicability
and effectiveness.

The remainder of this paper is organized as follows. Section 2 furnishes basic concepts of IFSs
and additive consistent intuitionistic preference relations. Section 3 proposes an approach to rectifying
inconsistent intuitionistic preference relations. In Section 4, a new aggregation operator, IIOWA, is
developed to aggregate intuitionistic preference values, followed by a procedure for solving GDM
problems with intuitionistic preference relations. A low carbon supplier selection example is presented
to illustrate the proposed approach in Section 5. Concluding remarks are offered in Section 6.

2. Preliminaries

This section presents basic concepts of IFSs and additive consistent intuitionistic preference
relations. The aim is to put future discussions in a proper context.

By introducing membership and non-membership functions, Atanassov [4] put forward the
notion of IFSs as follows.

Definition 1. Let a nonempty set Z be fixed, an IFS A in Z can be defined as

A = {< z, µA(z), νA(z) >|z ∈ Z} (1)

where 0 ≤ µA(z) ≤ 1, 0 ≤ νA(z) ≤ 1, µA(z) + νA(z) ≤ 1, ∀z ∈ Z.

µA(z) and νA(z) denote the membership and non-membership degree of element z to set A,
respectively. In addition, πA(z) = 1− µA(z)− νA(z) is called the hesitancy degree of z to A. Obviously,
0 ≤ πA(z) ≤ 1 for every z ∈ Z.

For a given z and IFS A, the pair (µA(z), νA(z)) is referred to as an IFN [26]. For notational and
computational convenience, an IFN is often denoted by α̃ = (µ, v), where 0 ≤ µ, v ≤ 1 and µ + v ≤ 1.

To compare two IFNs, a score function is defined by Chen and Tan [30] as

S(α̃) = µ− v (2)

and subsequently, an accuracy function is defined by Hong and Choi [31] as

H(α̃) = µ + v (3)

It is obvious that−1 ≤ S(α̃) ≤ 1, 0 ≤ H(α̃) ≤ 1, and the hesitancy degree of α̃ can be computed as

π(α̃) = 1− H(α̃) (4)

The higher the accuracy degree of α̃, the lower its hesitancy degree. If π(α̃) = 0, then ν = 1− µ,
indicating that the IFN α̃ is reduced to a fuzzy number µ.

Let α̃1 = (µ1, v1) and α̃2 = (µ2, v2) be any two IFNs, based on the aforesaid score and accuracy
functions, Xu and Yager [26] propose a prioritized comparison method for two IFNs as follows:

If S(α̃1) < S(α̃2), then α̃1 is smaller than α̃2, which is denoted by α̃1 < α̃2.
If S(α̃1) = S(α̃2), then
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if H(α̃1) < H(α̃2), then α̃1 is smaller than α̃2, which is denoted by α̃1 < α̃2;
if H(α̃1) = H(α̃2), then α̃1 and α̃2 are equal, which is denoted by α̃1 = α̃2.

The aforesaid comparison method for any two IFNs implies that α̃1 ≤ α̃2 if and only if
(i) S(α̃1) < S(α̃2) or (ii) S(α̃1) = S(α̃2) and H(α̃1) ≤ H(α̃2).

To express hesitancy and uncertainty in DMs’ pairwise judgments, Xu [11] introduces the concept
of intuitionistic preference relations.

Let X = {x1, x2, ..., xn} be a discrete set of decision alternatives. An intuitionistic preference
relation on X = {x1, x2, ..., xn} is characterized by a matrix R̃ = (r̃ij)n×n ⊂ X× X, where r̃ij = (µij, vij)

denotes an intuitionistic preference value of alternative xi over xj such that

0 ≤ µij ≤ 1, 0 ≤ vij ≤ 1, µij + vij ≤ 1, µij = vji, vij = µji, µii = vii = 0.5, i, j = 1, 2, . . . , n (5)

It is clear that each preference value r̃ij = (µij, vij) in R̃ is an IFN. µij and vij indicate, respectively,
membership and non-membership degrees to which alternative xi is superior to xj.

Due to µij = vji in R̃ for all i, j = 1, 2, . . . , n, Wang [19] defines the following additive consistent
intuitionistic preference relations by directly using the membership degrees in the judgment matrix.

Definition 2. An intuitionistic preference relation R̃ = (r̃ij)n×n with r̃ij = (µij, vij) is additive consistent if
the following additive transitivity is satisfied.

µij + µjk + µki = µkj + µji + µik for all i, j, k = 1, 2, ..., n (6)

Since µij = vji, vij = µji for all i, j = 1, 2, . . . , n, it follows from (6) that

vij + vjk + vki = vkj + vji + vik for all i, j, k = 1, 2, ..., n (7)

Based on Definition 2 and the score function S(.), Wang [19] establishes the following result to
judge the additive consistency of an intuitionistic preference relation.

Lemma 1. An intuitionistic preference relation R̃ = (r̃ij)n×n is additive consistent if and only if

S(r̃ij) = S(r̃ik)− S(r̃jk) for all i, j, k = 1, 2, ..., n. (8)

3. Rectification of Inconsistent Intuitionistic Preference Relations

According to Lemma 1, the additive consistency of an intuitionistic preference relation R̃ can
be verified by checking whether the scores of the intuitionistic judgments in R̃ satisfy (8). To derive
a consistent intuitionistic preference relation from an inconsistent judgment matrix R̃, a sensible
approach is to adjust the scores of some elements in R̃. On the other hand, it is clear from (2) that
different IFNs may possess an identical score value as long as they have the same difference between
their corresponding membership and non-membership degrees. So, a critical issue is how to properly
adjust these score values in the rectification process. To avoid excessive distortion of the DM’s original
judgment, it is desirable that the rectified IFNs should be as close to the original IFNs in R̃ as possible.
As per (2) and (4), one can see that an IFN can be uniquely determined by its score and hesitancy values.
Given these considerations, the rectified IFNs are selected to maintain the original hesitancy values.
If an additive consistent intuitionistic preference relation cannot be obtained by keeping hesitancy
values constant, their hesitancy values will be scaled down proportionally in the rectification process.

For a given intuitionistic preference relation R̃ = (r̃ij)n×n, let

µ̂ij =
1

2n

(
n

∑
l=1

S(r̃il)−
n

∑
l=1

S(r̃jl)

)
+ 0.5

(
1− π(r̃ij)

)
i, j = 1, 2, ..., n (9)
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v̂ij =
1

2n

(
n

∑
l=1

S(r̃jl)−
n

∑
l=1

S(r̃il)

)
+ 0.5

(
1− π(r̃ij)

)
i, j = 1, 2, ..., n (10)

Then, we have the following result.

Theorem 1. Let R̃ = (r̃ij)n×n with r̃ij = (µij, vij) be an intuitionistic preference relation, and µ̂ij and v̂ij
(i, j = 1, 2, ..., n) be defined by (9) and (10), respectively, then

(i) µ̂ii = v̂ii = 0.5, ∀i = 1, 2, ..., n.
(ii) 0 ≤ µ̂ij + v̂ij ≤ 1, ∀i, j = 1, 2, ..., n.
(iii) µ̂ij = v̂ji and v̂ij = µ̂ji, ∀i = 1, 2, ..., n.
(iv) µ̂ij + v̂ij = µij + vij, ∀i, j = 1, 2, ..., n.
(v) µ̂ij + µ̂jk + µ̂ki = µ̂kj + µ̂ji + µ̂ik, ∀i, j, k = 1, 2, ..., n.

