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Abstract: In this study, a novel coupling model for landslide susceptibility mapping is presented.
In practice, environmental factors may have different impacts at a local scale in study areas.
To provide better predictions, a geographically weighted regression (GWR) technique is firstly used
in our method to segment study areas into a series of prediction regions with appropriate sizes.
Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for
landslide susceptibility mapping. To further improve the prediction performance, the particle swarm
optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the
SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction
models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges
Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative
evaluation, indicate that our model can achieve better prediction accuracies and is more effective
for landslide susceptibility mapping. For instance, our model can achieve an overall prediction
accuracy of 91.10%, which is 7.8%–19.1% higher than the traditional SVM-based models. In addition,
the obtained landslide susceptibility map by our model can demonstrate an intensive correlation
between the classified very high-susceptibility zone and the previously investigated landslides.

Keywords: landslide susceptibility mapping; geographically weighted regression; support vector
machine; particle swarm optimization; Three Gorges Reservoir

1. Introduction

It is known that the area in the Three Gorges Reservoir along the Yangtze River is characterized
by many active and reactivated landslides caused by the periodic water level fluctuation of the
reservoir [1], which poses a serious threat to the security of life and property. Up to 2009, more than
3800 landslides have been recorded in this region [2]. Thus, it is crucial to predict slope failures in the
Three Gorges area.

Landslide susceptibility evaluation is a complex task [3]. Compared to the traditional geological
survey methods, such as landslide field reconnaissance, landslide spatial prediction is more convenient
and efficient, due to the integration of geographical information systems (GIS) technology and statistical
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analysis principles. The spatial prediction of landslide susceptibility mapping is considered as one of
the most important steps for landslide hazard mitigation and management [4], which has encouraged
research towards knowledge-driven and data-driven models [5]. Knowledge-driven models, such as
analytic hierarchy process (AHP) and fuzzy mathematics [5,6], are based on the analysis of landslide
formation mechanism(s), and expert experience and knowledge are used to choose the most important
environmental factors of landslides and quantitative weight values. On the other hand, data-driven
models include logistic regression (LR) [7–9], artificial neural network (ANN) [10–13], SVM [14–17] and
geographically weighted regression (GWR) [18,19], etc. These models are based on overlay analysis to
calculate quantitative relationship between various environmental factors and the known distributions
of landslides. Therefore, they are always used to determine weights of predictors, i.e., values/indices
of landslide susceptibility.

Since support vector machine (SVM) can demonstrate satisfactory classification accuracies when
a limited number of training samples is available, and it has been widely utilized to perform landslide
susceptibility mapping [14–17,20,21]. However, the proper selection of a kernel function and its
corresponding parameters is still an open problem, which can greatly influence the final prediction
accuracy. To obtain the optimal parameters for SVM, some researchers worked on combining
the particle swarm optimization (PSO) algorithm with the classical SVM model [22–24]. PSO is
a population-based stochastic optimization technique developed by Eberhart and Kennedy [25],
inspired by social behavior of bird flocking or fish schooling. This technique has many similarities
with evolutionary computation techniques such as Genetic Algorithms (GA) [26]. For instance, the
system is initialized with a population of random solutions and searches for optima by updating
generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation.
In PSO, the potential solutions, called particles, fly through the problem space by following the current
optimum particles. Compared to GA, the advantages of PSO are that it is easy to implement and there
are few parameters to adjust [27]. To better perform landslide prediction, this technique can estimate
optimum parameters for the SVM prediction model. For instance, Huang and Dun [22] proposed
a PSO–SVM model to improve classification accuracies with an appropriate feature subset. One year
later, Zhao and Yin [23] integrated the SVM, PSO and numerical analysis techniques to intelligent
displacement back analysis in geomechanical parameter identification. More recently, Ren et al. [24]
presented a landslide prediction method for the Shuping landslide by using a PSO-SVM model and
wavelet analysis. However, the drawbacks of these techniques are threefold: first, the PSO algorithm
always falls into a local optimum, especially in a very large area. Second, spatial autocorrelation in
study areas is not taken into account. Finally, these methods applied a global model in a certain area
and considered that the impacts of environmental factors are equal for the entire region, so they cannot
describe the local characteristics of spatial landslide occurrences.

This paper presents an effective PSO-SVM model based on GWR for landslide susceptibility
mapping. It should be noted that in practice different degrees of impact may occur at a local scale for
study areas [18]. Moreover, the impacts of environmental factors always vary with spatial locations.
It is well-known that most variables in real-world applications tend to be moderately spatially
autocorrelated because of the way phenomena are geographically organized [28,29]. Therefore, spatial
autocorrelation is always used to measure the degree to which a set of spatial features and their
associated data values tend to be clustered together in space or dispersed [30,31]. Recently, many
contributions have been devoted to using GWR to account for spatial autocorrelation and these
have validated that GWR can be an effective estimator of spatial autocorrelation [32–35]. Inspired by
previous works, we utilize the GWR technique to segment the study area into several prediction regions
with a proper size. To this end, each computing unit in the study area is assigned a GWR coefficient by
exploiting an appropriate kernel type and selection criteria. Meanwhile, each environmental factor is
divided into several classes by the natural breaks method. By superposing these classification maps,
different degrees of impacts at a local scale for these environmental factors are taken into account
as well. As a consequence, the GWR coefficients in each prediction region are similar, while they
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make a great difference in different regions, i.e., spatial autocorrelations of environmental factors
between them are greatly suppressed. Secondly, the PSO-SVM model is used in each prediction region
for landslide susceptibility mapping. The PSO algorithm is utilized for the SVM model to search
for optimal parameters in each prediction region. In this way, the problem of local optimum can be
effectively overcome. In addition, the SVM model can be locally applied to each prediction region for
accurate landslide susceptibility maps.

The remainder of this paper is organized as follows: Section 2 reviews the related techniques on
GWR, PSO and SVM. Section 3 presents the proposed GWR-PSO-SVM model. Section 4 describes the
study area and data used in this work. Section 5 reports experiments including comparative results
between the traditional SVM-based prediction models and ours. Section 6 presents some discussions
of our model and the last section states our concluding remarks.

