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Abstract: Exposure to environmental hazards has been associated with diseases in humans.
The identification of single nucleotide polymorphisms (SNPs) in human populations exposed to
different environmental hazards, is vital for detecting the genetic risks of some important human
diseases. Several studies in this field have been conducted on glutathione S-transferases (GSTs),
a phase II detoxification superfamily, to investigate its role in the occurrence of diseases. Human GSTs
consist of cytosolic and microsomal superfamilies that are further divided into subfamilies. Based on
scientific search engines and a review of the literature, we have found a large amount of published
articles on human GST super- and subfamilies that have greatly assisted in our efforts to examine
their role in health and disease. Because of its polymorphic variations in relation to environmental
hazards such as air pollutants, cigarette smoke, pesticides, heavy metals, carcinogens, pharmaceutical
drugs, and xenobiotics, GST is considered as a significant biomarker. This review examines the
studies on gene-environment interactions related to various diseases with respect to single nucleotide
polymorphisms (SNPs) found in the GST superfamily. Overall, it can be concluded that interactions
between GST genes and environmental factors play an important role in human diseases.

Keywords: gene-environment interactions; glutathione S-transferases (GSTs); single nucleotide
polymorphisms (SNPs); carcinogens; xenobiotics; heavy-metals; air pollutants

1. Introduction

Human health or disease development is highly influenced by interactions between gene
expression and environment [1]. Glutathione S-transferase (GST) is a dimeric, multifunctional
protein superfamily, present in all kingdoms [2,3]; which has sparked an interest in the area of
gene-environment interaction and diseases. Recent findings have demonstrated the importance
of different allelic frequencies of polymorphic genes, such as GSTs, and susceptibility to certain
diseases [4]. Changes or variations in an individual’s DNA, such as single nucleotide polymorphisms
(SNPs), are deemed to produce numerous diseases [5,6].

GSTs are vital in Phase II detoxification enzymes pathway in humans, and provide
protection against toxins by catalyzing toxin conjugation with GSH or passively binding to
various exogenous/endogenous toxic molecules, including environmental toxins, carcinogens,
chemotherapeutic agents, or products of oxidative stress [3,7]. They are also involved in preventing
cellular mutations and aiding in antioxidant defense mechanism. However, there are some instances
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where conjugation reactions can lead to the formation of compounds that are far more toxic than the
initial substrate, thereby potentially causing a disease [8]. Some GSTs, which undergo polymorphisms,
pose an interest in exploring the relationship between specific allelic variants and the risk of developing
a disease [9–13]. Therefore, our goal is to examine studies on gene-environment interactions related
diseases, with respect to SNPs found in the GST subfamilies as shown in Table 1 [14].

Table 1. Major types of GST genes and their SNP distributions (based on [14]).

Gene
Family

Genome
Location

Total
SNP nsSNP %

nsSNP sSNP %
sSNP 31UTR %

31UTR 51UTR %
51UTR iSNP %

iSNP

GSTM Chr1 1072 92 8.58 53 4.94 55 5.13 8 0.75 864 80.60
GSTA Chr6 1702 98 5.76 43 2.53 34 2.00 21 1.23 1506 88.48
GSTP Chr11 180 17 9.44 6 3.33 3 1.67 6 3.33 148 82.22
GSTT Chr22 239 30 12.55 11 4.60 3 1.26 5 2.09 192 80.33
Total 3193 237 7.42 113 3.54 95 2.98 40 1.25 2710 84.87

nsSNP: non-synonymous SNP; sSNP: synonymous SNP; 31UTR: 31 untranslated region; 51UTR: 51 untranslated
region; iSNP: intronic SNP.

The mechanisms for the genetic variances can be complex. Conventionally there are two kinds
of mutations, germinal and somatic mutations [15,16]. Germinal mutations can be passed down to
offspring generations to become inherited mutations or polymorphisms. Inherited polymorphisms,
unlike somatic mutations, are congenital and not induced by environmental factors. Somatic mutations
develop at some stage of the cell lifespan due to exposure to environmental hazards. The focus of this
article is on the SNP polymorphisms caused by somatic mutations induced by environmental risk
factors. Nonetheless, the subtle differences (variances) of inherited genetics for different race/ethnic
group populations in different locations, may confer different susceptibilities to somatic mutations
induced by some factors (Table 2).