(vi) v̂ij + v̂jk + v̂ki = v̂kj + v̂ji + v̂ik, ∀i, j, k = 1, 2, ..., n.

Proof. Since R̃ is an intuitionistic preference relation, as per (4) and (5), we have
π(r̃ii) = π((0.5, 0.5)) = 1− 0.5− 0.5 = 0, 0 ≤ π(r̃ij) = 1− µij − vij ≤ 1, π(r̃ij) = 1− µij − vij =

1− vji − µji = π(r̃ji) and 1− π(r̃ij) = µij + vij for all i, j = 1, 2, ..., n. Therefore, (i)–(iv) can be derived
from (9) and (10).

As π(r̃ij) = π(r̃ji) for all i, j = 1, 2, ..., n, it follows from (9) that

µ̂ij + µ̂jk + µ̂ki = 0.5
(
1− π(r̃ij)

)
+ 0.5

(
1− π(r̃jk)

)
+ 0.5 (1− π(r̃ki))

= 0.5
(

1− π(r̃kj)
)
+ 0.5

(
1− π(r̃ji)

)
+ 0.5 (1− π(r̃ik)) = µ̂kj + µ̂ji + µ̂ik

Similarly, from (10), we have v̂ij + v̂jk + v̂ki = v̂kj + v̂ji + v̂ik ∀i, j, k = 1, 2, ..., n.

Denote a matrix by ˆ̃R = ( ˆ̃rij)n×n with ˆ̃rij = (µ̂ij, v̂ij), where µ̂ij and v̂ij (i, j = 1, 2, ..., n) are
defined by (9) and (10), respectively. From Definition 2 and Theorem 1, one can easily obtain the
following corollary.

Corollary 1. If µ̂ij ≥ 0 and v̂ij ≥ 0 for all i, j = 1, 2, ..., n, then ˆ̃R = ( ˆ̃rij)n×n is a consistent intuitionistic
preference relation and π( ˆ̃rij) = π(r̃ij).

Theorem 2. If R̃ = (r̃ij)n×n is an additive consistent intuitionistic preference relation, then ˆ̃R = R̃.

Proof. If R̃ is additive consistent, from Lemma 1, one has S(r̃ij) = S(r̃ik)− S(r̃jk) ∀i, j, k = 1, 2, . . . , n.
Thus,

1
2n

(
n

∑
l=1

S(r̃il)−
n

∑
l=1

S(r̃jl)

)
=

1
2n

n

∑
l=1

(
S(r̃il)− S(r̃jl)

)
=

1
2n
(
nS(r̃ij)

)
= 0.5S(r̃ij)

As per (2), (4), (9), and (10), one confirms that

µ̂ij = 0.5S(r̃ij) + 0.5(1− π(r̃ij)) = 0.5(µij − vij) + 0.5(µij + vij) = µij

v̂ij = −0.5S(r̃ij) + 0.5(1− π(r̃ij)) = −0.5(µij − vij) + 0.5(µij + vij) = vij

This proves that ˆ̃R = R̃.

Corollary 1 reveals that a consistent intuitionistic preference relation ˆ̃R can be derived from R̃
by using the Formulaes (9) and (10) provided that µ̂ij ≥ 0 and v̂ij ≥ 0 for all i, j = 1, 2, ..., n. In this

case, the hesitancy degree of each IFN in ˆ̃R remains the same as that of the corresponding element in
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R̃. Theorem 2 demonstrates that ˆ̃R = R̃ if the original intuitionistic preference relation R̃ is additive
consistent. On the other hand, if R̃ is not consistent, Equations (9) and (10) may yield µ̂ij < 0, µ̂ij > 1,

ν̂ij < 0, or ν̂ij > 1. In this case, ˆ̃R will not be an intuitionistic preference relation. To derive a consistent

intuitionistic fuzzy preference relation, (µ̂ij, v̂ij) (i, j = 1, 2, . . . , n) in ˆ̃R have to be converted into IFNs
by using a transformation function as shown below.

Let

d =

{
0, if µ̂ij ≥ 0, ∀i, j = 1, 2, ..., n

max
{∣∣µ̂ij

∣∣ |µ̂ij < 0, i, j = 1, 2, ..., n
}

, otherwise
(11)

It is obvious that d ≥ 0, and µ̂ij ≥ −d ∀i, j = 1, 2, ..., n. As per Theorem 1, one has v̂ij = µ̂ji ≥
−d, 0 ≤ µ̂ij + v̂ij ≤ 1 ∀i, j = 1, 2, ..., n. Thus, −d ≤ µ̂ij ≤ 1 + d, −d ≤ v̂ij ≤ 1 + d ∀i, j = 1, 2, ..., n, i.e.,
µ̂ij ∈ [−d, 1 + d], v̂ij ∈ [−d, 1 + d] ∀i, j = 1, 2, ..., n.

As the membership and non-membership degrees of an IFN lie between 0 and 1,
(0, 1) and (1, 0) are the smallest and largest IFNs, respectively. To derive an additive
consistent intuitionistic preference relation from the matrix ˆ̃R, a proper transformation function
f : [−d, 1 + d]× [−d, 1 + d]→ [0, 1]× [0, 1] should possess the following properties:

(i) f (−d, 1 + d) = (0, 1).
(ii) f (1 + d,−d) = (1, 0).
(iii) f (0.5, 0.5) = (0.5, 0.5).
(iv) ( f (x, y))c = f (y, x) ∀x, y ∈ [−d, 1 + d], where (x, y)c is the complement of (x, y), i.e.,

(x, y)c = (y, x).
(v) ∀x, y ∈ [−d, 1 + d], if x + y ≤ 1, then µ

xy
f + ν

xy
f ≤ 1, where (µ

xy
f , ν

xy
f ) = f (x, y).

(vi) ∀x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6 ∈ [−d, 1+ d], if x1 + x2 + x3 = x4 + x5 + x6 and y1 + y2 +

y3 = y4 + y5 + y6, then µ
x1y1
f + µ

x2y2
f + µ

x3y3
f = µ

x4y4
f + µ

x5y5
f + µ

x6y6
f and vx1y1

f + vx2y2
f + vx3y3

f =

vx4y4
f + vx5y5

f + vx6y6
f , where

(
µ

xkyk
f , vxkyk

f

)
= f (xk, yk) k = 1, 2, . . . , 6.

Properties (i) and (ii) require the transformation function to convert the pairs (−d, 1 + d) and
(1 + d,−d) to the smallest IFN (0, 1) and the largest IFN (1, 0), respectively; (iii) ensures that an
indifferent judgment (0.5, 0.5) remains after f (·, ·) is applied; (iv) expects f (·, ·) to maintain the
complementary property under (x, y)c = (y, x); (v) guarantees that the converted values f (x, y)
∀x, y ∈ [−d, 1 + d] are IFNs if x + y ≤ 1. The last property (vi) makes sure that the conversion
procedure retains additive transitivity.