2. Related Techniques

2.1. Geographically Weighted Regression

Geographically Weighted Regression (GWR) is a fairly recent contribution to modelling spatially
heterogeneous processes [28,29,36,37] that has attracted much attention for its elegant performance
when exploring local variations in a study area [18,38,39]. GWR is implemented by obtaining regression
equations for each spatial zone separately [40] and its basic model can be written as:

yi “ β0 pui, viq `

Q
ÿ

k“1

βk pui, viq xik ` εi (1)

where pui, viq denotes the coordinates of the ith sample in space (e.g., latitude and longitude),
i = 1,2,¨ ¨ ¨ ,L, L and Q are the number of samples and regression coefficients, respectively. yi is the
dependent variable at location i, xik is the value of the kth explanatory variable at location i, βk pui, viq

is the local regression coefficients for the kth explanatory variable at location i, and β0 pui, viq is the
intercept parameter at location i. Then, the least square estimate of βi can be defined as follows:

β̂i “
´

XTWiX
¯´1

XTWiY (2)

and its variance is:
varpβ̂q “

´

XTW´1
i X

¯´1
(3)

where Wi is nˆ n diagonal matrix, whose diagonal elements are the geographical weights:

Wi “

»

—

—

—

—

–

Wi1 0 ¨ ¨ ¨ 0
0 Wi2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ Win

fi

ffi

ffi

ffi

ffi

fl

(4)

the choice of Wi depends on the selected kernel function, which can be fixed (i.e., fixed bandwidth) or
adaptive kernels (i.e., varying bandwidths) in [41].

In practical, it is found that GWR is not sensitive to the choice of Gaussian function and bi-square
function, but rather the bandwidth of the specific weight function. Based on the maximum likelihood
principle, Akaike [42] proposed a general model selection criterion, called the Akaike Information
Criterion (AIC), which is shown as follows:

AIC “ ´2ln L
`

θ̂L, x
˘

` 2q (5)
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where L
`

θ̂L, x
˘

is the maximized likelihood of the parameter vector θ, x is a random sample, θ̂L is
the maximum likelihood estimate of θ, q is the number of the unknown parameters. The larger the
likelihood function, the better the estimator. In this work, a minimum AIC model is selected as the
“optimal” model.

2.2. Support Vector Machine

The support vector machine (SVM) incorporates mainly two learning techniques [43], i.e.,
Vapnik–Chervonenkis (VC) dimensional and statistical learning theories. One of the most important
applications of SVM is classification. Because of its satisfactory performance and capabilities of
fault-tolerance, SVM has recently attracted increasing attention and is widely used in machine learning,
data mining and knowledge discovery [44,45], as well as landslide susceptibility assessment [14–17].
The SVM method is briefly introduced as follows [46,47]: assuming that a set of linear separable
training vectors xi(i = 1,2,¨ ¨ ¨ ,R, R is the total number of vectors) consists of two classes yi = ˘1, which
denote as landslide occurrence or not. The aim of SVM is to find an n-dimensional hyperplane to
split two classes by the maximum gap, as shown in Figure 1. The n-dimensional hyperplane can be
minimized as:

#

min 1
2 ||w||2,

s.t., yi pw ¨ xi ` bq ě 1
(6)

where ||w|| is the two-norm of w, b is used to increase the interval to ensure that the hyperplane does
not cross the origin, xi is the point of the hyperplane, and w is a vector perpendicular to the hyperplane.
By embedding a non-negative Lagrange multiplier (λi), the cost function can be obtained as follows:

L pw, b, λq “
1
2

||w||2
´

n
ÿ

i“1

λi pyi pw ¨ xi ` bq ´ 1q (7)

The solution can be obtained by dual minimizing Equation (7) with respect to w and b. In the
non-separable case, one can complete the constraints by introducing a non-negative ξi, then Equation (7)
can be produced as follows:

$

&

%

min 1
2 ||w||2

`C
n
ř

i“1
ξi,

s.t., yi ppw ¨ xiq ` bq ě 1´ ξi

(8)

where ξi(ξi ě 0) is the slack variable, C is a penalty variable of the error term, which denotes the
distance from a wrong point to its correct position.
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Figure 1. Illustration of the SVM principle.

In addition, the Gaussian Radial Basis Function (RBF) is used as a kernel function introduced by
Vapnik [43] to account for the nonlinear decision boundary:

Kpxi, xjq “ expp´γ||xi ´ xj||2
q (9)
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where γ is a positive variable to measure the width of the Gaussian kernel in RBF. This function is
robust and can account for the nonlinear decision boundary.

2.3. Particle Swarm Optimization

The PSO algorithm is an evolutionary computation technique [25], which is derived from the
complex adaptive system (CAS). The algorithm was originally inspired by the regularity of the
activity of birds, and then a simplified model was established based on swarm intelligence. In PSO,
the solution of each optimization problem is a bird in the search space, called a “particle”. PSO is
initialized to a group of random particles and used to search the optimal solution by iterative evolution.
In each iteration, the particles update themselves by tracking extremes of velocity and position.
The above-mentioned behavior of the ith particles can be mathematically expressed as follows [48]:

#

Vn`1
i “ t ¨Vn

i ` c1 ¨ r1 ¨ ppn
i ´ xn

i q ` c2 ¨ r2 ¨ ppn
g ´ xn

i q

xn`1
i “ xn

i `Vn
i

(10)

where i = 1, 2, ¨ ¨ ¨ , K, K is the total number of particles, n is the current number of iteration. t is the
inertia weight, pn

i and pn
g are the individual optimal position of the ith particle and the optimal position

of all particles at the iteration of n, respectively. Vn
i and xn

i are the velocity and the current position of
the ith particle, respectively. Vn` 1

i and xn`1
i are the updated velocity and position of the ith particle at

the iteration of n + 1, respectively. c1 and c2 are learning factors, r1 and r2 are two random numbers,
ranging from 0 to 1. The process of the PSO algorithm is displayed in Figure 2.
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2.4. The PSO-SVM Model

In order to improve the performance of the SVM model, the key issue is the selection of the
parameters. Although the introduction of a kernel function can achieve the same purpose, the problem
of selecting parameters of a kernel function still exists [22]. Combination of the PSO algorithm and
SVM model can effectively solve this problem. Taking the RBF function as the kernel function, we
demonstrate the flowchart of the PSO-SVM algorithm in Figure 3. To make this algorithm clearer, the
details of this algorithm is briefly introduced in Table 1 as follows [22,49]:
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Table 1. Procedures of the PSO-SVM algorithm.

Input: Training and Verification Samples.
Output: The Result of the PSO-SVM Model.

1. Initialization parameters: Generate initial particles comprised of C and γ of the SVM model. And set
the PSO parameters including number of iterations, population size, maximum iteration number, the
learning factors, the initial particle swarm location, the random flight velocity and two random number
in range [0,1]. Initial the iteration = 0, and perform the training process from step 3–9 for each particle.

2. Data set: Selection the training and verification samples.

3. Set iteration n = n + 1.

4. SVM model training: Conduct 10-fold cross validation (CV) on the training samples, and calculate the
average CV accuracy based on the (C, γ).