2. Glutathione S-transferases (GSTs)

The first GST structure, in 1991, leads to an overflow of structural data among GSTs of the three
distinct superfamilies: the cytosolic GSTs (largest), the mitochondrial GSTs and microsomal, also
known as the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG
family) [17]. Several mammalian GST classes have been identified and characterized, forming eight
distinct classes: alpha, mu, pi, omega, sigma, theta, zeta, and kappa; with the first seven being cytosolic
specific [18,19]. Alpha, mu, and pi are noted being the major classes [20] with their SNP distributions
shown in Table 1 [14]. An extensive amount of literature has been published on theta, as well [14,21],
which SNP distribution can also be seen in Table 1. In some cases, GSTM1 (glutathione S-transferase
mu), GSTT1 (glutathione S-transferase theta), and GSTP1 (glutathione S-transferase pi) are evaluated
in experiments altogether. GSTs are present in virtually all tissues, yet in humans the liver has the
highest cytosolic GST activity level. Those major cellular detoxification enzymes are present mostly in
the liver and kidney, as well as in the intestine [22].

The four widely studied GSTs (GSTA, GSTM, GSTP, and GSTT) are parts of the cytosolic GST
group and are involved in the detoxification of xenobiotics, carcinogens, and therapeutic drugs.
Hence, they are deemed insightful biomarkers as some of their polymorphic states can increase an
individual or population’s susceptibility to a disease (e.g., cancer). Class alpha GST (GSTA), located
on chromosome 6 and highly expressed in the liver, plays a role in cell protection in the presence
of peroxidation products and reactive oxygen species (ROS). It can serve as an indicator for liver
injury, as it can be detected at lower levels in acute hepatic injury [23]. Class mu (GSTM), located on
chromosome 1, is known to modify the toxicity and effectiveness of medical drugs. Class pi (GSTP),
located on chromosome 11, is involved in the protection of cells from cytotoxic and carcinogenic
agents [24]. Lastly, class theta (GSTT), located on chromosome 22, shares a similarity with 55% amino
acid sequence identity and possesses a possible role in human carcinogenesis. Most GSTs’ functions
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are associated with detoxification or anti-oxidation processes. Therefore, their structural changes due
to SNP variants (especially missense mutations) have a strong correlation with chronic diseases such
as cancers.

Glutathione S-transferase alpha (GSTA) family consists of GSTA1, GSTA2, GSTA3, GSTA4, GSTA5,
GSTA6P (pseudogene), and GSTA7P (pseudogene) that are located on chromosome 6. This class
encodes enzymes with glutathione peroxidase activities that function in the detoxification of lipid
peroxidation products. Glutathione S-transferase mu (GSTM) family includes GSTM1, GSTM2 (muscle),
GSTM3 (brain), GSTM4, and GSTM5, found on chromosome 1. GSTM1 enzyme encodes a major
detoxification phase enzyme that helps detoxify various xenobiotics. Deficiency in GSTM1 activity
is related to homozygous deletion of GSTM1 (GSTM1 null), leading to a lack of corresponding
enzymatic activity [8,25]. Glutathione S-transferase pi (GSTP1) has an enzymatic activity that provides
a “caretaker” function. It has been documented that inactivation of the GSTP1 gene was often observed
in human neoplasia (prostate, breast, and liver cancer, as well as leukemia) and researchers highlight
GSTP1 epigenetic modifications as biomarkers for early diagnosis for cancers and potential targets
of preventive or therapeutic treatments [26,27]. Glutathione S-transferase theta (GSTT) family is
comprised of GSTT1, GSTT2 (gene/pseudogene), and GSTT2B (gene/pseudogene) and is positioned
on chromosome 22. This gene is polymorphic in human and the null genotype results in the absence of
enzyme function, which may influence alterations in the response of xenobiotics. In recent years, many
studies have assessed the associations between diabetes mellitus (DM), Type 2 diabetes mellitus (T2DM)
and GSTT1 polymorphism; although no significant association was found [28], GST polymorphic
genes (GSTM1-null and GSTT1-null) can be used as biological markers to determine the diabetic risk
of individuals [4].

