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Abstract: Management of heavy metal contamination requires accurate information about the
distribution of bioavailable fractions, and about exchange between the solid and solution phases.
In this study, we employed diffusive gradients in thin-films (DGT) and traditional chemical extraction
methods (soil solution, HOAc, EDTA, CaCl2, and NaOAc) to determine the Cd bioavailability in
Cd-contaminated soil with the addition of Pb. Two typical terrestrial species (wheat, Bainong AK58;
maize, Zhengdan 958) were selected as the accumulation plants. The results showed that the added Pb
may enhance the efficiency of Cd phytoextraction which is indicated by the increasing concentration
of Cd accumulating in the plant tissues. The DGT-measured Cd concentrations and all the selected
traditional extractants measured Cd concentrations all increased with increasing concentration of the
addition Pb which were similar to the change trends of the accumulated Cd concentrations in plant
tissues. Moreover, the Pearson regression coefficients between the different indicators obtained Cd
concentrations and plants uptake Cd concentrations were further indicated significant correlations
(p < 0.01). However, the values of Pearson regression coefficients showed the merits of DGT, CaCl2,
and Csol over the other three methods. Consequently, the in situ measurement of DGT and the ex situ
traditional methods could all reflect the inhibition effects between Cd and Pb. Due to the feature
of dynamic measurements of DGT, it could be a robust tool to predict Cd bioavaiability in complex
contaminated soil.

Keywords: diffusive gradients in thin films (DGT); chemical extraction methods; combined pollution;
cadmium bioavailability; wheat and maize

1. Introduction

Cadmium is a common impurity in fertilizers and can contribute to accumulation of Cd in
the soil. Due to human activities such as mining, smeltering, industrial emissions, and the use of
low-quality fertilizers, at least half of agricultural soils have Cd contamination [1]. Due to its high
toxicity, Cd is recognized as a class-one carcinogen by the International Agency for Research on Cancer
(IAPC) [2]. Cd can have serious human health impacts through the mechanisms of bioaccumulation
and bioamplification. The list of top 20 hazardous substances of the United States Environmental
Protection Agency (USEPA) and the Agency for Toxic Substances and Disease Registry (ATSDR)
include Cd [3]. However, traditional measurements such as total concentration of target elements in
soil do not reflect the potential for impacts resulting from ecotoxicity [4]. The bioavailable fractions of
metals may be related to the concentration of these elements that occur as ions and to their kinetically
labile species [5]. In the past years, the potential bioavailability of metals in soil was traditionally
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evaluated using chemical extraction methods (sodium acetate, CaCl2 [6], hydrochloric acid, aqua regia)
or by measuring soil solution concentrations. However, the accuracy of the results depended on the
physicochemical characteristics of the soil (i.e., temperature, pH, redox conditions, organic matter, and
soil clay type). Moreover, these equilibrium-based approaches do not account for depletion at the
root-soil interface and depletion-induced resupply from the soil.

An in situ DGT technique capable of quantitative measurement has been developed, which
can be used to measure labile metal species in soil [7,8], sediment [9,10], and water [11] without
disturbance and pre-treatment [12]. This could eliminate the analytical errors (i.e., resorption and
re-dissolution) common with traditional methods. As a passive sampler, DGT makes it possible to
determine in situ with pre-concentration and to determine time-weighted average concentrations.
In the uptake process, heavy metals from pore water diffuse through the diffusion layer to the binding
phase [13,14]. As a surrogate of plants, DGT measurement could lower the heavy metal concentrations
in the pore water in the vicinity of the DGT unit, which leads to desorption of the heavy metal
from the soil into the pore water at the same time. Based on these characteristics, DGT can measure
the metal bioavailability from the complete soil system [15]. Consequently, DGT was considered
as a potential monitoring tool for soil with heavy metal contamination [16,17]. Research showed
that the bioavailability of Cu [18–20] and Zn [21] determined by DGT highly correlated with the
metal concentration in plants. However, there is no universal consensus on the accuracy of DGT.
Due to the difference of the soil types and experimental biota as well as the contaminated species and
concentrations of the heavy metals, the performance of DGT for bioavailable fractions evaluation varies
a lot [22–25]. Moreover, heavy metals always occur in complex forms in the environment. For example,
Cd and Pb share similar geochemical behaviour and often co-occur as environmental contaminants
in soil. However, the use of DGT in relation to compound contamination of heavy metals in soil
has obvious deficiencies at present. Therefore, improving the effectiveness of the DGT technique for
predicting the bioavailability of Cd in contaminated soil with added Pb requires additional study.