If a transformation function f (·, ·) possesses the aforesaid six properties, as per Theorem 1, it
can be immediately confirmed that f

(
ˆ̃R
)
=
(

f
(

ˆ̃rij

))
n×n

=
(

f
(
µ̂ij, ν̂ij

))
n×n is an additive consistent

intuitionistic preference relation.
More specifically, based on the transformation function furnished for fuzzy preference relations

by Herrera-Viedma et al. [32], let

f0(x, y) =
(

x + d
1 + 2d

,
y + d

1 + 2d

)
∀x, y ∈ [−d, 1 + d] (12)

Then, it is obvious that f0(·, ·) satisfies the aforesaid desired properties (i)–(iv). Since µ
xy
f0
+ vxy

f0
=

x+d
1+2d + y+d

1+2d = x+y+2d
1+2d , it is confirmed that µ

xy
f0
+ vxy

f0
≤ 1 if x + y ≤ 1. Thus, f0(·, ·) satisfies the

property (v). To verify (vi), for ∀x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6 ∈ [−d, 1 + d], if x1 + x2 + x3 =

x4 + x5 + x6 and y1 + y2 + y3 = y4 + y5 + y6, then µ
x1y1
f0

+ µ
x2y2
f0

+ µ
x3y3
f0

= x1+d
1+2d + x2+d

1+2d + x3+d
1+2d =

x1+x2+x3+3d
1+2d = x4+x5+x6+3d

1+2d = µ
x4y4
f0

+ µ
x5y5
f0

+ µ
x6y6
f0

and vx1y1
f0

+ vx2y2
f0

+ vx3y3
f0

= y1+d
1+2d + y2+d

1+2d + y3+d
1+2d =

y1+y2+y3+3d
1+2d = y4+y5+y6+3d

1+2d = vx4y4
f0

+ vx5y5
f0

+ vx6y6
f0

. Therefore, f0(·, ·) possesses the desired property
(vi) as well.



Int. J. Environ. Res. Public Health 2016, 13, 923 7 of 16

By applying the transformation function f0(·, ·), ˆ̃rij is converted to ˆ̃r
′
ij as follows:

ˆ̃r
′
ij = (µ̂′ij, v̂′ij) = f0( ˆ̃rij) = f0(µ̂ij, v̂ij) =

(
µ̂ij + d
1 + 2d

,
v̂ij + d
1 + 2d

)
(13)

where ˆ̃rij = (µ̂ij, v̂ij) is defined by (9) and (10).

Theorem 3. Let R̃ = (r̃ij)n×n be an intuitionistic preference relation, and the elements of
ˆ̃R
′
= f0(

ˆ̃R) =
(

ˆ̃r
′
ij

)
n×n

be defined by (13), then ˆ̃R
′

is an additive consistent intuitionistic preference relation

and π( ˆ̃r
′
ij) =

1
1+2d π(r̃ij).

Proof. As f0(·, ·) satisfies the aforesaid six desired properties of a transformation function, it

immediately follows that ˆ̃R
′

is an additive consistent intuitionistic preference relation. As per

Theorem 1, µ̂ij + v̂ij = µij + vij for all i, j = 1, 2, ..., n. By (4), one has π( ˆ̃r
′
ij) = 1− µ̂ij+d

1+2d −
v̂ij+d
1+2d =

1
1+2d (1− µ̂ij − v̂ij) =

1
1+2d (1− µij − vij) =

1
1+2d π(r̃ij).

Theorem 3 furnishes an approach to rectifying any intuitionistic preference relation R̃ = (r̃ij)n×n.

If R̃ is consistent, the rectification process ends up with the same R̃. For an inconsistent intuitionistic

preference relation R̃, if d = 0, the rectification process stops at ˆ̃R
′
= ˆ̃R and the hesitancy degree of

each IFN in the rectified intuitionistic preference relation ˆ̃R
′

equals that of the corresponding original
judgment in R̃; if d > 0, the hesitancy degree of each IFN in R̃ is scaled down by a common proportion
1/(1 + 2d).

For an inconsistent original judgment matrix R̃, this additive consistency rectification process can
be summarized as follows:

Step 1. Construct ˆ̃R = ( ˆ̃rij)n×n with ˆ̃rij = (µ̂ij, v̂ij) from R̃ as per (9) and (10).

Step 2. Determine the value of d by Equation (11). If d = 0, ˆ̃R
′
= ˆ̃R and stop; otherwise, go to

Step 3.
Step 3. Calculate ˆ̃r

′
ij (i, j = 1, 2, . . . , n) to transform ˆ̃R into an additive consistent intuitionistic

preference relation ˆ̃R
′
=
(

ˆ̃r
′
ij

)
n×n

by Equation (13).

4. An Approach to Group Decision Making with Intuitionistic Preference Relations

4.1. An Induced Intuitionistic Ordered Weighted Averaging (IIOWA) Operator

Yager and Filev [25] extend the ordered weighted averaging (OWA) operator [24] to an
induced ordered weighted averaging (IOWA) operator by introducing an order inducing variable as
defined below.

Definition 3. An IOWA operator is a function IOWA : (<×<)m → < defined by an associated

m-dimensional weight vector ω = (ω1, ω2, ..., ωm)
T such that

m
∑

i=1
ωi = 1 and ωi ∈ [0, 1] (i = 1, 2, . . . , m),

and a set of pairs {< I1, a1 >,< I2, a2 >, ...,< Im, am >}, as per the following expression:

IOWAω (< I1, a1 >,< I2, a2 >, ...,< Im, am >) =
m

∑
i=1

ωiaσ(i) (14)

where σ is a permutation of {1, 2, . . . , m} such that Iσ(i) ≥ Iσ(i+1) for i = 1, 2, . . . , m-1, i.e.,
(aσ(1), aσ(2), ..., aσ(m)) is a reordering of (a1, a2, ..., am) as per a decreasing order of all Ii (i = 1, 2, . . . , m).
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In Definition 3, Ii in the pair < Ii, ai > is referred to as the value of an order inducing variable
and ai as the value of an argument variable. The reordering may be generalized as an ascending order.
In this case, it is necessary to distinguish between a descending IOWA operator (DIOWA) and an
ascending IOWA (AIOWA) operator.

In the following, the IOWA operator is extended to accommodate situations where the input
arguments are expressed as IFNs.

Definition 4. Let αi = (µi, vi) (i = 1, 2, . . . , m) be m IFNs, then an induced intuitionistic ordered weighted
averaging (IIOWA) operator is defined as:

I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >) =

(IOWAω (< I1, µ1 >,< I2, µ2 >, ...,< Im, µm >) , IOWAω (< I1, v1 >,< I2, v2 >, ...,< Im, vm >))

=

(
m
∑

i=1
ωiµσ(i),

m
∑

i=1
ωivσ(i)

) (15)

where ω = (ω1, ω2, ..., ωm)
T is an associated weight vector with

m
∑

i=1
ωi = 1 and ωi ∈ [0, 1] (i = 1, 2, . . . , m),

Ii is the value of an order inducing variable (i = 1, 2, . . . , m), and σ is a permutation of {1, 2, . . . , m} such that
Iσ(i) ≤ Iσ(i+1) for each i = 1, 2, . . . , m − 1.

