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Abstract: A phenol-degrading bacterium strain PA was successfully isolated from the effluent of
petrochemical wastewater. Based on its morphological, physiological and biochemical characteristics,
the strain PA was characterized as a Gram-negative, strictly aerobic, nonmotile and short rod-shaped
bacterium that utilizes phenol as a sole carbon and energy source. 16S rDNA sequence analysis
revealed that this strain is affiliated to Acinetobacter calcoaceticus in the group of Gammaproteobacteria.
The strain was efficient in removing 91.6% of the initial 800 mg¨L´1 phenol within 48 h, and had a
tolerance of phenol concentration as high as 1700 mg¨L´1. These results indicated that A. calcoaceticus
possesses a promising potential in treating phenolic wastewater.
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1. Introduction

The massive production and application of phenol in industrial activities make it a major
environmental pollutant in most wastewater various facilities, such as oil refineries, coking plants,
pharmaceuticals and plastic industries [1,2]. Many aquatic organisms, including microorganisms,
plants and fishes, pose a risk of mutagenic, teratogenic and carcinogenic effects in the environments
that contain phenol pollutants. Thus, phenol has been classified as a highly hazardous chemical [3],
and has been included in the list of priority pollutants by the U.S. Environmental Protection Agency [4].
Finding an efficient method to remove phenol effectively has attracted increasing concern for the
environmental remediation and the health welfare of human beings.

Physico-chemical methods, such as ultra violet, ozonation, hydrogen peroxide, Fenton’s
reagent, or a combination of these methods, have been employed to eliminate phenol in industrial
wastewater [5,6]. These methods were effective in removing phenol but were complex and costly.
Hence, the development of improved technologies capable of degrading phenol in the environments
is necessary. Alternatively, the biodegradation of phenols is an environmentally friendly and
cost-effective technology currently preferred to reduce phenol compounds [7].

Based on the theory that a few microorganisms can utilize phenol as the sole source of carbon and
energy [8,9], numerous bacterial species have been isolated and characterized as phenol-degrading
microorganisms [10,11]. These bacterial species include Pseudomonas putida [12], Rhodococcus
erythropolis [13], Bacillus subtilis [14], Bacillus brevis [11], Serratia marcescens [15], Arthrobacter citreus [16],
Alcaligenes faecalis [17], Sphingomonas [18], and Acinetobacter [19–21]. Native microbial species have been
reported to be more adaptive and capable of out-competing non-indigenous microorganisms in the
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remediation of special polluted environments [22]. Therefore, identifying new phenol-degrading
bacteria is necessary for the bioremediation of the phenol-contaminated environments in
various regions.

In the current study, a bacterial strain capable of degrading phenol was isolated from the
petrochemical wastewater in South China. The strain PA was affiliated to Acinetobacter calcoaceticus
in the group of Gammaproteobacteria. The degradation efficiencies of phenol for the strain were
then examined. In addition, the growth limitation of the strain in elevated phenol concentrations
was evaluated.

2. Materials and Methods

2.1. Chemicals, Media and Phenolic Wastewater Sample

All chemicals used were analytical reagents. The minimal salt media (MSM) and Luria-Bertani
(LB) media were used in present study. The MSM contained KH2PO4 0.5 g, K2HPO4 0.5 g, CaCl2 0.1 g,
NaCl 0.2 g, MgSO4¨ 7H2O 0.5 g, MnSO4¨ 7H2O 0.01 g, FeSO4¨ 7H2O 0.01 g, NH4NO3 1.0 g per liter.
The LB media was composed of tryptone 10 g, yeast extract 5 g and NaCl 5 g per liter. Deionized,
distilled water was used for the experiments. The phenolic wastewaster samples along with activated
sludge were collected in a biological treatment system from a petrochemical company in Guangdong,
China. The phenol concentration in the wastewater was approximately 100 mg¨L´1.

2.2. Enrichment and Isolation of Phenol-Degrading Bacteria

The phenolic wastewater samples collected from an oil refinery effluent in South China was
inoculated into flasks containing MSM for the enrichment culture. Phenol was supplemented in the
media as the sole carbon source, and the various concentrations of phenol were 200, 500, 800, 1100,
1400, 1700, 2000 and 2500 mg¨L´1. The enriched culture observed with more biomass (in the flask with
800 mg¨L´1 phenol) was further transferred into a freshly prepared enrichment media with higher
concentrations of phenol (increased from 800 mg¨L´1 to 2500 mg¨L´1). The final enriched media were
diluted serially and spread on LB agar plates supplemented with phenol (500 mg¨L´1). The plates
were incubated at 30 ˝C and single colonies with morphological differences were selected and streaked
on new plates. The resulting isolates were stored at 4 ˝C for further study.