The aim of this study was to investigate the relationship between Cd concentrations measured
by DGT and traditional chemical extraction methods in Cd contaminated soil amended with the
addition of Pb. The relationship between DGT-labile Cd and accumulation in plants was investigated
and compared to chemical extraction methods. Linear correlations between Cd concentration in soil
and plants were used to confirm the best method for predicting the concentration of labile Cd in
complex soils.

2. Materials and Methods

2.1. DGT Assembly and Preparation

The DGT instrument, supplied by DGT Research Ltd. (Lancaster, UK), consists of a plastic shell
enclosing a cellulose-acetate filter (protective membrane), a diffusive gel layer, and a resin (Chelex-100).
A 0.45-µm pore-size filter membrane, 0.13 mm thick and with an exposed diffusion area of 3.14 cm2,
is placed in the outermost layer. Diffusive gels and binding gels were prepared according to the
procedure given in Zhang and Davison [26]. When prepared, the diffusive membrane was hydrated
in demineralized water for 24 h, during which interval the water was changed 3–4 times. Until their
deployment, diffusive membranes were preserved in 0.01 mol/L NaNO3 and resin gels were stored in
demineralized water.

2.2. Soil Samples and Plants

The soil was collected at a depth of 0–20 cm from a vineyard in Nanjing Jiangxinzhou. Larger
impurities were taken out and the dry soil was ground and sieved through 2 mm mesh. The air-dried
homogenized soil sample was then used for wheat (Bainong AK58) and maize (Zhengdan 958) cultivation.
The basic physicochemical properties of soil and the heavy metal content were determined according
to the procedure of Sun et al. [27]. The initial soil was tested for the following chemical properties: pH
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(6.5), organic matter (OM, 2.5%), cation exchange capacity (CEC, 26.9 cmol/kg), and total Cd, Zn, Pb,
and Cu concentrations (0.22, 130.8, 19.04, and 64.4 mg/kg, respectively).

The soil samples were spiked with cadmium chloride and lead nitrate to achieve 4 mg/kg Cd with
different concentrations of soil Pb (0, 20, 40, 80, 160, 320, and 640 mg/kg), while non-treated soil (CK)
served as the control. Nitrogen (0.15 g/kg), phosphorous (0.1 g/kg), and potassium (0.15 g/kg) were
added to the control and treated soil, which was then incubated for six weeks at room temperature.
During this time, the soil moisture was maintained by adding deionized water, and fully mixed every
3–4 d to ensure equilibration between the soil and the added solution.

2.3. Pot Experiment

The control and treated soils were potted (0.75 kg moist soil per pot). The plump seeds were
disinfected with 75% alcohol for 10 min, then wheat and maize seeds were soaked in distilled water
for 1 or 3 d. Five seeds of maize and fifteen seeds of wheat were sown in pots filled with 0.75 kg of
either non-treated or spiked soils. After germination, the number of plants in each pot was reduced to
three seedlings for maize and ten seedlings for wheat. To ensure the accuracy of the experiment, each
combination of added Cd and Pb concentration were treated in triplicate. After 35 days, each plant
was separated into shoots and roots. Plants were rinsed first with tap water, and then with deionized
water, in order to clean their surface. The roots were soaked in 20 mmol/L Na-EDTA solution for
15 min to remove Cd2+ adsorbed to the surface and then washed with distilled water. Samples were
placed in an oven at 105 ˝C for 20 min, and then subjected to 70 ˝C drying, until reaching constant
weight. The dry weights were recorded for the determination of total heavy metal. After harvest, the
remaining soils were air-dried at room temperature and sieved with 2-mm stainless-steel mesh for the
following analysis of bioavailable Cd in soils.

2.4. DGT Experiments

The DGT-Cd determination of metals in the soils was performed according to the procedure
described by Luo et al. [28]. The process involved four steps:

(1) Pretreatment of the soil sample: each soil sample (80 g) was weighed in a 100 mL plastic container
and mixed with deionized water to 40% maximum water holding capacity (MWHC); 48 h later,
water was added to achieve 80% MWHC and the resulting slurries were allowed to equilibrate at
ambient temperature for 24 h before DGT deployment.