As αi = (µi, vi) is an IFN, we have 0 ≤ µi ≤ 1, 0 ≤ vi ≤ 1 and µi + vi ≤ 1. Thus, one can

obtain 0 ≤
m
∑

i=1
ωiµσ(i) ≤ 1, 0 ≤

m
∑

i=1
ωivσ(i) ≤ 1 and

m
∑

i=1
ωiµσ(i) +

m
∑

i=1
ωivσ(i) =

m
∑

i=1
ωi(µσ(i)+vσ(i)) ≤ 1.

Therefore, the aggregated value by using the IIOWA operator remains an IFN. Obviously, if µi = vi for

all i = 1, 2, . . . , m, one has
m
∑

i=1
ωiµσ(i) =

m
∑

i=1
ωivσ(i).

Theorem 4. The IIOWA operator defined in (15) is idempotent, commutative, bounded, and monotonic with
respect to the order based on score and accuracy functions.

Proof. The idempotence and commutativity of the IIOWA operator can be directly obtained from
Definition 4.

Let αmin = (µmin, vmin) = min {αi|i = 1, 2..., m} and αmax = (µmax, vmax) =

max {αi|i = 1, 2..., m}. According to the prioritized comparison method for any two IFNs in Section 2,
one has

(i) S(αmin) = µmin − vmin < S(αi) = µi − vi or µmin − vmin = µi − vi and µmin + vmin ≤ µi + vi.
(ii) S(αi) = µi − vi < S(αmax) = µmax − vmax or µi − vi = µmax − vmax and µi + vi ≤ µmax + vmax.

Thus, one can obtain

(iii) S(αmin) = µmin − vmin <
m
∑

i=1
ωi(µσ(i) − vσ(i)) =S(I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >))

or

S(αmin) = S(I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >)) and µmin + vmin ≤
m
∑

i=1
ωi(µσ(i) + vσ(i)).

(iv)
m
∑

i=1
ωi(µσ(i) − vσ(i)) =S(I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >)) < S(αmax) = µmax − vmax

or

S(I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >)) = S(αmax) and
m
∑

i=1
ωi(µσ(i) + vσ(i)) ≤ µmax + vmax.

Therefore, αmin ≤ I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >) ≤ αmax, verifying the
boundedness of the IIOWA operator in terms of the score and accuracy functions.
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For the monotonicity, let αi ≤ α′i for all i (i = 1, 2, . . . , m), where α′i = (µ′i, v′i), then as per the
comparison method for two IFNs, we have

S(αi) = µi − vi < S(α′i) = µ′i − v′i or µi − vi = µ′i − v′i and µi + vi ≤ µ′i + v′i

By applying the IIOWA formula in Definition 4, one has

m

∑
i=1

ωiµσ(i) −
m

∑
i=1

ωivσ(i) <
m

∑
i=1

ωiµ
′
σ(i) −

m

∑
i=1

ωiv′σ(i) or

m
∑

i=1
ωiµσ(i) −

m
∑

i=1
ωivσ(i) =

m
∑

i=1
ωiµ

′
σ(i) −

m
∑

i=1
ωiv′σ(i) and

m
∑

i=1
ωiµσ(i) +

m
∑

i=1
ωivσ(i) ≤

m
∑

i=1
ωiµ

′
σ(i) +

m
∑

i=1
ωiv′σ(i)

As per the comparison approach of IFNs, one can get
(

m
∑

i=1
ωiµσ(i),

m
∑

i=1
ωivσ(i)

)
≤(

m
∑

i=1
ωiµ

′
σ(i),

m
∑

i=1
ωiv′σ(i)

)
. It follows from (15) that

I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >) ≤ I IOWAω

(
< I1, α′1 >,< I2, α′2 >, ...,< Im, α′m >

)
The proof of Theorem 4 is thus completed.

As per (15), it is easy to prove the following theorem.

Theorem 5. Let αi = (µi, vi) (i = 1, 2, . . . , m) be m IFNs, then

I IOWAω

(
< I1, αC

1 >,< I2, αC
2 >, ...,< Im, αC

m >
)
=

(
m

∑
i=1

ωivσ(i),
m

∑
i=1

ωiµσ(i)

)
(16)

where αC
i is the complement of αi, i.e., αC

i = (vi, µi) for each i = 1, 2, ..., m.

Theorem 5 indicates that for m IFNs, we have I IOWAω

(
< I1, αC

1 >,< I2, αC
2 >, ...,< Im, αC

m >
)
=

(I IOWAω (< I1, α1 >,< I2, α2 >, ...,< Im, αm >))C, implying that the complement property will be
maintained by using the IIOWA operator to aggregate m IFNs into an IFN. It is noted that this property
does not hold for the aggregation operator I-IFOWA introduced by Wei [28].

Apparently, the order inducing variable follows an ascending order in Definition 4, which can be
conveniently reversed to obtain a descending IIOWA (DIIOWA) operator.

4.2. Properties of IIOWA Aggregation of Intuitionistic Preference Relations

Next, we shall investigate the properties of the aggregation result when the IIOWA operator is
applied to aggregate intuitionistic preference relations.

Theorem 6. Let R̃k = (r̃k
ij)n×n

with r̃k
ij = (µk

ij, vk
ij) (k = 1, 2, . . . , m) be m intuitionistic preference

relations, and Ik (k = 1, 2, . . . , m) be m values of the order inducing variable, then the aggregation
R̃G = (r̃G

ij )n×n
=
(
(µG

ij , vG
ij )
)

n×n
=
(

I IOWAω(< I1, r̃1
ij >,< I2, r̃2

ij >, ...,< Im, r̃m
ij >)

)
n×n

is also an

intuitionistic preference relation.

Proof. As R̃k = (r̃k
ij)n×n

=
(
(µk

ij, vk
ij)
)

n×n
is an intuitionistic preference relation, as per (5), we have

µk
ij = vk

ji, vk
ij = µk

ji, µk
ii = vk

ii = 0.5 ∀i, j = 1, 2, ..., n, k = 1, 2, ..., m.
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According to Definition 4, one has µG
ij =

m
∑

k=1
ωkµ

σ(k)
ij and vG

ij =
m
∑

k=1
ωkvσ(k)

ij . Thus,

µG
ij =

m
∑

k=1
ωkµ

σ(k)
ij =

m
∑

k=1
ωkvσ(k)

ji = vG
ji , vG

ij =
m
∑

k=1
ωkvσ(k)

ij =
m
∑

k=1
ωkµ

σ(k)
ji = µG

ji , µG
ii =

m
∑

k=1
ωkµ

σ(k)
ii = 0.5

and vG
ii =

m
∑

k=1
ωkvσ(k)

ii = 0.5. Therefore, R̃G is an intuitionistic preference relation.

Theorem 7. If R̃k = (r̃k
ij)n×n

=
(
(µk

ij, vk
ij)
)

n×n
is an additive consistent intuitionistic preference

relation for each k = 1, 2, . . . , m, then the aggregation R̃G = (r̃G
ij )n×n

=
(
(µG

ij , vG
ij )
)

n×n
=(

I IOWAω(< I1, r̃1
ij >,< I2, r̃2

ij >, ...,< Im, r̃m
ij >)

)
n×n

is also additive consistent.

