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Abstract: This study aims to develop a system for assessing the impact of the substances discharged
from concrete production process on six environmental impact categories, i.e., global warming
(GWP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), ozone depletion (ODP),
and photochemical oxidant creation (POCP), using the life a cycle assessment (LCA) method.
To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete
industry by adapting the ISO standards to suit the Korean situations. The proposed LCA
method involves a system that performs environmental impact assessment on the basis of input
information on concrete mix design, transport distance, and energy consumption in a batch plant.
The Concrete Lifecycle Assessment System (CLAS) thus developed provides user-friendly support for
environmental impact assessment with specialized database for concrete mix materials and energy
sources. In the case analysis using the CLAS, among the substances discharged from the production
of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to
amount to 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO4

3− eq/m3, 0.000049 kg-CFC11 eq/m3,
34 kg/m3, and 21 kg-Ethylene eq/m3, respectively. Of these six environmental impact categories
selected for the LCA in this study, ordinary Portland cement (OPC) was found to contribute most
intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix
design with increased prop proportion of recycled aggregate was found to contribute to reducing the
impact in all other categories.

Keywords: concrete; life cycle assessment; environmental impact; South Korea

1. Introduction

The ground granulated blast furnace slag (GGBS) portion of concrete has reduced global warming
potential (GWP), but it continues to have similar or even increased impact on other environmental
impact categories. In contrast, while GWP increased as the recycled aggregate mix ratio increased, the
mix design with increased GWP is still one of the key materials in the construction industry. It releases
a large amount of environmentally hazardous substances into the atmosphere throughout its life cycle
from production to construction, maintenance/management, and demolition/waste management.
Technologies to assess and reduce its environmental impact should hence be developed by studying
its impact under the life cycle aspect.

Energy consumption continues when cement and aggregate raw materials are transported to
concrete manufacturers (batch plants), where concrete is produced, whereby various environmentally
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hazardous substances are released into the atmosphere, leading to air, water, and soil contamination.
Due to the variety of production process and continuous environmental loading throughout its life
cycle, the environmental impact of concrete should be assessed in relation to various environmental
impact categories. In this regard, public institutions in environmentally advanced countries, such as
the Building Research Establishment (BRE) [1] and the Swedish Environmental Management Council
(SEMCO) [2], have developed Product Category Rules (PCRs) on environmental declarations for
the construction materials from production to disposal and are administering relevant certification
systems. Currently, research projects are underway on the concrete-specific international standards
ISO13315-2 (Environmental management for concrete and concrete structures) [3]. Unfortunately,
pertinent research efforts in Korea tend to be focused on GWP and assess only greenhouse gas (GHG)
emissions, paying little attention to the development of PCRs and standards for other environmental
impact categories such as acidification, ozone depletion, and eutrophication. Such a single-category
environmental impact assessment cannot yield any comprehensive concrete-specific assessment results.

In an attempt to improve this drawback, this paper presents a life cycle assessment (LCA)
method tailored to Korean concrete industry based on the existing international standards on LCA,
ISO 14025 [4]/14044 [5], and ISO 21930 [6]. The functional unit and system boundary of the proposed
concrete-specific LCA were defined. The scope of assessment was selected to cover the steps of raw
material extraction, transportation, and concrete production. Analysis was performed on the input and
output materials in each step. Furthermore, applying the proposed concrete LCA method, this study
developed the Concrete Lifecycle Assessment System (CLAS), and performed a case study.

2. Analysis of Previous Studies

As shown in Table 1, this study analyzed the assessment elements and methods of LCA systems
developed at home and abroad. South Korea’s representative LCA systems are TOTAL (Tool for Type 3
labeling And Lca) [7], PASS (Product Assessment for Sustainable Solutions) [8], COOL [9], etc. All of
them perform environmental impact assessment on the basis of the National Life Cycle Index (LCI)
Database [10]. The LCI Database for Korean industry contain standard data established by cataloguing
the average input of natural resources during the entire production process of every product in all
industrial activities, such as primary materials, transport, processing, and disposal, as well as the
corresponding emissions to the environment and waste generation. Additionally, these systems were
developed to enable LCAs of all industrial products, whereby the overall production process flow can
be drafted, life cycle data inventory can be compiled by selecting the LCI database for each unit process,
and impact assessment can be performed for six environmental impact categories. However, they were
analyzed to have limitations of insufficient database for unit loading factor of raw materials necessary
for a concrete LCA and inter-rater inconsistencies in input information calculation methods for the
requirement of standard data collection methods and scope of assessment in different production
sites. Representative LCA systems at international level include ATHENA Impact Estimator [11], Gabi
Build-it [12], BEES (Building for Environmental and Economic Sustainability) [13], and Sima-Pro [14].