5. Evaluate its fitness by the average CV accuracy which is obtained in step 4.

6. Update the global and local optimal solution according to the result of the fitness evaluation.

7. Each particle moves to its new location xn
i by velocity Vn

i according to Equation (10).

8. Until this iteration, the local optimal solution of the ith particle pn
i , are compared with the new location

xn
i , the better will be the new pn

i in the iteration n+1. And the same way on the pn
g , which is the global

optimal solution of all particles until iteration n.

9. Stop condition checking: If the maximum iterations predefined are met, go to step 3. Otherwise, go to
step 10.

10. To avoid overtraining, stop training when the iteration has the best CV accuracy.

11. Build the SVM model on the verification samples based on the SVM model optimal parameters (C, γ),
which are obtained with the stopping iteration determined in the step 10.

12. End the training and verification procedure and get the result of the PSO-SVM model.
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3. The Proposed GWR-PSO-SVM Model

In this work, we present a coupled model by combining the techniques of GWR, PSO and SVM.
The flowchart of our method is summarized in Figure 4. In the following, each step of our method is
briefly introduced.

Figure 4. Flow-chart of our proposed method.



Int. J. Environ. Res. Public Health 2016, 13, 487 8 of 35

3.1. Factor Screening

It is well-known that some environmental factors have very high correlations. If our coupling
model is constructed by using these factors, it may cause errors and cannot effectively improve
prediction accuracies. Therefore, it is necessary to screen environmental factors. Correlation analysis is
one of commonly used methods for the selection of environmental factors and is considered in our
method. In addition, the required environmental factors are further screened based on their importance
values. Finally, the remaining environmental factors are used for the subsequent landslide prediction.

3.2. Study Area Segmentation

It is well-known that GWR allows different relationships to exist at different points in the study
area and improves the modeling performance by reducing spatial autocorrelations [50]. Based on
Tobler’s theory about nearness and similarity, observations which are nearer a certain location should
have a greater weight in the estimation than observations which are further away [51]. Therefore, we
can utilize this technique to estimate parameters for a model at some locations. To segment the study
area, we produce and map GWR coefficient values to explore the spatial variability of relationships
between the study area and the environmental factors.

The natural breaks method is a typical classification method, which is based on the inherent nature
of the packet data [52]. Meanwhile, GWR coefficient values can be used to characterize the spatial
autocorrelation of factors. Therefore, we prefer to cluster the study area into several classes in which
the GWR coefficient values are greatly similar, with respect to each environmental factor. Meanwhile, it
should be noted that the total class number makes great impact on the resultant segmentation maps.
Specifically, if the value of N is very large, there are too many small partitions in the segmentation
map, which causes the difficulties of constructing samples for training and verification and obtaining
satisfactory prediction accuracies, as discussed in Section 6.3. In addition, spatial dependency cannot
effectively reduced since the region centers are very close. Otherwise, if the value of N is too small,
there are very few large partitions in the segmentation map, which means that spatial autocorrelations
cannot be effectively alleviated in each region and greatly influence prediction results. Furthermore, our
method cannot achieve regional scale landslide prediction due to very few prediction regions in the entire
study area. To make it clearer, the influence of prediction regions is detailed discussed in Section 6.2.

To further weaken spatial autocorrelations, we prefer to superpose classification maps of the
selected environmental factors, as shown in Figure 5. Meanwhile, the required environmental factors
can be chosen according to importance values of all the environmental factors, measured by the
SVM model. It can be observed that the superposition process is a simple intersection of all classes
obtained from the most important environmental factors. In addition, the process always results in
over-segmentation of the study area, though the GWR coefficient values in each region are consistent
for individual environmental factor. As a result, spatial autocorrelations cannot be thoroughly removed
since the Euclidean distance between a pair of prediction region centers is too close. In addition, it
is very difficult to select training and verification samples for landslide prediction due to quite small
regions in the study area. Therefore, it is necessary to merge these small regions in the superposed map.
For this aim, the distribution of landslides in the study area should be considered, i.e., (i) prediction
regions which separate landslides should be merged as one prediction region; (ii) adjacent small
regions including landslides, which are far from other landslides area, should be merged into
one prediction region; (iii) a large region without landslide should not be merged with regions
containing landslide, as shown in Figure 6.
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3.3. The GWR-PSO-SVM Model

Once the study area is divided into several prediction regions by clustering GWR coefficients,
the SVM model with the kernel function of RBF is used as the prediction component of the coupling
model. Moreover, to improve the performance of prediction, the PSO algorithm is embedded into the
SVM model to obtain the optimal parameters C and γ for each prediction region. The details of the
GWR-PSO-SVM model for landslide prediction are shown in Table 2 as follows:

Table 2. Procedures of the GWR-PSO-SVM algorithm.

Input: Ancillary Data of the Study Area.
Output: The Landslide Susceptibility Map.

Step 1: Extract environmental factors

X Extract environmental factors from ancillary data, including digital elevation models, geological maps,
topographical maps and remote sensing images, etc. Note that all data should be resampled to the same
spatial resolution.

X To each computing unit, a value is assigned to represent its corresponding environmental factor.

Step 2: Environmental factors screening

X Calculate the Pearson product-moment correlation coefficient (PPMCC) between any pair of
environmental factors and exclude the environmental factors with high correlations. If the PPMCC value
is greater than a predefined threshold T1, the corresponding environmental factors are excluded
according to the actual situation of the study area and previous research works.

X Calculate the importance value in the SVM model for each remaining environmental factor. In this work,
the importance values, which are greater than a predefined threshold T2, are preserved as the final ones
for the corresponding environmental factors. Finally, these environmental factors are used for the
subsequent landslide prediction.

Step 3: Study area segmentation

X Select an appropriate kernel function and information criterion method according to Equations (4)
and (5), respectively.

X Calculate a GWR coefficient for each computing unit of each environmental factor according to
Equations (1)–(3) by inputting the geographic coordinates of each center point and the values of all
computing unit mentioned in Step 1.

X Divide each environmental factor into N classes using the natural breaks method based on GWR
coefficient values. In this work, M environmental factors, which are determined in Step 1, are chosen for
study area segmentation. As a result, M classification maps are produced.

X Superpose all the classification maps to obtain a superposed map and merge very small regions in this
map to generate a final prediction region map according to Figure 6.
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Table 2. Cont.

Input: Ancillary Data of the Study Area.
Output: The Landslide Susceptibility Map.

Step 4: The PSO-SVM prediction

X To perform SVM prediction, training samples are constructed by using all the computing units with
landslide and the same number of randomly selected computing units without landslide.

X The two-class SVM classifier with the Gaussian RBF kernel is used for prediction. Then, perform the PSO
algorithm to obtain the optimal C and γ for the SVM prediction model for each prediction region.
Meanwhile, all the computing units are used for landslide susceptibility mapping according to
Equation (8). In the resultant map, the probability values ranging from 0 to 100% are employed for
representing different degrees of landslide susceptibility.