Proof. As per (2) and (15), we have

S(r̃G
ij ) = µG

ij − vG
ij =

m

∑
k=1

ωkµ
σ(k)
ij −

m

∑
k=1

ωkvσ(k)
ij =

m

∑
k=1

ωk

(
µ

σ(k)
ij − vσ(k)

ij

)
=

m

∑
k=1

ωkS(r̃σ(k)
ij )

and

S(r̃G
il )− S(r̃G

jl ) = µG
il − vG

il − (µG
jl − vG

jl ) =
m
∑

k=1
ωkµ

σ(k)
il −

m
∑

k=1
ωkvσ(k)

il −
m
∑

k=1
ωkµ

σ(k)
jl +

m
∑

k=1
ωkvσ(k)

jl

=
m
∑

k=1
ωk

(
µ

σ(k)
il − vσ(k)

il

)
−

m
∑

k=1
ωk

(
µ

σ(k)
jl − vσ(k)

jl

)
=

m
∑

k=1
ωk

(
S(r̃σ(k)

il )− S(r̃σ(k)
jl )

)
On the other hand, as R̃k is additive consistent, it follows from Lemma 1 that

S(r̃k
ij) = S(r̃k

il)− S(r̃k
jl) for all i, j, l = 1, 2, . . . , n, k = 1, 2, . . . , m.

Therefore, S(r̃G
il ) − S(r̃G

jl ) =
m
∑

k=1
ωk

(
S(r̃σ(k)

il )− S(r̃σ(k)
jl )

)
=

m
∑

k=1
ωkS(r̃σ(k)

ij ) = S(r̃G
ij ) for all

i, j, l = 1, 2, . . . , n. By Lemma 1, R̃G is additive consistent.

Theorem 6 indicates that an intuitionistic preference relation R̃G will be obtained by applying
the IIOWA operator to aggregate individual intuitionistic judgments R̃k (k = 1, 2, . . . , m). Theorem 7
further confirms that the resulting R̃G is additive consistent provided that all individual intuitionistic
preference relations are also consistent.

4.3. An IIOWA-Aggregation-Based Procedure for Group Decision with Intuitionistic Preference Relations

Consider a group decision problem with m DMs, D = {d1, d2, ..., dm}. Each DM dk ∈ D
(k = 1, 2, ..., m) furnishes its assessment on an alternative set X = {x1, x2, ..., xn} as an intuitionistic
preference relation R̃k = (r̃k

ij)n×n
=
(
(µk

ij, vk
ij)
)

n×n
.

If a given intuitionistic preference relation R̃k is not additive consistent, by employing
the proposed rectification method in Section 3, a consistent intuitionistic preference relation
ˆ̃R
′k

= ( ˆ̃r
′k
ij )n×n

=
(
(µ̂′kij , v̂′kij )

)
n×n

can be obtained for DM dk. Based on ˆ̃R
′k

(k = 1, 2, ..., m), the

next stage in the solution process for a GDM problem is to derive a consistent group intuitionistic
preference relation by a certain aggregation procedure. To obtain a reasonable result, the aggregation

operator should properly account for the importance degree of each DM’s rectified ˆ̃R
′k

(k = 1, 2, . . . , m).
In this model, the importance degree of each DM dk (k = 1, 2, . . . , m) is assumed to be completely

unknown. As such, a rational way in the aggregation process is to associate the importance degree
with the deviation between the rectified consistent intuitionistic preference relation and the original
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judgment matrix. In order to measure the importance degree of a DM’s ˆ̃R
′k

, Wang and Li [9] introduced
the following definition.

Definition 5. Let R̃ = (r̃ij)n×n =
(
(µij, vij)

)
n×n and R̃′ = (r̃′ij)n×n

=
(
(µ′ij, v′ij)

)
n×n

be any two

intuitionistic preference relations, the mean absolute deviation (MAD) between R̃ and R̃′ is defined as:

MAD(R̃, R̃′) =
1

2n(n− 1)

n

∑
i=1

n

∑
j=1,j 6=i

(∣∣∣µij − µ′ij

∣∣∣+ ∣∣∣vij − v′ij
∣∣∣) (17)

Obviously, 0 ≤ MAD(R̃, R̃′) ≤ 1 and MAD(R̃, R̃′) = MAD(R̃′, R̃). The smaller the value of
MAD(R̃, R̃′), the closer R̃ is to R̃′. Especially, if MAD(R̃, R̃′) = 0, R̃ = R̃′.

By applying (17) to the rectified ˆ̃R
′k

and the original R̃k for each k = 1, 2, . . . , m, we obtain m MAD

values {MAD( ˆ̃R
′k

, R̃k)|k = 1, 2..., m}. The smaller the value of MAD( ˆ̃R
′k

, R̃k), the closer the rectified
ˆ̃R
′k

is to the original intuitionistic judgment R̃k. It is sensible to assign a higher importance level for
ˆ̃R
′k

in the aggregation process. Thus, MAD( ˆ̃R
′k

, R̃k) will be adopted as the order inducing variable in

aggregating ˆ̃R
′k

.
Once the order inducing variable is determined, a natural issue in the aggregation of

{ ˆ̃R
′1

, ˆ̃R
′2

, ..., ˆ̃R
′m
} by using the IIOWA operator is to calculate the weight vector associated with

the order inducing variable. A number of approaches [33] have been developed for determining the
associated weights. This paper adopts the following formula that is initially proposed by Yager [34]:

ωk =

(
1−MAD( ˆ̃R

′σ(k)
, R̃σ(k))

)λ

m
∑

k=1

(
1−MAD( ˆ̃R

′σ(k)
, R̃σ(k))

)λ
k = 1, 2, . . . , m (18)

where λ ∈ (0,+∞).
In the context of the inducing variable here, it is desirable that a higher weight is assigned to a

lower MAD value. Without loss of generality, λ = 2 is used to determine the associated weights.
Based on the weights determined by (18), a group intuitionistic preference relation R̃′G = (r̃′Gij )n×n

with r̃′Gij = (µ′Gij , v′Gij ) can be derived from ˆ̃R
′k

(k = 1, 2, . . . , m) by employing the IIOWA operator.

According to Theorem 7, R̃′G is additive consistent.
The last stage in the solution process is to obtain a ranking of all alternatives or select the best

one(s) based on the aggregated R̃′G. To facilitate the ranking process, define:

si =
1
n

n

∑
l=1

S(r̃′Gil ) i = 1, 2, . . . , n (19)

Theorem 8. Let si (i = 1, 2, . . . , n) be defined by (19), if S(r̃′Gij ) ≥ 0 (i, j ∈ {1, 2, ..., n}), then si ≥ sj.

Proof. As R̃′G is an additive consistent intuitionistic preference relation, it follows from (8) that
S(r̃′Gij ) = S(r̃′Gil )− S(r̃′Gjl ), i, j, l = 1, 2, ..., n.

Plugging in (19), one has si − sj =
1
n

(
n
∑

l=1

(
S(r̃′Gil )− S(r̃′Gjl )

))
= S(r̃′Gij ).