The morphological properties of the isolated colonies were observed by optical microscopy.
The typical physiological and biochemical characteristics of the phenol-degrading bacteria strains,
such as Gram’s staining, motility, starch hydrolysis, and gelatinase [23] were systematically performed
according to Bergey’s manual of determinative of bacteriology [24]. Indole test, methyl red test and
hydrogen sulfide test were also analyzed, as described previously [25].

2.3. Electron Microscopy

SEM (scanning electron microscopy): Bacterial cell morphologies of phenol-degrading strains
were examined by scanning electron microscope S-3000N (Hitachi, Tokyo, Japan). For the preparations,
cells were fixed in 0.1 M phosphate buffer solution (PBS) containing 2.5% (v/v) glutaraldehyde at 4 ˝C
for 5 h. The samples were then washed with PBS three times (10 min each time). For dehydration,
the samples were treated with ethanol serials (30%, 50%, 70%, 90%, and 100%, v/v) for 20 min each.
Dehydrated cells were filtered through a 0.2 µM polycarbonate filter, dried with a CO2-critical point
dryer, coated with gold and observed subsequently by SEM at 20 kV.

TEM (transmission electron microscopy): The strain PA cells were harvested by centrifugation,
washed with distilled water, and then placed onto carbon-coated nickel grids. After the cells were
settled on the grid for 10 min, the excess liquid was drained off with filter paper, and the samples were
air-dried. Subsequently, observations were preformed with a transmission electron microscope H-7650
(Hitachi, Tokyo, Japan) operating at 80 kV.
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2.4. Characterization by 16S rDNA and Phylogenetic Analysis

The genomic DNA of strain PA was extracted as previously described [26]. DNA
was used as template to amplify bacterial 16S rDNA with universal primers 27F
(51-AGAGATTGATCCTGGCTCTG-31) and 1492R (51-GGTTTCCTTGTTACGACAT-31) on a
Mastercycler gradient thermocycler (Eppendorf, Hamburg, Germany). The amplification reaction was
performed in 25 µL volume PCR buffer containing 1.5 mM MgCl2, 0.2 mM of each deoxynucleoside
triphosphate, 1 µM each of the forward and reverse primers. An initial denaturation step of 5 min
at 94 ˝C was conducted, followed by 35 cycles of 94 ˝C for 30 s, 55 ˝C for 45 s and 72 ˝C for 90 s.
The procedure was completed with a final elongation step at 72 ˝C for 10 min. The PCR products
were sequenced, and the sequences were compared with bacterial 16S rDNA sequences in GenBank
using the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool
(BLAST) program [27]. Neighbor-joining phylogenetic trees [28] were constructed using the Molecular
Evolutionary Genetics Analysis (MEGA) program version 4 [29]. The reliability of phylogenetic
reconstructions was estimated through bootstrap analysis (1000 replicates). The 16S rDNA sequence of
the strain PA was available under GenBank accession numbers KT878384.

2.5. Phenol Degradation

The culture of strain PA was prepared and adjusted to an optical density at 600 nm (OD600)
of 1.0, then the final concentration of 2% (v/v) inoculums were inoculated into the flasks containing
MSM media with phenol as sole carbon source. The range of phenol concentrations was increased
from 200 to 1700 mg¨L´1. The flasks were incubated at 30 ˝C with 150 rpm for 2 days. Samples were
collected periodically to measure the biomass and the phenol degradation. The biomass contents were
monitored spectrophotometrically by measuring absorbance at 600 nm. The phenol concentrations
were determined by using 4-aminoantipyrine in the colorimetric assay, according to standard methods
reported by the American Public Health Association [30].

3. Results and Discussion

3.1. Isolation and Characterization of Phenol-Degrading Strains

The wastewater and sludge samples collected from an oil refinery effluent in South China were
inoculated in the medium containing phenol for the enrichment and isolation of phenol-degrading
bacteria. After three weeks of enrichment and one week of strain isolation, a total of 10 isolates were
obtained after 24 h growth on the LB agar plates with 100 µL of a 105–106 fold dilution of enrichment
culture. All these stains utilized phenol as the sole carbon source and energy, and 1 of the 10 isolates
exhibited more growth in phenol-containing media than the others. The outstanding isolate was
named as phenol-degrading strain PA and was applied in the following study.