(2) DGT deployment: the assembled DGT devices were gently placed on the soil surface of each pot
for 24 h, but the gel films were not squeezed. The containers were closed, and Petri dishes with
wet cellulose were placed in the containers to retain the soil moisture. Three replicates per pot
were kept at 25 ˝C for 24 h.

(3) DGT retrieval and elution: after 24 h, all of the DGT devices were retrieved and rinsed with
deionized water. The binding gel layers were removed from the DGT units, placed in polyethylene
vials, and eluted in 1 mL of 1 mol/L HNO3 for 24 h. The Cd concentration in the extractant was
determined by flame atomic adsorption spectrophotometry (Z-81001, Hitachi, Hitachi, Japan).

(4) DGT calculation: The concentrations of Cd accumulated by the DGT devices were calculated
according to Equation (1):

CDGT “
M∆g
DAt

(1)

where CDGT represents the metal supply from the soil solution and solid phases (mg/L); M is the
accumulated mass of metal on the binding gel (µg); ∆g is the thickness of the diffusion layer(cm); and
D is the diffusion coefficient of metal ion (cm2/s). The D value was temperature corrected. Here, A is
the area of the resin gel exposed to the diffusion flux (cm2) and t is the deployment time (s).
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2.5. Soil Solution Concentration

After completion of the DGT deployment, soil solution was obtained from slurries by
centrifugation at 4000 rpm for 20 min. Subsequently supernatants were filtered using 0.45-µm cellulose
membrane for measurement of the Cd concentration.

2.6. Single-Solvent Process

For the single-leaching procedure commonly used for measurement of Cd content in soil, 0.5 g of
dried, sieved soil was shaken in a 50 mL centrifuge tube with 20 mL of 0.11 mol/L acetic acid (HOAc)
at 60 rpm and ambient temperature for 16 h [29]. Then, 2.0 g of dried, sieved soil was shaken in a 50 mL
centrifuge tube with 20 mL of 0.05 mol/L EDTA at 60 rpm and room temperature for 2 h [30]. Next,
2.0 g of dried, sieved soil was shaken in a 50 mL centrifuge tube with 20 mL of 0.01 mol/L CaCl2 at
60 rpm and ambient temperature for 2 h [31]. Finally, 4.0 g of dried, sieved soil was shaken in a 50 mL
centrifuge tube with 20 mL of 1 mol/L sodium acetate (NaOAc) at 60 rpm and room temperature
for 2 h [32]. The detailed operations are listed in Table 1. All the extracts were immediately filtered
through a membrane filter (0.45-µm pore size) and the filtrate was refrigerated for determination of Cd.

Table 1. Determination of Cd in plants.

Extractant Procedure References

EDTA
2.0 g of soil was extracted with 20 mL of 0.05 mol¨ L´1

EDTA adjusted using an ammonia solution to pH = 7.0
and shaken for 2 h

Feng et al. [30]

HOAc 0.5 g of soil was extracted with 20 mL of 0.11 mol¨ L´1

HOAc and shaken for 16 h (overnight)
Quevauviller [29]

NaOAc 4.0 g of soil was extracted with 20 mL of 1 mol¨ L´1

NaOAc and shaken for 2 h
Kaplan et al. [32]

CaCl2
2.0 g of soil was extracted with 20 mL of 0.01 mol¨ L´1

CaCl2 and shaken for 3 h
Novozamsky et al. [31]

2.7. Determination of Cd in Plants

The shoots and roots were crushed using a plant-grinding machine and sieved through 2 mm
mesh. The samples were digested with HNO3/HClO4 then for the determination of Cd contents in
plant tissues.

3. Results and Discussion

3.1. Wheat and Maize Growth Response to Cd and Pb

As soil contaminants, Cd and Pb are highly mobile and toxic. Previous studies showed that when
the contamination includes Cd and Pb, the combination has a negative synergistic effect on plant
growth. The same conclusion was drawn in this study. Soil contaminated only with Cd (4 mg/kg) had
no influence on wheat, but the shoot and root biomass of the maize was reduced by 22.15 and 23.19%
respectively (Figure 1). The inhibitory effect of Cd combined with Pb on plants becomes more obvious
with increasing Pb concentration, and the toxicity for maize was more significant than for wheat.
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Figure 1. Biomass of wheat and maize grown in Cd-contaminated soil at various concentrations of
added Pb. CK represents the control group.