If S(r̃′Gij ) ≥ 0, it immediately follows si ≥ sj. This proves Theorem 8.
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Theorem 8 indicates that a ranking order of alternatives as per a descending order of
si (i = 1, 2, . . . , n) is consistent with the score-function-based ranking derived from the aggregated
preference values in R̃′G.

Based on the aforesaid analyses, a solution procedure is summarized below for GDM with
intuitionistic preference relations.

Step 1. For each intuitionistic preference relation R̃k furnished by DM dk ∈ D (k = 1, 2, ..., m), use

Lemma 1 to determine if it is additive consistent. If R̃k is consistent, ˆ̃R
′k
= R̃k. Otherwise, employ the

rectification process in Section 3 to construct an additive consistent intuitionistic preference relation
ˆ̃R
′k

for each inconsistent R̃k.
Step 2. Calculate MAD value MAD( ˆ̃R

′k
, R̃k) between the constructed consistent intuitionistic

preference relation ˆ̃R
′k

and the original judgment matrix R̃k for each k = 1, 2, ..., m as per (17).
Step 3. Determine the associated weights ωk (k = 1, 2, . . . , m) by plugging the values of

MAD(R̃σ(k), ˆ̃R
′σ(k)

) into (18) with λ = 2.

Step 4. Use the IIOWA operator to aggregate all ˆ̃R
′k

(k = 1, 2, . . . , m) into a collective
consistent intuitionistic preference relation R̃′G = (r̃′Gij )n×n

with r̃′Gij = (µ′Gij , v′Gij ), where

r̃′Gij = I IOWAω(< MAD( ˆ̃R
′1

, R̃1), r̃′1ij >,< MAD( ˆ̃R
′2

, R̃2), r̃′2ij >, ...,< MAD( ˆ̃R
′m

, R̃m), r̃′mij >)

(i, j = 1, 2, . . . , n), i.e., µ′Gij =
m
∑

k=1
ωkµ̂

′σ(k)
ij and v′Gij =

m
∑

k=1
ωk v̂′σ(k)ij (i, j =1, 2, . . . , n).

Step 5. Obtain the ranking value si for alternative xi ∈ X (i = 1, 2, . . . , n) as per (19).
Step 6. Rank alternatives and select the best one(s) according to a decreasing order of

si (i =1, 2, . . . , n).

5. An Example of Low Carbon Supplier Selection

This section applies the proposed procedure to GDM concerning low carbon supplier selection
where the DMs’ judgment information is furnished as intuitionistic preference relations (adapted from
Theißen and Spinler [35]).

To select an appropriate low carbon supplier for a manufacturer, a committee consisting of three
members, d1, d2, and d3, is convened and the members are from the procurement, production, and
finance departments. These representatives offer their assessments on four potential suppliers x1, x2, x3,
and x4 based on a set of criteria accounting for low carbon technology, cost, and capacity. It is assumed
that each DM dk (k = 1, 2, 3) gives its pairwise comparison results over the four suppliers as the
following intuitionistic preference relations R̃k = (r̃k

ij)4×4
with r̃k

ij = (µk
ij, vk

ij):

R̃1 =


(0.5, 0.5) (0.4, 0.5) (0.6, 0.3) (0.3, 0.5)
(0.5, 0.4) (0.5, 0.5) (0.5, 0.3) (0.6, 0.3)
(0.3, 0.6) (0.3, 0.5) (0.5, 0.5) (0.6, 0.2)
(0.5, 0.3) (0.3, 0.6) (0.2, 0.6) (0.5, 0.5)



R̃2 =


(0.5, 0.5) (0.3, 0.4) (0.9, 0.0) (0.9, 0.0)
(0.4, 0.3) (0.5, 0.5) (0.2, 0.5) (0.95, 0.0)
(0.0, 0.9) (0.5, 0.2) (0.5, 0.5) (0.95, 0.0)
(0.0, 0.9) (0.0, 0.95) (0.0, 0.95) (0.5, 0.5)



R̃3 =


(0.5, 0.5) (0.1, 0.6) (0.7, 0.0) (0.3, 0.2)
(0.6, 0.1) (0.5, 0.5) (0.8, 0.2) (0.9, 0.0)
(0.0, 0.7) (0.2, 0.8) (0.5, 0.5) (0.8, 0.1)
(0.2, 0.3) (0, 0.9) (0.1, 0.8) (0.5, 0.5)
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It is easy to verify that these three intuitionistic preferences are not additive consistent based on
Definition 2. As such, the rectification process in Section 3 has to be carried out. As per (9) and (10),
the following three transformation matrices are obtained:

ˆ̃R
1
=


(0.5, 0.5) (0.3750, 0.5250) (0.4625, 0.4375) (0.4625, 0.3375)

(0.5250, 0.3750) (0.5, 0.5) (0.4875, 0.3125) (0.5875, 0.3125)
(0.4375, 0.4625) (0.3125, 0.4875) (0.5, 0.5) (0.4500, 0.3500)
(0.3375, 0.4625) (0.3125, 0.5875) (0.3500, 0.4500) (0.5, 0.5)



ˆ̃R
2
=


(0.5, 0.5) (0.46875, 0.23125) (0.61875, 0.28125) (1.0125,−0.1125)

(0.23125, 0.46875) (0.5, 0.5) (0.40000, 0.30000) (0.91875, 0.03125)
(0.28125, 0.61875) (0.30000, 0.40000) (0.5, 0.5) (0.86875, 0.08125)
(−0.1125, 1.0125) (0.03125, 0.91875) (0.08125, 0.86875) (0.5, 0.5)



ˆ̃R
3
=


(0.5, 0.5) (0.1375, 0.5625) (0.4625, 0.2375) (0.5000, 0.0000)

(0.5625, 0.1375) (0.5, 0.5) (0.8250, 0.1750) (0.9125,−0.0125)
(0.2375, 0.4625) (0.1750, 0.8250) (0.5, 0.5) (0.5875, 0.3125)
(0.0000, 0.5000) (−0.0125, 0.9125) (0.3125, 0.5875) (0.5, 0.5)


In ˆ̃R

1
, 0 < µ̂ij < 1 and 0 < v̂ij < 1 for all i, j = 1, 2, 3, 4. In ˆ̃R

2
, µ̂41 < 0 and v̂41 > 1

(correspondingly, µ̂14 > 1 and v̂14 < 0). In ˆ̃R
3
, µ̂42 < 0 (correspondingly, v̂24 < 0). By (11), the

d values for ˆ̃R
1
, ˆ̃R

2
, and ˆ̃R

3
are 0, 0.1125, and 0.0125, respectively.

According to (13), we obtain three additively consistent intuitionistic preference relations
as follows.

