Supplementary Materials: The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models

Gehendra Mahara, Chao Wang, Kun Yang, Sipeng Chen, Jin Guo, Qi Gao, Wei Wang, Quanyi Wang and Xiuhua Guo

Figure S1. Spatial contiguity weights: Rooks and Queens: (A) Rook’s Weight; (B) Queens’s Weight.
Figure S2. Global Moran’s Spatial Autocorrelation Analysis of Scarlet Fever in Beijing-2013 and 2014. X-axis standardized for each geographic object, where the Y-axis represents the mean standardized neighbor value, and points for various locations are based on the “High-high (H-H)/Low-Low (L-L)” classification scheme. Because the data are Z-scores, the raw data have been standardized so that its mean value is zero. (0, 0) is the value of the cross-hairs of the graph. The values in the graph correspond to standard deviations and the slope of the best-fit (regression) line through the points are proportional to the global Moran’s I for the 6 dataset. The Moran’s I value and significance can be also found in the log output.

Table S1. Results of tests to determine specific fixed effects and spatial dependency.

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Test to Determine the Inclusion of the Model with Spatially Lagged or Spatial Error Auto Correlated Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LM (SARMA)</td>
</tr>
<tr>
<td>Statistics Value</td>
<td>7.5708</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.0027</td>
</tr>
</tbody>
</table>