Supplementary Materials: Sugar-Sweetened Beverage Consumption Is Adversely Associated with Childhood Attention Deficit/Hyperactivity Disorder

Ching-Jung Yu, Jung-Chieh Du, Hsien-Chih Chiou, Chun-Cheng Feng, Ming-Yi Chung, Winnie Yang, Ying-Sheue Chen, Ling-Chu Chien, Betau Hwang and Mei-Lien Chen

Figure S1. Boxplot diagram of BLLs for ADHD and normal control participants.

Table S1. Relationship between maternal education level and smoking/alcohol consumption during pregnancy.

Variables	Maternal Education		
	High School and Below (N = 139)	39) College or Advanced Training (N = 193)	
Smoking during pregnancy (%)			
No	123 (88.5%)	187 (96.9%)	
Yes	16 (11.5%)	6 (3.1%)	
Alcohol consumption during pregnancy (%)			
No	122 (87.8%)	181 (93.8%)	
Yes	17 (12.2%)	12 (6.2%)	

^{*} *p* < 0.05.

Table S2. Polymorphism of dopamine-related genes (DRD4/DAT1) of the study participants (N = 207).

Marker Name	Controls	ADHD				
	N = 110	N = 97				
Gene polymorphism—DRD4						
rs7395429						
T	53 (48.2%)	60 (61.9%)				
TC	46 (41.8%)	30 (30.9%)				
С	11 (10.0%)	7 (7.2%)				
rs3758653						
T	44 (40.0%)	48 (49.5%)				
TC	55 (50.0%)	45 (46.4%)				
C	11 (10.0%)	4 (4.1%)				
rs11246228						
T	34 (30.9%)	18 (18.6%)				
TC	51 (46.4%)	50 (51.5%)				
C	25 (22.7%)	29 (29.9%)				
rs752306 1,*						
G	67 (60.9%)	75 (77.3%)				
GA	38 (34.5 %)	21 (21.6%)				
A	5 (4.5%)	1 (1.0%)				
Gene polymorp	hism—DAT1	l				
rs6347						
G	1 (0.9%)	0 (0%)				
GA	28 (25.5%)	19 (19.6%)				
A	81 (73.6%)	78 (80.4%)				
rs2975292						
G	87 (79.1%)	70 (72.2%)				
CG	22 (20.0%)	27 (27.8%)				
C	1 (0.9%)	0 (0.0%)				
rs37022						
A	25 (22.7%)	18 (18.6%)				
TA	55 (50.0%)	63 (64.9%)				
T	30 (27.3%)	16 (16.5%)				
rs40358						
T	46 (41.8%)	37 (38.1%)				
GT	48 (43.6%)	50 (51.5%)				
G	16 (14.3%)	10 (10.3%)				
rs10040882						
T	1 (0.9%)	0 (0.0%)				
TC	22 (20.0%)	24 (24.7%)				
C	87 (79.1%)	73 (75.3%)				
rs464049						
T	16 (14.5%)	7 (7.2%)				
TC	44 (40.0%)	47 (48.5%)				
С	50 (45.5%)	43 (44.3%)				

 $^{^{1}}$ The significant difference in gene polymorphisms (rs752306) may have resulted from the small size of participants; * p < 0.05.

Category	ADI ¹ (mg/day/kg b.w.)	Max. Permitted Conc. in Beverage (mg/kg)	95th Percentile Exposure		
			Groups	Estimated Max. AFCs Consumed (mg/day/kg b.w.)	MOS ²
Allura Red	7	100	ADHD	1.93	3.63
			Control	0.93	7.53
Tartrazine	7.5	100	ADHD	1.93	3.89
			Control	0.93	8.06
Sunset Yellow	2.5	100	ADHD	1.93	1.30
			Control	0.93	2.69

Table S3. Frequently used artificial food colorings (AFCs) and estimated dosage.

Table S4. Frequently used preservatives and estimated maximum exposure.

Category	ADI ¹ (mg/day/kg b.w.)	Max. Permitted Conc. in Beverage (mg/kg)	95th Percentile Exposure		
			Groups	Estimated Max. Preservatives Consumed (mg/day/kg b.w.)	MOS ²
Benzoic acid	5	1000	ADHD	62.40	0.08
			Control	31.54	0.16
Sorbic acid	25	1000	ADHD	62.40	0.40
			Control	31.54	0.79

¹ ADI: Acceptable daily intake (mg/kg of body weight, based on a standard child with body weight of 30 kg)—estimated amount that children can ingest daily "without appreciable risk"; 2 MOS: Margin of safety (ADI divided by the 95th percentile daily preservative consumption through SSBs).

© 2016 by the authors. Submitted for possible open access publication under the terms and conditions Creative Commons Attribution (CC-BY) license of the (http://creativecommons.org/licenses/by/4.0/).

¹ ADI: Acceptable daily intake (mg/kg of body weight, based on a standard child with body weight of 30 kg)—estimated amount that children can ingest daily "without appreciable risk"; 2 Margin of safety (ADI divided by the 95th percentile daily AFC consumption through SSBs).