ˆ̃R
′1
= ˆ̃R

1
=


(0.5, 0.5) (0.3750, 0.5250) (0.4625, 0.4375) (0.4625, 0.3375)

(0.5250, 0.3750) (0.5, 0.5) (0.4875, 0.3125) (0.5875, 0.3125)
(0.4375, 0.4625) (0.3125, 0.4875) (0.5, 0.5) (0.4500, 0.3500)
(0.3375, 0.4625) (0.3125, 0.5875) (0.3500, 0.4500) (0.5, 0.5)



ˆ̃R
′2
=


(0.5, 0.5) (0.47449, 0.28061) (0.59694, 0.32143) (0.91837, 0.00000)

(0.28061, 0.47449) (0.5, 0.5) (0.41837, 0.33673) (0.84184, 0.11735)
(0.32143, 0.59694) (0.33673, 0.41837) (0.5, 0.5) (0.80102, 0.15816)
(0.00000, 0.91837) (0.11735, 0.84184) (0.15816, 0.80102) (0.5, 0.5)



ˆ̃R
′3
=


(0.5, 0.5) (0.14634, 0.56098) (0.46341, 0.24390) (0.50000, 0.01220)

(0.56098, 0.14634) (0.5, 0.5) (0.81707, 0.18293) (0.90244, 0.00000)
(0.24390, 0.46341) (0.18293, 0.81707) (0.5, 0.5) (0.58537, 0.31707)
(0.01220, 0.50000) (0.00000, 0.90244) (0.31707, 0.58537) (0.5, 0.5)


One can easily verify that the hesitancy degrees of IFNs in ˆ̃R

′1
are equal to those of the

corresponding IFNs in the original intuitionistic preference relation R̃1. For the constructed consistent

intuitionistic preference relations ˆ̃R
′2

and ˆ̃R
′3

, one can see that the hesitancy degrees of the original
preferences in R̃2 and R̃3 are reduced by a factor of 1/1.225 and 1/1.025, respectively.

By using (17), the MAD values MAD( ˆ̃R
′k

, R̃k) (k = 1, 2, 3) between the constructed consistent

intuitionistic preference relations ˆ̃R
′k

and the original judgment matrix R̃k are determined as

MAD( ˆ̃R
′1

, R̃1) = 0.08333, MAD( ˆ̃R
′2

, R̃2) = 0.15425, MAD( ˆ̃R
′3

, R̃3) = 0.11849
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As MAD( ˆ̃R
′1

, R̃1) < MAD( ˆ̃R
′3

, R̃3) < MAD( ˆ̃R
′2

, R̃2), as per Definition 4, if the MAD is adopted
as the order inducing variable, then a permutation of {1, 2, 3} can be obtained as {1, 3, 2}, i.e.,
σ(1) = 1, σ(2) = 3 and σ(3) = 2. Therefore, based on (18) with λ = 2, the associated DM weights of
the IIOWA operator are determined as ω1 = 0.3602, ω2 = 0.3331, and ω3 = 0.3067.

By employing the IIOWA operator with the associated weight vector (ω1, ω2, ω3)
T and the

permutation σ, the collective consistent intuitionistic preference relation R̃′G = (r̃′Gij )n×n
is derived as

ˆ̃R
′G

=


(0.5, 0.5) (0.32935, 0.46203) (0.50404, 0.33741) (0.61481, 0.12563)

(0.46203, 0.32935) (0.5, 0.5) (0.57608, 0.27677) (0.77041, 0.14855)
(0.33741, 0.50404) (0.27677, 0.57608) (0.5, 0.5) (0.60275, 0.28019)
(0.12563, 0.61481) (0.14855, 0.77041) (0.28019, 0.60275) (0.5, 0.5)


As per (19), the ranking values for all alternatives are determined

s1 = 0.13078, s2 = 0.26346, s3 = −0.03585, s4 = −0.3584

Since s2 > s1 > s3 > s4, a full ranking of the four suppliers is obtained as x2 � x1 � x3 � x4.

6. Conclusions

Consistency and aggregation are two critical issues in GDM with intuitionistic preference relations.
This paper puts forward a three-stage framework to handle GDM problems with intuitionistic
preference relations and applies it to solve low carbon supplier selection problems. Based on the
additive consistency definition proposed by Wang [19], the first stage is concerned with rectifying the
original inconsistent intuitionistic preference relations furnished by the DMs. In the aggregation stage,
a new intuitionistic fuzzy aggregation operator, the so-called IIOWA, is developed to aggregate the
rectified consistent intuitionistic preference relations. This aggregation operator adopts the MAD value
between the original and rectified intuitionistic preference relations as an order inducing variable.
Based on the aggregated consistent intuitionistic preference relation, an overall ranking function is
defined to rank alternatives or select the best one(s).

Significant research opportunities remain open along this line of research. For instance, it is
unclear how to handle missing values in the intuitionistic preference relations furnished by the DMs.
In addition, the current research rectifies inconsistent intuitionistic preference relations to completely
additive consistent. However, sometimes complete consistency may not be necessary as long as
inconsistency is controlled to within an acceptable level. It would be interesting to examine how the
current framework can be adapted to handle these extensions.

Acknowledgments: The research is partially supported by the National Natural Science Foundation of China
under Grant Nos. 71271188 and 71671160, the Zhejiang Provincial Natural Science Foundation of China under
Grant LY15G010004, and the Humanities and Social Science Foundation of Ministry of Education of China under
Grant 14YJC880069, and the Zhejiang Provincial Soft Science Research Plan of China under Grant 2016C35043.

Author Contributions: Xiayu Tong drafted the initial manuscript and conceived the group decision framework.
Zhou-Jing Wang revised the manuscript and provided the relevant literature review.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. BBC News. China Smog: Beijing Issues Second Ever Pollution Red Alert. 18 December 2015.
Available online: http://www.bbc.com/news/world-asia-china-35129258 (accessed on 23 July 2016).

2. Levinson, M.U.S. Manufacturing in International Perspective, Congressional Research Service, CRS Report
R42135. Available online: https://fas.org/sgp/crs/misc/R42135.pdf (accessed on 23 May 2016).

http://www.bbc.com/news/world-asia-china-35129258
https://fas.org/sgp/crs/misc/R42135.pdf


Int. J. Environ. Res. Public Health 2016, 13, 923 15 of 16

3. Ren, J.; Gao, S.; Tan, S.; Dong, L.; Scipioni, A.; Mazzi, A. Role prioritization of hydrogen production
technologies for promoting hydrogen economy in the current state of China. Renew. Sustain. Energy Rev.
2015, 41, 1217–1229. [CrossRef]

4. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
5. Das, S.; Kar, S. Group decision making in medical system: An intuitionistic fuzzy soft set approach.

Appl. Soft Comput. 2014, 24, 196–211. [CrossRef]
6. Vahdani, B.; Meysam Mousavi, S.; Tavakkoli-Moghaddam, R.; Hashemi, H. A new design of the elimination

and choice translating reality method for multi-criteria group decision-making in an intuitionistic fuzzy
environment. Appl. Math. Model. 2013, 37, 1781–1799. [CrossRef]

7. Wang, J.Q.; Han, Z.Q.; Zhang, H.Y. Multi-criteria group decision-making method based on intuitionistic
interval fuzzy information. Group Decis. Negot. 2014, 23, 715–733. [CrossRef]

8. Wang, Z.J.; Li, K.W. Group decision making with incomplete intuitionistic preference relations based on
quadratic programming models. Comput. Ind. Eng. 2016, 93, 162–170. [CrossRef]

9. Wang, Z.J.; Wang, Y.H.; Li, K.W. An acceptable consistency-based framework for group decision making
with intuitionistic preference relations. Group Decis. Negot. 2016, 25, 181–202. [CrossRef]

10. Szmidt, E.; Kacprzyk, J. Using intuitionistic fuzzy sets in group decision making. Control Cybern. 2002, 31,
1037–1053.