X Merge the result of each prediction region. All of computing units in the prediction regions without
landslide are assigned to zero. Eventually, the final landslide susceptibility map of the study area
is produced.

4. Study Area and Data

4.1. General Characteristics

The Three Gorges span from the western Sichuan Basin upstream to the eastern Jianghan Basin
downstream [53]. Wanzhou is a district of Chongqing Municipality, bordering Sichuan Province to
the northwest and Hubei Province to the southeast. It is one of the main ports of the Yangtze River
basin and the important industrial, cultural, trade and transportation center in Yudong. The site
covers an area of 3457 km2 and lies between longitudes of 107˝52’22”–108˝53’25” and latitudes
of 30˝24’25”–31˝14’58”, belonging to the subtropical moist climate zone, with a mild climate and
abundant rainfall. The annual average precipitation is 1191.3 mm and around 70% of the annual
precipitation falls from May to September. Our study area is located in the center of Wanzhou district,
distributed along the 80 km-long Yangtze River, with an area of 552 km2 and its elevation is between
21 m and 1015 m, as shown in Figure 7.
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Figure 7. Location map of the study area. (a) Site map of the Three Gorges Reservoir; (b) site map of 
our study area; (c) digital elevation mode (DEM) overlaid with previously investigated landslides. 
The red hatched regions represent previously investigated landslides in the study area. 

4.2. Geological Setting 

The Wanzhou district is located at the two wings of the Wanxian synclinorium of the Eastern 
Sichuan fold belt. Meanwhile, anticline and syncline exist alternately in this area and construct a 
typical ejective fold structure [54]. The geological and tectonic framework map and a schematic 
geologic cross-section of the study area are shown in Figure 8a,b, respectively [55]. 
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Figure 7. Location map of the study area. (a) Site map of the Three Gorges Reservoir; (b) site map
of our study area; (c) digital elevation mode (DEM) overlaid with previously investigated landslides.
The red hatched regions represent previously investigated landslides in the study area.

4.2. Geological Setting

The Wanzhou district is located at the two wings of the Wanxian synclinorium of the Eastern
Sichuan fold belt. Meanwhile, anticline and syncline exist alternately in this area and construct a typical
ejective fold structure [54]. The geological and tectonic framework map and a schematic geologic
cross-section of the study area are shown in Figure 8a,b, respectively [55].
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Figure 8. Geological maps of the study area. (a) Geological and tectonic sketch; (b) a schematic
geological cross-section.

4.3. Description of Landslides

In the study area, the accurate sizes and shapes of previously investigated landslides can be
extracted from the Headquarters of Prevention and Control of Geo-Hazards in Area of Three Gorges
Reservoir [56]. In addition, high-resolution aerial photographs are used to detect neogenic landslides
which are caused by the impoundment of the Three Gorges Project from 2003, while historical
and literature data are employed to identify previous landslides, which were activated during
Holocene and/or Pleistocene age, before the impoundment of the Three Gorges Project. In this work,
233 landslides were mapped in the study area.

Note that we cannot obtain terrain data under the Yangtze River, since there are no such
information recorded in topographic maps or Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) G-DEM data. As a result, DEM values always vary greatly at the junction between
both sides and surface of the Yangtze River, which influences the environmental factors produced
by the DEM data. Therefore, we excluded the Yangtze River from the study area. For prediction,
computing units are automatically obtained from high-quality digital terrain models (DTMs) by the
slope-units method, which is used to partition the territory into hydrological regions between drainage
and divide lines [57]. In this work, our study area is divided into 1909 slope-units, including 416 for
landslides with total areas of 24.06 km2, covering 4.36% of the study area. It can be observed from
Figure 7c that the sizes of landslides in this area are very different. For instance, the Fuma landslide
with an area of approximately 1.12 km2 is the biggest landslide, while the smallest Xianjia 6 group
landslide has an area of 3539.77 m2.

4.4. Environmental Factors of Landslides

In this work, ancillary data used for extraction of environmental factors are the following:

‚ High-resolution aerial photographs;
‚ 1:50,000-Scale geological maps [55];
‚ ASTER G-DEM data with a spatial resolution of 30 m;
‚ Landsat-8 OLI+ sensor data, acquired on 24 February 2013, with the Path/Row number of 127/39

and its spatial resolution of 30 m for the extraction of land-use and calculation of Normalized
Difference Vegetable Index (NDVI) and Normalized Difference Water Index (NDWI);

‚ Precipitation and seismic data from the China Meteorological Administration and the China
Earthquake Administration for obtaining the precipitation and seismic factors.

Many researchers have verified the correlations between various environmental factors and
landslide occurrence [58]. Based on these contributions and the characteristics of the study area,
29 environmental factors are selected to predict the potential distribution of landslides, including
geomorphological, geological, hydrological, land cover, meteorological and geophysical factors.
The selected environmental factors and their original values are listed in Table 1. In particular, the
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classification for the bedding structure is shown in Table 3. This factor is based on the topography
bedding intersection angle (TOBIA) index [59] using the slope aspect, slope angle, bed dip direction
and bed dip angle in space. In addition, the numbers of landslides corresponding to different bedding
structures are demonstrated in Figure 9. From this figure, landslide failure can be caused by any type of
slope in Figure 9. It should be mentioned that there are many horizontal strata landslides in the study
area [60]. Since the formation mechanism of this type of landslides is very complicated and beyond the
scope of this article, the gently dipping structure is not addressed in this work. Meanwhile, the figure
depicts that there are very strong relationships between the different types of slope and the occurrence
of landslides. Therefore, this factor is an important indicator of landslide and should be taken into
account for prediction.

Table 3. Classification of the bedding structure.

Type Definition

Over-dip slope |α´ β| P r0˝, 30˝q or |α´ β| P r330˝, 360˝q , γ ą 10˝ and δ ą γ
Under-dip slope |α´ β| P r0˝, 30˝q or |α´ β| P r330˝, 360˝q , γ ą 10˝ and δ ă γ

Dip-oblique slope |α´ β| P r30˝, 60˝q or |α´ β| P r300˝, 330˝q

Transverse slope |α´ β| P r60˝, 120˝q or |α´ β| P r240˝, 300˝q

Anaclinal-oblique slope |α´ β| P r120˝, 150˝q or |α´ β| P r210˝, 240˝q

Anaclinal slope |α´ β| P r150˝, 210˝q

α: Slope aspect; β: bed dip direction; γ: bed dip angle; δ: slope angle.
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It is known that the slope-units method is different from the grid-cells one, because the former is
irregular, which means that the resultant areas by the slope-units method are different from each other.
Therefore, the first problem of the slope-units method is that how to assign a normalized value to each
slope-unit. If the original value of an environmental factor in Table 4 is a continuous variable, such as
elevation, slope angle, terrain surface convexity and so on, the mean value of this factor is computed as
the normalized value of the corresponding slope-unit, while if the original value of an environmental
factor is a discrete variable, such as slope form, lithology, bedding structure and land-use, the most
frequently occurring value of this factor is used as the value of this slope-unit. By using this idea, the
1909 slope-units are assigned to a unique value of each factor. To obtain landslide susceptibility of the
study area, this value is used in all prediction models in this work.
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Table 4. Landslide environmental factors and their respective values.