DNA mutations are associated with many human diseases and are the reasons for the variations
among individuals. Many polymorphisms in the DNA sequence of these GSTs are reported and many
studies have demonstrated that the polymorphisms of these GSTs are associated with different types of
cancer [5,6,29,30]. As studied by Yadav et al. [14] based on NCBI/dbSNP database, the major studied
GST genes [14] contained 3193 SNPs with 237 coding nsSNP among them (Table 1) which should be
the focus of the investigation due to their potential effects on the structure, function, interactions, and
other properties of DNA and expressed proteins. Obviously, intron noncoding SNPs consist of the
most percentage (84.87%) of total SNPs under study; these intronic SNPs will not be the focus of our
current review, although some of them may relate to regulatory or splicing mechanism. Significant
coding nsSNPs will be identified and highlighted in the next section.

Table 2. Population susceptibility for different diseases related to major types of GST.

Gene Family Population Susceptibility

GSTM Chinese (LAC) [31], Indian (OC) [32], North Indian (CC) [33],
Caucasians (CRC) [34], Iranian (BC) [35]

GSTA Brazilian (PCa) [36]

GSTP Asian (BC) [37], Iranian (BC) [35], Saudi Arabian (DLBCL) [38]

GSTT North Indian (CC) [33], Chinese (LC) [39], Caucasians (CRC)
[34], Chinese (GC) [40], Saudi Arabian (DLBCL) [38]

Abbreviations: BC—Breast Cancer; CC—Cervical Cancer; CRC—Colorectal Cancer; DLBCL—Diffuse Large
B-cell Lymphoma; GC—Gastric Cancer; LAC—Lung adenocarcinoma; LC—Lung Cancer; OC—Oral Cancer;
PCa—Prostate Cancer.

3. GST Single Nucleotide Polymorphisms (SNPs)

GST genes are organized in chromosomal clusters, and most of these genes are polymorphic,
mainly due to single nucleotide substitutions or variations (i.e., SNPs). Genetic variations can
be classified as synonymous or nonsynonymous. Synonymous variation is the alteration in the
DNA, which produces a change in the amino acid due to the nucleotide change, but does not affect
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the function. However, missense, nonsense, and frameshift changes are types of nonsynonymous
mutations that all generate a significant change in the protein. In recent years, a few researchers
suggested that deleterious nonsynonymous single nucleotide polymorphisms (nsSNP) of GSTs
are associated with diseases. One study [14] discovered that five (GSTA3/R13W, GSTA3/Y147D,
GSTM3/R191L, GSTM4/R18L, and GSTT1/W101R) of 237 nsSNP were identified as potential target
mutations that induced structural changes and possibly alter the detoxification process that could lead
to carcinogenesis events (Table 3).

It has also been recognized that there are modifications in enzymatic activity of a missense
categorized SNP in GSTP1 (rs1695/Ile105Val) at residue 105 that leads to miscellaneous diseases [9–13].
Internationally, it has been determined that the GSTP1 Val105 allele occurs more frequently in
African-Americans (42%) and European-Americans (33%) versus other ethnicities, such as Chinese
(22%), Taiwanese (18%), and Japanese (14%) populations, while in the nsSNP Ala114Val, GSTP1 Val114
allele is not common in African-Americans (5%) or European-Americans (9%) [41].