3.2. Cd Uptake by Plants

The uptake and distribution of Cd in wheat and maize are presented in Figure 2. The concentration
of Cd in both wheat and maize was higher in the treated group than in the control. Cd was mainly
accumulated in roots, and this was previously reported for Agrostis tenuis [33]. The concentration of
Cd in both parts of the wheat and maize plants increased with increasing soil-Pb content and surged
at high Pb-concentrations. These results showed that the presence of Pb in Cd-contaminated soil
promoted the Cd uptake and accumulation by wheat and maize, and even enhanced the bioavailability
and ecotoxicity of Cd in soil.
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Figure 2. Cd concentration in the shoots and roots of wheat and maize grown in Cd-contaminated soil
at various concentrations of added Pb. CK represents the control group.

3.3. DGT Measurement and Soil Solution Concentration

The resin impregnated with Chelex-100 (SIGMA, St. Louis, MS, USA) (in the DGT device) showed
stronger adsorption than other complexants, for determining the bioavailability of target elements [34].
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In the uptake process, heavy metals from the bioavailable reservoir diffuse through the diffusion layer
to the resin gel. As in the uptake by organisms, DGT uptake also lowers the heavy metal concentrations
in the pore water surrounding the DGT unit. This leads to local depletion of the bioavailable fraction,
which induces resupply from the solid phase. Consequently, DGT can dynamically measure the heavy
metal bioavailability from the complete soil system immediately surrounding the device. The soil
solution could directly reflect the status of bioavailable fractions, so toxicity or bioaccumulation of
heavy metals is usually evaluated using the soil solution concentration [35]. As shown in Figure 3,
the DGT-labile Cd concentration (CDGT) and the concentration of Cd in soil solution (Csol), nearly
linearly increased with increasing concentration of the added Pb. For wheat R2 = 0.9578 and 0.8839 was
determined by DGT and soil solution respectively. For maize R2 = 0.9235 and 0.8801 was measured
by DGT and soil solution. As the result of dynamic measurement by DGT and the static balance
reflected in the soil solution, it was shown that the increased Pb concentration could significantly
increase the content of extractable Cd in soil. This result is in agreement with Lin et al. [36], who found
that Pb treatment affected the chemical form of metals in soil and increased the exchangeable-Cd
content. The DGT-measured Cd as well as labile Cd in the soil solution of the maize-grown soil was
obviously higher than that of the wheat-grown soil. Black [16] have also revealed the effects of different
plant species on the labile fractions distribution. The differences of the rhizosphere environment and
the rhizospheric microorganisms might contribute to the redistribution of the labile fractions, which
resulted in the significantly different values obtained by the indicators.
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3.4. Extractable-Cd Determined by Single Extraction Methods

The bioavailable concentrations of Cd in soil extracted by four different extractants (EDTA, HOAc,
CaCl2, and NaOAc) are shown in Figure 4. Similar to the results of DGT and Csol, the extractable
concentration of Cd in soil by all extractants increased nearly linearly with increasing concentration
of added Pb. We found significant correlation (for maize R2 = 0.7591, 0.8960, 0.9529, and 0.8819; for
wheat R2 = 0.7399, 0.8271, 0.9187, and 0.8713) between extractable-Cd measured by the four different
methods and the concentration of Pb in soil. This confirmed that the addition of Pb in the soil can
increase the bioavailability of Cd beyond that of static equilibrium. For extraction by the four different
reagents, the concentration of Cd extracted decreased in the order EDTA > HOAc > NaOAc > CaCl2
and this corresponded with the results reported by other researchers [37]. The concentration of
extracted-Cd mainly depended on the properties of the extractants chosen. As a chelating agent, EDTA



Int. J. Environ. Res. Public Health 2016, 13, 556 7 of 10

extracted exchangeable, mineral-combined, and organically bound Cd [38]. The HOAc, as a weak
acid extractant, obtained Cd fractions which included soluble and exchangeable Cd, as well as Cd
associated with calcium carbonate and minerals. Because NaOAc and CaCl2 are both the neutral
salt extractants, they mainly extracted easily exchangeable Cd on the soil-mineral surfaces with
exchangeable cations [38]. However, the higher concentration of Cd extracted by NaOAc differed from
the results of Novozamsky [31].