Environmental Factors Value

Geomorphology

Elevation (m) 124.2727–922.3077

Slope angle (˝) 3.2045–36.2898

Slope aspect (˝) 28.4827–321.5051

Terrain surface convexity (˝/100m) 0.5979–0.2449

Plane curvature (˝/100m) ´0.4023–0.4832

Profile curvature (˝/100m) ´1.2441–1.2856

Slope form (1) V/V; (2) GE/V; (3) X/V; (4) V/GR; (5) GE/GR; (6) X/GR;
(7) V/X; (8) GE/X; (9) X/X

Slope height (m) 374.6390–3.6325

Mid-slope position 0.1272–0.9491

Terrain surface texture 0.8495–0.3018

Terrain roughness index 1.1589–16.4521

Terrain convergence index ´27.6027–19.7669

Terrain curvature (˝/100m) ´1.5762–1.4682

Terrain position index ´14.6285–9.5591

Geology

Lithology
(1) mudstone, shale and Quaternary deposits; (2) sandstones
and thinly bedded limestones;
(3) limestones and massive sandstones

Bedding structure
(1) over-dip slope; (2) under-dip slope; (3) dip-oblique slope;
(4) transverse slope; (5) anaclinal-oblique slope;
(6) anaclinal slope

Hydrology

Catchment area (m2) 1156.0378–105,783.4666

Catchment slope (˝) 0.0485–0.5675

Flow path length (m) 50.1196–2352.5587

Valley depth (m) 3.4642–258.2873

Stream power index ´617,299.4571–281,486.9383

Distance from drainage (m) 18.4328–5637.6471

Topographic wetness index 8.2193–14.7816

Vertical distance to channel network (m) ´184.3475–461.4196

Land cover

Land-use (1) water; (2) residential; (3) forest; (4) agriculture;
(5) grassland

NDVI ´0.4856–0.8337

NDWI 0.0206–0.69411

Meteorology Precipitation (mm) 1134.0551–1192.7400

Geophysics Magnitude (Ms) 1.2617–2.1209

5. Results

5.1. Experimental Results of The GWR-PSO-SVM Model

As mentioned in Section 3.3, the classical PPMCC is used to weaken the correlations of the selected
environmental factors and T1 = 0.5. For simplicity, correlations of geomorphological and hydrological
factors are listed in Tables 5 and 6 and 10 factors are excluded for all the models used here. As a result,
the remaining 19 environmental factors are relatively independent and can be further screened based
on their importance values ranging from 0 to 0.205, as illustrated in Figure 10, obtained using SPSS
Clementine 12 software (IBM, Armonk, NY, USA). To this end, we set T2 = 0.02 and exclude the
environmental factor whose importance value is less than T2. Finally, 12 environmental factors are
selected for the construction of the coupling model, i.e., catchment slope, distance from drainage,
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NDVI, bedding structure, slope angle, topographic wetness index, precipitation, lithology, NDWI,
vertical distance to channel network, land-use and elevation.
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Table 5. Correlations of geomorphological factors.

Environmental Factor ELE SLAN SLAS SLHE SLFO TST TRI TPI TCI MSLP PLCU PRCU TCU TSC

ELE 1
SLAN 0.198 1
SLAS 0.022 ´0.099 1
SLHE 0.321 0.581 0.03 1
SLFO ´0.013 0.093 0.16 0.206 1
TST ´0.255 ´0.739 0.045 ´0.562 ´0.022 1
TRI 0.188 0.995 ´0.105 0.579 0.091 ´0.735 1
TPI 0.125 0.138 0.122 0.338 0.761 ´0.062 0.133 1
TCI 0.117 0.054 0.221 0.241 0.787 ´0.013 0.047 0.810 1

MSLP 0.08 0.007 0.015 0.176 ´0.163 ´0.143 0.025 ´0.15 ´0.16 1
PLCU ´0.103 0.112 0.187 0.162 0.735 ´0.052 0.114 0.601 0.641 ´0.093 1
PRCU ´0.172 ´0.103 ´0.08 ´0.224 ´0.564 0.017 ´0.095 ´0.809 ´0.661 0.14 ´0.3 1
TCU 0.071 0.131 0.155 0.243 0.782 ´0.04 0.127 0.889 0.804 ´0.15 0.728 ´0.872 1
TSC 0.083 0.155 ´0.015 0.356 0.169 0.172 0.142 0.204 0.165 0.021 0.034 ´0.2 0.161 1

ELE = elevation, SLAN = slope angle, SLAS = slope aspect, SLHE = slope height, SLFO = slope form, TST = terrain surface texture, TRI = terrain roughness index, TPI = terrain position
index, TCI = terrain convergence index, MSLP = mid-slope position, PLCU = plane curvature, PRCU = profile curvature, TCU = terrain curvature, TSC = terrain surface convexity.

Table 6. Correlations of hydrological factors.