The strain PA was a Gram-negative and short rod-shaped bacterium with a cell size approximately
1.2 µM in length and 0.85 µM in diameter under the microscope (Figure 1). The biochemical
characteristics of strain PA were determined, and biochemical tests showed that this strain was
a catalase-positive, oxidase-negative bacterium (Table 1). This strain could grow at temperatures range
of 20 ˝C–45 ˝C and a wide range of pH 5–11. The optimum growth was at the condition of 30 ˝C
and pH 8.0.
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Table 1. Morphological and biochemical characteristics among Acinetobacter strains.

Characteristics
Acinetobacter

Strain PA (This Paper) PND-4 [31] PND-5 [31]

Color of colonies white milk white milk white
Morphology short rod ND ND

Motility ´ ND ND
Gram straining ´ ´ ´

Aerobic growth + + +
Starch hydrolysis ´ ´ ´

Catalase activity + + +
Gelatin hydrolysis ´ ´ ´

Indole production + ´ ´

Methyl red + ´ ´

Hydrogen sulfide test + ND ND

ND: not determined.

3.2. Identification and Phylogenetic Analysis

The 16S rRNA gene sequences of PA were sequenced and used to construct a phylogenetic tree
for further analysis. The partial sequence of 16S rRNA gene was a continuous stretch of 1424 bp.
The similarities between the PA sequence and the bacterial sequences deposited in the GenBank
databases were calculated, and the PA sequence showed 99% similarity to that of A. calcoaceticus
PB16. The phylogenetic analysis (1400 unambiguous bases aligned) revealed that the strain was
classified in the Acinetobacter genera, which belong to the Gammaproteobacteria sub-phylum. Based on
the neighbor-joining methods, a phylogenetic tree was constructed which indicated that the closest
relative of strain PA was A. calcoaceticus PB16 (Figure 2). Therefore, the strain PA was identified and
affiliated with A. calcoaceticus.
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The Acinetobacter species were versatile in the biodegradation of various pollutants because of
its highly hydrophobic cell surface which is adhesive to solid surfaces [32]. A. calcoaceticus is known
to be a Gram-negative aerobic bacteria utilizing phenol as the sole source of carbon and energy [8,9].
A. calcoaceticus PHEA-2, isolated from phenol polluted wastewater in China [33], has been used
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for the complete genome analysis because of its high ability to effectively degrade phenol in the
bioremediation of phenol-polluted wastewater [34].

3.3. Phenol Biodegradation by Acinetobacter Calcoaceticus PA

The phenol-degradation characteristics and biomass of A. calcoaceticus PA at various initial
concentrations of phenol (200–2500 mg¨L´1) were determined by monitoring phenol concentration
and cell growth at OD600 periodically. The maximum biomass and degradation of phenol were
observed at the initial phenol concentration of 800 mg¨L´1 (Figure 3). An inhibitory effect showed
that the biomass growth and the degradation of phenol were declined with the elevated initial
phenol concentration higher than 800 mg¨L´1. The removal rates of phenol were above 75% at
the initial phenol concentration ranging from 500 to 1100 mg¨L´1. While there was no growth of
phenol-degrading bacteria when the initial phenol concentration was higher than 2000 mg¨L´1. The
strain could grow on phenol up to a concentration of 1700 mg¨L´1 with the degradation rate of 46.2%.
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The effects of factors such pH values and temperature on the degradation were investigated. The
bacterial strain could grow within a range of pH 5–11 (Figure 4a), and the degradation of phenol
was above 78% in the range of pH 7–9. The optimum pH for phenol degradation was 8.0. These
results showed that the bacterial growth of strain PA and the degradation of phenol (above 70%) were
favored at temperatures of 25 ˝C–37.5 ˝C (Figure 4b). The biomass and phenol degradation reached
the maximal values at a temperature of 30 ˝C, and both values showed only a slight change when the
temperature was increased to 35 ˝C. On the contrary, the phenol degradation declined sharply when
the temperature reached 40 ˝C and over. Therefore, the optimal temperature for the growth of strain
PA was 30 ˝C. These growth conditions of A. calcoaceticus PA for phenol degradation were similar to
those of other Acinetobacter reported previously [18,35,36].

Several Acinetobacter strains have been reported to grow by using phenol as the sole carbon and
energy source. However, suspended A. calcoaceticus cells were partially or fully inhibited at high
phenol concentrations. For example, free Acinetobacter cells could only degrade phenol at an initial
concentration of ď1000 mg¨L´1 [37]. In particular, Adav and Lee noted that A. calcoaceticus isolated
by them was fully inhibited at a phenol concentration >1500 mg¨L´1 [38]. In our study the inhibition
limit of strain A. calcoaceticus PA was as high as the phenol concentration of 2000 mg¨L´1.
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