11. Xu, Z. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177,
2363–2379. [CrossRef]

12. Xu, Z. Compatibility analysis of intuitionistic fuzzy preference relations in group decision making.
Group Decis. Negot. 2013, 22, 463–482. [CrossRef]

13. Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
14. Xu, Z.; Liao, H. A survey of approaches to decision making with intuitionistic fuzzy preference relations.

Knowl. Based Syst. 2015, 80, 131–142. [CrossRef]
15. Wang, Z.J. Geometric consistency based interval weight elicitation from intuitionistic preference relations

using logarithmic least square optimization. Fuzzy Optim. Decis. Mak. 2015, 14, 289–310. [CrossRef]
16. Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187.
17. Xu, Z.; Cai, X.; Szmidt, E. Algorithms for estimating missing elements of incomplete intuitionistic preference

relations. Int. J. Intell. Syst. 2011, 26, 787–813. [CrossRef]
18. Gong, Z.W.; Li, F.J.; Zhao, Y. The optimal priority models of the intuitionistic fuzzy preference relation

and application in selecting industries with higher meteorological sensitivity. Expert Syst. Appl. 2011, 38,
4394–4402. [CrossRef]

19. Wang, Z.J. Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations.
Appl. Math. Model. 2013, 37, 6377–6388. [CrossRef]

20. Cathy, M.; De Witte, A.; Ampe, J. The multi-actor, multi-criteria analysis methodology (MAMCA) for the
evaluation of transport projects: Theory and practice. J. Adv. Transp. 2009, 43, 183–202.

21. Ren, J.; Fedele, A.; Mason, M.; Manzardo, A.; Scipioni, A. Fuzzy multi-actor multi-criteria decision making
for sustainability assessment of biomass-based technologies for hydrogen production. Int. J. Hydrog. Energy
2013, 38, 9111–9120. [CrossRef]

22. Macharis, C.; De Witte, A.; Turcksin, L. The Multi-Actor Multi-Criteria Analysis (MAMCA) application in
the Flemish long-term decision making process on mobility and logistics. Transp. Policy 2010, 17, 303–311.
[CrossRef]

23. Lu, C.; You, Y.X.; Liu, H.C.; Li, P. Health-care waste treatment technology selection using the interval 2-tuple
induced TOPSIS method. Int. J. Environ. Res. Public Health 2016, 13, 562. [CrossRef] [PubMed]

24. Yager, R.R. On ordered weighted averaging aggregation operators in multi-criteria decision making.
IEEE Trans. Syst. Man Cybern. B 1988, 18, 183–190. [CrossRef]

25. Yager, R.R.; Filev, D.P. Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. B 1999,
29, 141–150. [CrossRef] [PubMed]

26. Xu, Z.; Yager, R.R. Some geometric aggregation operators based intuitionistic fuzzy sets. Int. J. Gen. Syst.
2006, 35, 417–433. [CrossRef]

27. Wei, G.W. Some induced geometric aggregation operators with intuitionistic fuzzy information and their
application to group decision making. Appl. Soft Comput. 2010, 10, 423–431. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2014.09.028
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/j.asoc.2014.06.050
http://dx.doi.org/10.1016/j.apm.2012.04.033
http://dx.doi.org/10.1007/s10726-012-9316-4
http://dx.doi.org/10.1016/j.cie.2016.01.001
http://dx.doi.org/10.1007/s10726-015-9438-6
http://dx.doi.org/10.1016/j.ins.2006.12.019
http://dx.doi.org/10.1007/s10726-011-9278-y
http://dx.doi.org/10.1016/j.knosys.2014.12.034
http://dx.doi.org/10.1007/s10700-014-9205-1
http://dx.doi.org/10.1002/int.20494
http://dx.doi.org/10.1016/j.eswa.2010.09.109
http://dx.doi.org/10.1016/j.apm.2013.01.021
http://dx.doi.org/10.1016/j.ijhydene.2013.05.074
http://dx.doi.org/10.1016/j.tranpol.2010.02.004
http://dx.doi.org/10.3390/ijerph13060562
http://www.ncbi.nlm.nih.gov/pubmed/27271652
http://dx.doi.org/10.1109/21.87068
http://dx.doi.org/10.1109/3477.752789
http://www.ncbi.nlm.nih.gov/pubmed/18252288
http://dx.doi.org/10.1080/03081070600574353
http://dx.doi.org/10.1016/j.asoc.2009.08.009


Int. J. Environ. Res. Public Health 2016, 13, 923 16 of 16

28. Wei, G.W. Induced intuitionistic fuzzy ordered weighted averaging operator and its application to multiple
attribute group decision making. In Proceedings of the 3rd International Conference on Rough Sets and
Knowledge Technology, Chengdu, China, 17–19 May 2008; pp. 124–131.

29. Su, Z.X.; Xia, G.P.; Chen, M.Y.; Wang, L. Induced generalized intuitionistic fuzzy OWA operator for
multi-attribute group decision making. Expert Syst. Appl. 2012, 39, 1902–1910. [CrossRef]

30. Chen, S.M.; Tan, J.M. Handling multicriteria fuzzy decision-making problems based on vague set theory.
Fuzzy Sets Syst. 1994, 67, 163–172. [CrossRef]

31. Hong, D.H.; Choi, C.H. Multicriteria fuzzy decision-making problems based on vague set theory.
Fuzzy Sets Syst. 2000, 114, 103–113. [CrossRef]

32. Herrera-Viedma, E.; Herrera, F.; Chiclana, F.; Luque, M. Some issues on consistency of fuzzy preference
relations. Eur. J. Oper. Res. 2004, 154, 98–109. [CrossRef]

33. Xu, Z. An overview of methods for determining OWA weights. Int. J. Intell. Syst. 2005, 20, 843–865.
[CrossRef]

34. Yager, R.R. Families of OWA operators. Fuzzy Sets Syst. 1993, 59, 125–148. [CrossRef]
35. Theißen, S.; Spinler, S. Strategic analysis of manufacturer-supplier partnerships: An ANP model for

collaborative CO2 reduction management. Eur. J. Oper. Res. 2014, 233, 383–397. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2011.08.057
http://dx.doi.org/10.1016/0165-0114(94)90084-1
http://dx.doi.org/10.1016/S0165-0114(98)00271-1
http://dx.doi.org/10.1016/S0377-2217(02)00725-7
http://dx.doi.org/10.1002/int.20097
http://dx.doi.org/10.1016/0165-0114(93)90194-M
http://dx.doi.org/10.1016/j.ejor.2013.08.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Rectification of Inconsistent Intuitionistic Preference Relations 
	An Approach to Group Decision Making with Intuitionistic Preference Relations 
	An Induced Intuitionistic Ordered Weighted Averaging (IIOWA) Operator 
	Properties of IIOWA Aggregation of Intuitionistic Preference Relations 
	An IIOWA-Aggregation-Based Procedure for Group Decision with Intuitionistic Preference Relations 

	An Example of Low Carbon Supplier Selection 
	Conclusions 