Environmental Factor DISD CMA FPL TWI VADE CMSL SPI VDCN

DISD 1
CMA 0.011 1
FPL ´0.109 0.551 1
TWI ´0.026 0.607 0.545 1

VADE ´0.112 0.678 0.675 0.65 1
CMSL ´0.007 0.327 0.41 0.411 0.638 1

SPI ´0.055 ´0.013 0.004 ´0.112 ´0.052 ´0.004 1
VDCN ´0.368 0.259 0.424 0.222 0.475 0.292 0.045 1

DISD = distance from drainage, CMA = catchment area, FPL = flow path length, TWI = topographic wetness index, VADE = valley depth, CMSL = catchment slope, SPI = stream
power index, VDCN = vertical distance to channel network.
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According to the selection criterion mentioned in Section 3.2, the most important environmental
factors, i.e., catchment slope, distance from drainage and NDVI, are selected as the regional division
factors, whose GWR coefficients are obtained by exploiting an adaptive bi-square kernel and AIC in
the GWR method. The GWR coefficient values of catchment slope are shown in Figure 11. It can be
easily observed from the figure that different clusters with respect to GWR are spatially developed.
Based on the relationship between GWR and spatial autocorrelation mentioned in Section 1, we can
easily infer that the GWR coefficients in each cluster are very close. Consequently, spatial dependency
are greatly reduced if each cluster is considered as a spatial variable. Therefore, it is possible that
the study area can be partitioned into different prediction regions while spatial autocorrelations are
very limited.
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In this work, we set N = 3, i.e., these selected environmental factors are clustered into three classes
by the natural breaks method and the corresponding classification maps are shown in Figure 12a–c.
For convenience, the slope-unit without landslide is named as the non-landslide slope-unit, while the
slope-unit including landslide is named as the landslide slope-unit. The result of simple superposition
is shown in Figure 13a. According to the three rules for merging regions mentioned in Section 3.2,
the study area is finally divided into 34 prediction regions by superposing all classification maps.
For simplicity, each prediction region is assigned to a unique label, as shown in Figure 13b. It can be
observed from this figure that 25 regions contain landslides in the study area. The numbers of the
slope-units and the landslide slope-unit are listed in Table 7.



Int. J. Environ. Res. Public Health 2016, 13, 487 19 of 35
Int. J. Environ. Res. Public Health 2016, 13, 487 19 of 35 

 

(a) (b)

(c)

Figure 12. The GWR coefficient values and classification maps of environmental factors.  
(a) Catchment Slope; (b) the distance from drainage; (c) NDVI. 

  

Figure 12. The GWR coefficient values and classification maps of environmental factors. (a) Catchment
Slope; (b) the distance from drainage; (c) NDVI.



Int. J. Environ. Res. Public Health 2016, 13, 487 20 of 35

Table 7. The numbers of the total slope-units and the landslide slope-units for each prediction region.

Region ID Number of
Slope-Units

Number of Landslide
Slope-Units

Region
ID

Number of
Slope-Units

Number of
Landslide

Slope-Units

1 59 9 18 75 18
2 51 5 19 40 0
3 8 2 20 63 14
4 59 0 21 52 12
5 52 5 22 54 12
6 17 0 23 52 13
7 61 19 24 57 15
8 61 0 25 71 24
9 138 29 26 134 60
10 57 9 27 10 0
11 38 12 28 80 36
12 80 0 29 9 0
13 21 2 30 76 12
14 90 23 31 7 0
15 64 8 32 47 22
16 77 14 33 70 31
17 42 0 34 37 10
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For the GWR-PSO-SVM prediction model, all of prediction regions must be sampled as input
variables. For each prediction region in Figure 13b, the label of the landslide slope-unit is assigned
as “1”, while the label of the non-landslide slope-unit is assigned as “0”. In our experiment, we use
the same number of landslide slope-units and non-landslide slope-units in each prediction region to
form training and verification samples. It can be observed from Figure 13 that the total number of
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non-landslide slope-units in each prediction region is always more than that of the landslide slope-units.
Therefore, all of the landslide slope-units and the same number of the randomly selected non-landslide
slope-units form the required samples. Meanwhile, the proposed GWR-PSO-SVM model is a local
model, which generates the optimal C and γ of the SVM model for each prediction region by using the
PSO algorithm, as shown in Table 8. It should be noted that the prediction regions without landslides
are not included in this table. Meanwhile, we perform the SVM classifier to estimate the likelihood
that each slope-unit contains the existing landslides and demonstrate the corresponding probability
maps in Figure 14. The probability value in the map ranging from 0% to 100% represents the different
degrees of landslide susceptibility.

Table 8. The parameter settings of C and γ calculated by the PSO algorithm for the
GWR-PSO-SVM model.

GWR-PSO-SVM
Model

Region ID C γ Region ID C γ

1 6.1826 0.13879 20 5.9453 0.29134

2 1.2965 0.32455 21 5.3659 0.38439

3 2.4682 0.31596 22 3.3548 0.17105

5 1.4832 0.36957 23 5.8234 0.36851

7 8.6235 0.51243 24 2.1629 0.47592

9 4.1356 0.67572 25 3.2592 0.45665

10 2.3659 0.49986 26 6.5359 0.67853

11 2.6971 0.33645 28 6.2157 0.47935

13 4.3651 0.42631 30 7.2853 0.63428

14 5.8652 0.42375 32 6.4075 3.35874

15 1.4964 0.56916 33 5.3364 0.47516

16 4.7569 0.32793 34 4.8435 0.67203

18 1.4259 0.47157 -
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5.2. Methods to Assess Models Performance

To objectively evaluate the performance of the models considered, three methods are utilized.
The first measure is overall prediction accuracy, which is used to evaluate prediction correctness and
can be defined as:

p “
a` b

S
¨ 100% (11)

where a and b are the numbers of correctly predicted landslide and non-landslide slope-units in the
landslide susceptibility maps, respectively. S is the total number of slope-units in the study area.
According to (11), this measure can be appropriately applied to evaluate the global models, such as the
SVM, PSO-SVM, RS-SVM models, by taking into account the entire study area. While it is used for the
GWR-based models, the measure can be computed in each prediction region. In this work, the final
measure of overall prediction accuracy is defined as follows:

p “

npr
ř

i“1
pai ` biq

npr
ř

i“1
Si

¨ 100% (12)

where i = 1,2, . . . ,npr (npr is total number of prediction regions), ai and bi are the numbers of correctly
predicted landslide and non-landslide slope-units in the ith prediction region, respectively. Si is the
number of slope-units involved in the current prediction region.

The second measure is exploited to evaluate prediction accuracy of landslide areas in each class
of landslide susceptibility maps obtained by the mentioned models according to the distribution of
our study area. This measure is named as class-specific accuracy and is defined as follows:

pj “
Aj

Bj
¨ 100% (13)

where j = 1,2,¨ ¨ ¨ ,M (M is total number of landslide susceptibility zones), Aj and Bj are the numbers
of landslide slope-units and total slope-units in the jth landslide susceptibility zone, respectively.
To perform this measure, our study area is classified into M landslide susceptibility zones. In this
work, the fixed interval method is used to achieve this aim and it is based on previous studies to
segment study areas by the predefined thresholds, which is widely used for comparison of multiple
models [7,46,61].

The third measure is the classical receiver operation characteristic (ROC) curve and its area under
curve (AUC). In a ROC curve the true positive rate (sensitivity) is plotted in function of the false
positive rate (100-specificity) for different cut-off points. Each point on the ROC curve represents
a sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect
discrimination (no overlap in the two distributions) has a ROC curve that passes through the upper
left corner (100% sensitivity, 100% specificity). Therefore, the closer a curve is to the upper left corner,
the better are the prediction results [62].