3.1. Significant GST SNPs

Based on the literature reviewed, we compiled the most significant GST SNPs (related to
disease) in Table 3. The criteria used to obtain information for this paper were based on the major
GST-related & disease-associated SNPs found in PubMed, a service that provides access to literature,
and dbSNP, NCBI’s database containing genetic variation data. In Table 3, we included the significant
or potential SNPs that fit our criteria which are: (1) the SNP was located in GST gene or close
to it; (2) the SNP was studied and described in some literature(s) in PubMed; (3) the SNP has a
dbSNP ID; (4) the SNP formation was susceptible to some kind of environmental factor including
variances in ethnic group and living locations; (5) the SNP was associated with a disease or has
the potential to cause a disease. Although some significant SNPs are located in the noncoding
areas (e.g., GSTM5/rs3754446, GSTA1/rs3957357, GSTP1/rs4147581, GSTP1/rs947895, GSTT1/rs4630,
GSTO2/rs7085725, and GSTZ1/rs1468951 in Table 3), most significant GST SNPs are found in the
coding areas which can have a strong effect on the structure and function of the translated protein
due to consequent amino acid change on the SNP site. Most of the SNPs in Table 3 have a connection
with the environmental factors including carcinogen, toxin, heavy metal, cigarette smoke, air pollutant,
UV exposure, and other environmental hazards. GSTA2 (P110S, S112T, and E210A) are in linkage
disequilibrium (with one another), as shown in Table 3, which displays potential damage by these
three GSTA2 variants collectively [42] although it has only been shown that GSTA2 S112T serine
allele homozygosity is a prognostic factor for poorer survival, for increased any time- and 100-day
transplant-related mortality [43]. It was determined that some contributing factors related to SNP
formation can be associated with ethnic group’s different susceptibility, location for industrial waste
toxin or heavy metal, and other environmental factors. Our focus is on the somatic variances that are
associated with environmental factors which may induce a potential disease, including the possibilities
of disease susceptibility depending on a specific ethnic/population group with different living habits
in a certain location (Table 2). In addition, most GST SNPs are linked to carcinogenesis.



Int. J. Environ. Res. Public Health 2016, 13, 379 5 of 14

Table 3. Significant GST SNPs related to miscellaneous diseases or mechanisms.

Variation dbSNP ID SNP
Category

Nucleotide
Change Affecting Factor Related Disease or

Mechanism Reference

GSTA1/NG5-69C/T rs3957357 Noncoding C–T Ethnic Group,
Location Asthma, Allergy [44]

GSTA2/P110S rs2234951 Missense C–T Environment Strong LD * [42]

GSTA2/S112T rs2180314 Missense G–C Environment Transplant-related
mortality, Strong LD * [42,43]

GSTA2/E210A rs6577 Missense A–C Environment Strong LD * [42]

GSTA3/R13W rs59410661 Missense A–G Universal Carcinogenesis [14]

GSTA3/Y147D rs144126679 Missense A–C Universal Carcinogenesis [14]

GSTM1/K173N rs1065411 Missense G–C Cigarette Smoking Colorectal Cancer [45]

GSTM1/T154S rs135955605 Missense C–G Climate,
Environment Bull Sperm Quality [46]

GSTM3/R191L rs1803686 Missense C–A Universal Carcinogenesis [14]

GSTM4/R18L rs138088784 Missense G–T Universal Carcinogenesis [14]

GSTM5/NG5 rs3754446 Noncoding T–G Ethnic Group AML [47]

GSTP1/I105V rs1695 Missense A–G
Arsenic,
Carcinogenic
Compounds

Asthma, BC,
Inflammation, Gastric
Cancer, Autism and
Alzheimer’s

[9–13]

GSTP1/A114V rs1138272 Missense C–T Ethnic Group MND [41,48]

GSTP1/S185S rs4891 Synonymous T–C Cigarette Smoking Lung Cancer [49]

GSTP1/intron rs4147581 Noncoding G–C Ethnic Grp.,
Location HCC [50]

GSTP1/NG3 rs947895 Noncoding C–A Ethnic Grp.,
Location Asthma [51]

GSTT1/V51I/V169I rs2266637 Missense G–A Ethnic Group Carcinogenesis [52,53]

GSTT1/W101R rs141759372 Missense A–G Universal Carcinogenesis [14]

GSTT1/31-UTR rs4630 Noncoding C–T Thalidomide Peripheral Neuropathy [54]