All the indicators showed the increasing bioavailability of Cd with the increasing mass of
Pb addition. As we know, the Cd fractions have relatively higher mobility compared to the Pb
fractions [24,39]. Moreover, Pb as one of the most common environmental contaminants, has limited
solubility in soil and availability for biota accumulation because of the complexation with organic
matter and sorption on the oxides and clays [40]. Consequently, the additional Pb could led to the
decrease of the soil capacity for Cd adsorption. The results show the increasing concentration of Pb
addition could significantly increase the Cd fractions released from the solid phase to the solution.
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3.5. Comparison of DGT with Chemical Extraction for Cd Bioavailability

Linear correlation between labile-metal concentrations in soil and the metal content in plants
has been widely used for evaluating soil-testing methods. As shown in Table 2, significant positive
relationships (p < 0.01; p < 0.05) between Cd concentration in soil measured by six methods and
Cd content in shoots and roots of wheat and maize were found in the experiment. Highly positive
correlation coefficients were obtained by all methods and there was no obvious difference between
DGT and other methods. This is the results of the high mobilization of labile Cd fractions in soil
solution as well as the fast resupply from solid phase to soil solution [41]. Cd is characterized by
a short response time for resupply from the solid phase and a low solid-liquid distribution coefficient.
All these features of Cd determined the ease of its extractability by all chosen methods.

Table 2. Linear correlation coefficients (r) between Cd concentrations in the plant tissues and
bioavailable concentrations of Cd measured by different methods in soils.

Plant Species Plant Tissues CDGT Csol HOAc EDTA NaOAc CaCl2

Wheat
Shoot 0.944 ** 0.923 ** 0.850 ** 0.841 ** 0.882 ** 0.960 **
Root 0.931 ** 0.905 ** 0.789 ** 0.763 ** 0.857 ** 0.943 **

Maize
Shoot 0.994 ** 0.971 ** 0.899 ** 0.900 ** 0.891 ** 0.925 **
Root 0.915 ** 0.968 ** 0.874 ** 0.829 ** 0.801 ** 0.901 **

Note: ** Correlation is significant at the 0.01 level.
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CDGT not only includes ions dissolved in soil solution, but also metals released from soil solid
phase. This resulted in the better performance of DGT for labile Cd evaluation compared to that of
traditional chemical reagents. Using a multi-factor analysis method, Tian et al. [42] and Song et al. [20]
showed that the essential physicochemical properties of soil (e.g., organic content, soil texture) did not
affect the DGT technology. However, traditional chemical extraction methods are easily influenced by
them, so DGT technology is a better method for predicting heavy metal bioavailability and uptake by
plants. Zhang et al. [15] reported that fluxes of copper measured by DGT related well to copper uptake
by Lepidium heterophyllum. Dočekalová et al. [43] found high correlation of flux to radish plant with
flux to DGT for Cd (R2 = 0.994). Nolan et al. [25] found a high coefficient of determination (R2 = 0.90)
between DGT uptake and Cd contents in wheat. Bade et al. [44] demonstrated that DGT uptake was
linearly correlated with the total heavy metal concentrations in soil, and that DGT can be used as
a biomimetic surrogate for predicting bioavailable concentrations of heavy metals in soil.

4. Conclusions

The combination of Cd and Pb had a negative synergistic effect on the growth of plants.
The addition of Pb can significantly enhance Cd accumulation in the shoots and roots of maize
and wheat. Cd tolerance varies by plant species, and the results showed that maize was more sensitive
to increasing concentration of heavy metals (Cd and Pb) than wheat, although the growth of both
species was inhibited. The concentrations of different indicators measured Cd in soil increased with
increasing addition of Pb. Pearson coefficients showed that the Cd concentrations in soil positively
correlated with the Cd accumulation in plants. Moreover, the values determined by DGT, Csol, and
CaCl2 correlated better than the other three methods. It appears that the DGT technique could be used
as a physical surrogate for plant uptake, thus offering the possibility of a simple test procedure for
measurement of bioavailable heavy metals in soil.
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