5.3. Comparison with Further Models

To better demonstrate the performance of our model, several models are compared to our
method, including: (1) the SVM model, in which the study area are globally used for sampling
and prediction; (2) the PSO-SVM model, in which the PSO algorithm is used to obtain the optimal C
and γ to improve prediction accuracies; (3) the landslide susceptibility mapping method based on
rough set (RS) and SVM proposed by Peng et al. [46]. RS theory is an effective tool introduced by
Pawlak [63] and discussed in many review papers [64–70]. This technique can deal with vagueness
and uncertainty information and identify cause-effect relationships in databases as a form of data
mining and knowledge discovery [46,63,71]. Meanwhile, it has been widely used in various disciplines
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of science [72], including remote sensing [73], geographic information science [74], and landslide
susceptibility mapping [71], etc. In the work of [46], it was employed to select key environmental
factors for landslide prediction; (4) the GWR-SVM model, which is a local model and similar to our
coupling model, without the PSO step to obtain the optimal C and γ.

For a fair comparison, the same mapping unit and original environmental factors are used for
all models used here. It should be noted that the RS-SVM model is different from the other models
due to the fact that its input environmental factors are determined based on the RS theory after the
PPMCC analysis. In our experiments, all of the remaining 12 factors are used for input variables for
the SVM, PSO-SVM, GWR-SVM and our models, while 14 factors are selected based on the RS theory
in the RS-SVM model, excluding land-use, mid-slope position, plane curvature, stream power index,
terrain surface convexity from the remaining 19 factors.

It is well-known that the selection of samples for training and verification is a key step for the
SVM prediction model. As mentioned above, the classical SVM, PSO-SVM and RS-SVM models can be
considered as global ones due to the fact that the entire study area is taken into account for selecting
samples, i.e., all of the landslide slope-units in the study area and the same number of the randomly
selected non-landslide slope-units are used for training their respective SVM models, while all of the
slope-units in the study area are utilized for verification. Nevertheless, the selection scheme of the
remaining GWR-based models is performed for each prediction region, instead of the entire study area,
as mentioned in Section 5.1. Therefore, the sample size of each model in this work is measured using
the number of slope-units in the study area or each prediction region. Table 9 depicts the training and
verification sample sizes of all the models. In addition, the PSO algorithm is used for the PSO-SVM
and GWR-PSO-SVM models to obtain the optimal C and γ to improve prediction performance of the
SVM model.

Table 9. The training and verification sample of the five models.

Model Region ID Training
Sample

Verification
Sample Region ID Training

Sample
Verification

Sample

GWR-PSO-SVM
and GWR-SVM

1 18 59 20 28 63
2 10 51 21 24 52
3 4 8 22 24 54
5 10 52 23 26 52
7 38 61 24 30 57
9 58 138 25 48 71

10 18 57 26 120 134
11 24 38 28 72 80
13 4 21 30 24 76
14 46 90 32 44 47
15 16 64 33 62 70
16 28 77 34 20 37
18 36 75

SVM 832 1909

PSO-SVM 832 1909

RS-SVM 832 1909

To make probability maps more readable, we can divide probability values by using fixed interval
method in ArcGIS software into five susceptibility categories, i.e., very low, low, medium, high and
very high, corresponding thresholds are fixed to 0.1, 0.35, 0.75 and 0.9, respectively, as shown in
Figure 15. It can be observed from Figure 15 that all of the models can achieve the purpose of
landslide prediction. Meanwhile, the very high-susceptibility zones are apparently mapped in the
main urban area of Wanzhou district in all the susceptibility maps, which accords with the fact that the
previously investigated landslides are mainly distributed in this area. The distribution of high and
very high-susceptibility zones is greatly different for each model.
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consequence, the previously investigated landslides in the southwest of the study area cannot 
effectively be predicted by the PSO-SVM model. In contrast, the map by our model is consistent to 
the ground truth of landslide distribution. Although the PSO algorithm is used in our method to 
optimize the parameters in the SVM model, the division of our study area into prediction regions 
with appropriate sizes can greatly overcome trapping in local optimum. The high and very  
high-susceptibility zones mainly concentrate in the previously investigated landslide areas, while 
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For instance, most of the previously investigated landslides are located in high or very
high-susceptibility zones in the maps of the SVM, RS-SVM and GWR-SVM models. However, a large
number of slope-units are unreliably classified by these models as high or very high-susceptibility
zones as well. Landslides are typically a minority class in the study area, the PSO algorithm always
results in local optima of the SVM model, when it is applied to the entire study area. As a consequence,
the previously investigated landslides in the southwest of the study area cannot effectively be predicted
by the PSO-SVM model. In contrast, the map by our model is consistent to the ground truth of landslide
distribution. Although the PSO algorithm is used in our method to optimize the parameters in the
SVM model, the division of our study area into prediction regions with appropriate sizes can greatly
overcome trapping in local optimum. The high and very high-susceptibility zones mainly concentrate
in the previously investigated landslide areas, while most of non-landslide areas are classified as low
and very low-susceptibility zones, which guarantee the reliability of prediction results of landslide
susceptibility. The overall accuracies of landslide susceptibility mapping by all the models used here
are listed in Table 10.

Table 10. Overall accuracies by all the prediction models.

Model Correct Total Accuracy

SVM 1415 1909 74.12%
PSO-SVM 1590 1909 83.29%
RS-SVM 1427 1909 74.75%

GWR-SVM 1140 1584 71.97%
GWR-PSO-SVM 1443 1584 91.10%

In this table, the item of “Correct” indicates the number of slope-units that are correctly predicted
in prediction regions, while the item of “Total” means the number of slope-units in prediction regions.
It should be noted that this “total” number in the GWR-SVM and GWR-PSO-SVM models are
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calculated using the prediction regions including landslides. It is obvious that the GWR-PSO-SVM
model can achieve the best prediction accuracy of 91.10%, which is 7.8%–19.1% higher than the
traditional SVM-based models. To further compare the performance of all the models, the class-specific
accuracies are shown in Figure 16. It can be clearly seen that the class-specific accuracy of the very
high-susceptibility zone achieved by our model is highest (96.27%) when compared with the other
models, which means that our model can detect the very high-susceptibility zones mainly including
the previously investigated landslides.
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The ROC curves of all the methods are plotted in Figure 17. It is known that the closer the ROC
curve is to the upper left corner, the higher the overall accuracy of the test is. As can be observed
from Figure 17, we can obtain similar conclusions as for the two previous evaluation measures, i.e.,
the GWR-PSO-SVM model can achieve the best prediction result. Meanwhile, the ROC plots of the
GWR-SVM and the RS-SVM models are pretty close to each other. Since the PSO algorithm is not
very robust when it is applied to the whole study area, the ROC plot of the PSO-SVM model is not
continuous and is close to the upper left corner when the value (of the 1-specificity) is 0.2, but worse
than the RS-SVM model, GWR-SVM and our models when the value is larger than 0.2. In addition, the
corresponding AUC is listed in Table 11. The larger the value of AUC, the better the performance of
the prediction model. As shown in this table, our model can produce the largest area of 0.971, when
compared with the other models.
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Table 11. The AUC of four models.