GSTO1/A112D/A140D rs4925 Missense C–A Ethnic Grp.,
Location Alzheimer Disease [55]

GSTO2/N142D rs156697 Missense A–G Smoking, UV
exposure

Cataract, Asthma, Lung
function [44,56,57]

GSTO2/31-UTR rs7085725 Noncoding T–C Ethnic Grp.,
Location HCC [50]

GSTZ1/E32K rs7975 Missense G–A Cigarette Smoking Carcinogenesis [58,59]

GSTZ1/intron rs1468951 Noncoding C–A Ethnic Group Cognition [60]

Abbreviations: BC, Breast Cancer; LD, Linkage Disequilibrium; AD, Alzheimer’s Disease; NG5, Near-Gene-5;
AML, Acute myeloid leukemia; NG3, Near-Gene-3; MND, Motor Neuron Disease; HCC, Hepatocellular
Carcinoma; Missense, Missense SNP; Synonymous, Synonymous SNP; UTR, UnTranslated Region.
(Note 1: Universal factor can be environmental or genetic; Note 2: NG5 (Near-gene-5), near 51 end of the
gene; Note 3: NG3 (Near-gene-3), near 31 end of the gene.).* Strong LD: GSTA2 (P110S, S112T, and E210A) are in
linkage disequilibrium (with one another), which displays potential damage by these three GSTA2 variants
collectively [42] although it has only been shown that GSTA2 S112T serine allele homozygosity is a prognostic
factor for poorer survival, for increased any time- and 100-day transplant-related mortality [43].

3.2. Databases for GST SNP Studies

Based on the literatures published so far, we found that dbSNP, HapMap, and HGDP datasets are
often utilized and examined for the GST SNP analyses (Table 4). Also, SNPedia and PharmGKB are
useful for SNP annotations (Table 4). There are additional SNP datasets to be explored in more recent
projects as seen in the databases of COSMIC, ICGC, and TCGA which focus on the genetic changes in
cancers (Table 4).
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Table 4. Databases for SNP studies.

Database Focus Link Reference

1000 Genomes Human genetic variation http://www.1000genomes.org [61]

COSMIC cancer database Somatic mutations in cancer http://cancer.sanger.ac.uk/cosmic [62]

dbGAP Genotype, Phenotype http://www.ncbi.nlm.nih.gov/gap [63–65]

dbSNP SNP http://www.ncbi.nlm.nih.gov/SNP [14,63,64]

HapMap Haplotype map of human
genome http://hapmap.ncbi.nlm.nih.gov [66–70]

HGDP Genetic diversity in humans http://www.hagsc.org/hgdp [69–71]

ICGC Oncogenic mutations https://icgc.org [72]

PharmGKB Genetic variation on drug
response https://www.pharmgkb.org [52,73]

SNPedia Effect of DNA variations http://www.snpedia.com/index.php/SNPedia [74]

TCGA Genetic changes in cancers http://cancergenome.nih.gov [75]

3.3. Programs for GST SNP Analyses

Based on the reviews, there are many programs for SNP analyses and depending on the stage
of the analyses, specific program should be used in each stage. For simplicity, we selected a few
typical and popular programs to be included in Table 5 for an overall view of the whole process in
SNP data analyses. For example, GATK [76] can be the first program to manage the high-throughput
raw data for SNP variant discovery and/or genotyping, PLINK [77] can be used to do genome wide
association study (GWAS), VEGAS (VEGAS2) [78,79] prepares a gene-based association test via SNP
GWAS results, Arlequin [69,80] can perform population allele comparison and analysis of molecular
variance (AMOVA), Haploview [69,81] is capable of producing visualizations and plots for the PLINK
GWAS results, R/QTL [82] is able to generate a quantitative trait loci analyses to pinpoint the causative
SNP loci for the disease, and finally, Triton, SIFT, and Polyphen2 [14,83–86] can evaluate and predict
if the SNP is damaging or not (Table 5). Starting from these programs, some more similar or related
programs can be identified.

Table 5. Programs for SNP analyses.