Model Area Std. Error Asymptotic Sig. Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

SVM 0.817 0.011 0.000 0.796 0.837
PSO-SVM 0.869 0.010 0.000 0.850 0.889
RS-SVM 0.825 0.010 0.000 0.804 0.845

GWR-SVM 0.860 0.009 0.000 0.842 0.878
GWR-PSO-SVM 0.971 0.004 0.000 0.963 0.978

Std. = Standard; Sig. = Significant.

It should be noted that there are a few non-landslide regions in the prediction region map (Figure 12b),
since landslides are typically a minority class in the study area. To compare the performance of our
model with the global models, we assume in this work that the overall prediction accuracies of
these non-landslide regions are 100%, which may improve the overall accuracy of the entire study
area. Meanwhile, our experiments not reported here confirm that the AUC value of our model can
still reach 0.962 by removing these non-landslide regions from the study area. Furthermore, all the
prediction models were applied to Zigui to Badong section in the Three Gorges Reservoir for landslide
susceptibility mapping. The experimental results demonstrated that the GWR-PSO-SVM model can
obtain the best prediction result as well and the AUC value of 0.965, which is highest among all the
models. Therefore, the universality of our model can be validated. Finally, to objectively compare our
model with the other models, we select the same number of landslide slope-units and non-landslide
slope-units in each prediction region. Although the number of training samples is relatively small in
certain prediction regions, the influence on the overall prediction accuracy is very limited.

6. Discussion

6.1. Impact of Environmental Factors

It should be noted that the global and regional prediction results of the study area are always
different, mainly due to two reasons. The first one is the prediction model. Since the SVM model
has been used as a universal model and can obtain satisfactory results, it is exploited by all the
models used here for landslide susceptibility mapping. The second one is the impact of environmental
factors. There are several crucial environmental factors for landslide prediction, such as elevation,
slope angle and so on. However, the most crucial factors are different in different parts of the study area.
For instance, the environmental factor of distance from drainage is greatly significant for landslide
failures in the area along the Yangtze River, while slope angle may be the most important environmental
factor in the areas far away from the Yangtze River. Therefore, the introduction of the GWR technique
into landslide susceptibility mapping may avoid these two problems and improve the prediction
accuracy. The importance values of all the environmental factors in each prediction region, obtained
using SPSS Clementine 12 software, are displayed in Figure 18. It can be observed that the importance
values of the final 12 environmental factors produced in Section 5.1 at each prediction region are
different. Meanwhile, in each prediction region, the rank of each environmental factor in terms of the
important value is greatly different.
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To demonstrate the impact of the performance of segmentation of the study area, the resultant
segmentation maps, with respect to different values of N from 2 to 4, are shown in Figure 19.
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regions. However, the impact of each environmental factor in different spatial positions is not taken
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(c) N = 4.

For instance, all the prediction regions are produced distributing from the Yangtze River to
boundaries of the study area, but the importance rank of each environmental factor may greatly change
in different parts of each prediction region, which cannot be carefully considered in prediction models
if prediction regions are very large. In Figure 19c, the study area is segmented into 65 prediction
regions if N = 4. In this way, the slope units may be very few in prediction regions. As a consequence,
the landslide and non-landslide slope units in each prediction region are not enough to constitute
required samples, which influences landslide prediction accuracies. In contrast, our study area in this
work is divided into 34 prediction regions by choosing N = 3 and different impacts of environmental
factors in these regions are effectively utilized into prediction models. In addition, the size of each
prediction region is appropriate for obtaining the required samples, as shown in Figure 19b.

6.3. Model Sensitivity

To evaluate the sensitivity of the proposed model to the number of prediction and verification
samples, five prediction regions, which have the most landslide slope-units, are selected to obtain
ROC curves of the prediction performance by choosing five different percentages of required sample
sets, i.e., 20%, 40%, 60%, 80% and 100%. The corresponding prediction regions in our study area and
their ROC curves are depicted in Figure 20. In general, the higher percentage of the required samples
we choose, the better the prediction performance, i.e., the prediction accuracy of our model is highest
when using all of the required samples, while it is lowest when only 20% of the required samples are
used in our model. The prediction results are greatly determined by the selection of samples due to
the complexity of landslides in the study area. If training samples are very small, we cannot extract
valuable information from environmental factors, which makes it difficult for our model to guarantee
accuracies of landslide prediction. In addition, the selection of the required samples in each prediction
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region results in fewer training samples for prediction. As a result, the prediction accuracy of our
model is lower as the training samples are reduced.
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corresponding to (e); (g) the prediction region No. 28; (h) the ROC curves and AUCs corresponding
to (g); (i) the prediction region No. 28; (j) the ROC curves and AUCs corresponding to (i).

7. Conclusions

In this paper, an effective PSO-SVM method based on the GWR technique is presented for
landslide susceptibility mapping at a local scale by integrating multisource data of the Wanzhou district
in the middle of the Three Gorges Reservoir, China. It has been reported that landslide events occurred
in the last three years in the main urban area of the Wanzhou district. In this work, a GWR algorithm is
used in our model to segment the study area into a series of prediction regions with appropriate sizes
by clustering slope units. Then, a PSO-SVM prediction model is applied to each prediction region for
landslide susceptibility mapping. This allows the proposed GWR-PSO-SVM model can obtain accurate
landslide susceptibility maps at a regional scale. Experimental results demonstrate that coupling
different models as in the GWR-PSO-SVM model can achieve better prediction performance, when
compared to the traditional SVM-based models. Meanwhile, these landslide prediction models are
comprehensively evaluated using three objective measures including the overall prediction accuracy,
the landslide susceptibility class-specific accuracies, and the ROC curves and AUC values. We can
draw the following conclusions: (1) The GWR-PSO-SVM model can obtain the best overall accuracy
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of 91.10%; (2) The GWR-PSO-SVM model can achieve the highest class-specific accuracy of 96.27%
with respect to the very high-susceptibility zones, which are mainly covered with the previously
investigated landslides; (3) The GWR-PSO-SVM model can achieve a more reliable ROC curve and
a higher AUC value of 0.971. Therefore, our model can achieve superior prediction performance to the
traditional prediction models. In future, a further improvement can be achieved by selecting more
reasonable segmentation factors and performing segmentation postprocessing.
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