Program Application Link Reference

GATK Variant discovery and
genotyping https://www.broadinstitute.org/gatk [76]

PLINK Genome association
analysis toolset http://pngu.mgh.harvard.edu/~purcell/plink [77]

VEGAS and VEGAS2
Gene-based test for
association via SNP
association results

http://gump.qimr.edu.au/VEGAS;
https://vegas2.qimrberghofer.edu.au [78,79]

Arlequin Population allele
comparison and AMOVA http://cmpg.unibe.ch/software/arlequin35 [69,80]

Haploview Haplotype analysis
https://www.broadinstitute.org/scientific-community/
science/programs/medical-and-population-genetics/
haploview/haploview

[69,81]

R/QTL Mapping quantitative
trait loci http://www.rqtl.org [82]

Triton Protein mutant construction
and activity prediction http://www.ncbr.muni.cz/triton [14,83,84]

SIFT Predict amino acid
substitution effects http://sift.bii.a-star.edu.sg/ [14,85]

Polyphen2 Predict damaging missense
mutation http://genetics.bwh.harvard.edu/pph2 [14,86]
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4. Environmental Hazards and Diseases Associated with GST Gene-Environment Interaction

Living organisms encounter exposure to various toxins and/or toxicants, i.e., industrial chemicals,
pesticides, herbicides, air pollutants, pharmaceuticals and several natural occurring substances, that
can have a detrimental effect on a human’s health. These environmental exposures can induce changes
in gene regulation associated with human diseases [7]. Exposure to the same environment does not
warrant the same effect on different individuals within or outside of a particular ethnicity, due to the
differences in a person’s DNA. For example, genome-wide association studies (GWAS) have identified
a number of genetic variants connected with the risk of bladder cancer in populations of European
descent [87].

A correlation among gene polymorphisms and environmental toxins, such as heavy metals
(arsenic, lead, and platinum), air pollutants, and other factors as seen in Table 6, have been the focus
for some studies to display the potential risks [88]. Some findings provide information on exposures to
environmental lead and an analysis of blood lead levels in men that exhibited genetic polymorphisms in
GSTs (deletions of GSTM1/GSTT1 and GSTP1 rs1695), resulting in adverse alterations in inflammatory
response [9]. Also, mothers exposed to environmental tobacco smoke show an increased probability
of a negative impact on birth weight (i.e., low birth weight) [25]. There is an association between
cancer incidence and various disorders of GSH-related enzyme functions especially the alterations
of glutathione S-transferases (GSTs) [89]. It has been suggested that GSTM1/T1 polymorphisms
are related with many diseases, such as rheumatoid arthritis, age-related macular degeneration,
oral leukoplakia, prostate cancer, lung cancer, and cervical neoplasia [14,45,52,53,90]. GSTM1 null
genotype and GSTP1 Ile105Val polymorphism are associated with the increased risk of Alzheimer's
disease [12]. The pi class GST (P1) is often overexpressed in human tumors, including carcinomas of
the colon, breast, lung, kidney, ovary, pancreas, esophagus, stomach, prostate, liver, and blood [19,27].
In relation to prostate cancer, there are no consistent associations between GSTM1, GSTT1 or GSTP1
genotypes [91] and related studies produced as recent as 2012 give the same information. Although
one study states that its findings revealed no apparent interaction between GST gene variants and
hypertension due to exposure to air pollution [21], there are instances where polymorphisms of GSTs
are involved (positively or negatively). GSTO1 (glutathione S-transferase omega) related SNP in arsenic
(As) metabolism exhibited nominally significant interactions with well-water “As” for connections
with cardiovascular disease (CVD), coronary heart disease (CHD), or stroke [92]; in addition, GSTT1
polymorphisms serve as a potential genetic factor for arsenic-induced skin cancer [93]. It is suggested
that GSTP1 aids in the detoxification of arsenic [13]. The GSTT1 also encodes enzymes involved in the
metabolism and detoxification of polycyclic aromatic hydrocarbons (PAHs), and the protection against
genotoxic damage due to the ethylene oxide present in tobacco smoke [25].

In Table 6, it is illustrated that the diseases related to GST SNP variants can be classified into
five categories and most of the affecting factors have an association with the environmental toxins or
toxicants. The criteria for the creation of this table are to focus on classification of the diseases highly
related to SNPs found in GSTs. These five categories of disease are: (1) Cancers; (2) Inflammatory
or Immunological Disorders; (3) Neurological Disorders; (4) Aging-related or Metabolic Disorders;
and (5) Reproductive Disorders. Environmental toxins are the most important affecting factors for all
five categories of diseases and are the causing factors for all cancers, Inflammatory or Immunological
Disorders, and Reproductive Disorders.
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Table 6. Miscellaneous diseases or mechanisms related to GST variants.

Disease or Mechanism Affecting Factor Related GST Reference

Cancers

Blood Cancer Misc. Carcinogen and Toxin GSTM5, GSTP1 [27,47]

Breast cancer Misc. Carcinogen and Toxin GSTP1 [27]

Colorectal cancer Misc. Carcinogen and Toxin GSTM1 [45]

Gastric cancer Misc. Carcinogen and Toxin GSTP1 [11]

Liver cancer Misc. Carcinogen and Toxin GSTP1, GSTO2 [27,50]

Lung problem or cancer Air pollutant, Smoke, Platinum,
Carcinogen GSTM4, GSTP1, GSTO2, GSTZ1 [49,57,59,94]

Prostate cancer Misc. Carcinogen and Toxin GSTP1 [27]

Skin cancer Arsenic GST M1, P1, T1, and O1 [92,93]

Inflammatory or Immunological Disorders

Asthma Air pollutant, Smoking, and Toxin GSTA1, GSTP1, GSTO2 [9–11,44,51]

Allergy Air pollutant, Carcinogen, Toxin GSTA1 [44]

Inflammation Lead (Pb)-induced GSTM1, GSTP1, GSTT1 [9]

Neurological Disorders

Alzheimer’s disease Genetics GSTM1, GSTM3, GSTP1, GSTO1 [12,55,95]

Autism spectrum disorder Arsenic GSTP1 [13]

Brain cognition Environment GSTZ1 [60]

Motor neuron disease Genetics GSTP1 [48]

Peripheral neuropathy Immunomodulatory drug GSTT1 [54]

Aging-related or Metabolic Disorders

Age-related cataract Smoking, UV exposure GSTM1, GSTT1, GSTO1, and
GSTO2 [56,90]

Cardiovascular disease Arsenic GSTM1, GSTT1, GSTO1 [92]

Hypertension Air pollutant GSTP1 [21]

Type 2 diabetes Weight, diet, race, and genetics GSTM1,GSTT1 [4]

Reproductive Disorders

Fetal growth restriction or
adverse pregnancy outcome Environment, smoking, pesticide GSTM1, GSTT1 [25,88,96]

Spermatogenesis Species, environment GSTM1 [46]

5. Conclusions

The findings reviewed in this article display the role of environmental factors and how they
influence the genome and its regulation, providing the clue that xenobiotics found in the environment
as a result of anthropogenic activities can promote disease by altering gene allele. The study of
gene-environment interactions is relevant in improving the human health, as researchers seek to
determine risk factors that are potentially due to environmental exposures that produce differences in
gene sequences [97]. This would aid in understanding and determining the initiation of the disease
and would enhance the chance of protection against those diseases. Though GSTs’ detoxifying activity
aids in the protection of cells from certain diseases, they are also vulnerable to environmental toxin or
hazard for the gene allele change leading to some life-threatening diseases. Hence, we postulate that
interactions between GST genes and environmental factors play an important role in adverse health
effects among humans. In addition, from recent international projects, there are more cancer SNP
datasets available that haven’t been fully explored yet, and their detailed examination and analyses
in the future can identify more GST SNPs related to various cancers. This can be one step further to
approach the practice of gene therapy (editing) via CRISPR/Cas9 [98–100] or disease treatment via
personalized precision medicine [101] in the future.
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