The analyses of these domestic and foreign LCA systems revealed that although they had similar
stepwise assessment methods using quantity input per process flow and use of database application,
data input and result analysis were different from system to system. This is because they were
developed for the general application to all industrial products, not specialized for LCA of building
materials. For this reason, collected data and analysis methods can differ according to users even when
the systems are used for the same purposes, which can lead to inconsistent analysis results insufficient
repeatability of results and lack of objectivity in comparative analysis. Therefore, it is necessary to
develop an LCA system specialized for concrete in order for concrete-related experts to easily assess
environmental loading of concrete and actively apply the results to green concrete industry.
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Table 1. Survey of Life Cycle Assessment (LCA) program.

Division Scope of Environmental Impact Assessment

Program Nation GWP AP EP ADP ODP POCP ET HT
Total Korea � � � � � � - -
Pass Korea � � � � � � - -
Cool Korea � - - - - - - -
Bees U.S. � � � � � � � �

Athena Canada � � � � � � � �
Gabi Build-it Germany � - - - - - - -

Sima-Pro Netherlands � � � � � � � �
This research Korea � � � � � � - -

GWP: Global Warming Potential; AP: Acidification Potential; ADP: Abiotic Depletion Potential; EP:
Eutrophication Potential; ODP: Ozone Depletion Potential; ET: Eco Toxicity; POCP: Photochemical Ozone
Creation Potential; HT: Human Toxicity. �: included, -: not included.

3. Life Cycle Assessment for Concrete

3.1. Overview

This study proposed a concrete LCA method including the definition of the goal and scope
of concrete, inventory analysis, and impact analysis in compliance with the LCA method meeting
the ISO standards. Moreover, this study broke down the steps of concrete LCA to determine input
materials and energy intensities of each step for impact analysis. For the life cycle impact assessment
(LCIA), this study selected six environmental impact categories, which are global warming potential
(GWP), acidification potential (AP), eutrophication potential (EP), abiotic depletion potential (ADP),
ozone depletion potential (ODP), and photochemical oxidant creation potential (POCP).

3.2. LCA Process of Concrete

3.2.1. Goal and Scope Definition

The 1 m3 concrete was set as the functional unit on the basis of the main function to facilitate data
management and application. As the system boundary for the concrete LCA (Life Cycle Assessment),
the product stage of concrete was selected, as shown in Figure 1. In addition, concrete production
steps were broken down into raw material extraction, transportation, and manufacturing steps,
and environmental impacts of the elements involved in each step on air and water system were
assessed. Because wastewater is discharged after water treatment within the factory, impact due to
wastewater was not included in the assessment.
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3.2.2. Inventory Analysis

This study analyzed the input and output elements of the energy, raw materials, products,
and waste pertaining to the scope of concrete LCA. Table 2 presents the life cycle index (LCI) database
for input materials and energy sources for concrete production applied to the analysis of such materials
and energy sources. The data provided by the Korea Ministry of Land, Infrastructure and Transport [15],
the Ministry of Knowledge Economy, and the Ministry of Environment were used as the LCI databases
for the input materials and energy sources in the present LCA. Given that LCI data vary from country
to country, the database stemming from the country concerned should be used. However, because
the LCI data for Ground Granulated Blast furnace Slag (GGBS), fly ash, and admixtures are not yet
available in Korea, this study used foreign LCI data of Ecoinvent database [16]. LCI database of
Ground Granulated Blast furnace slag (GGBS) applies the process of industrial by-product recycling.
Thus, it only assesses the environmental impact of processes after the blast furnace slag is discharged
as a form of a by-product. The database is derived from the amount of energy used in cooling, crushing
and handling, after the slag is discharged from the blast furnace of a steel mill.

Swiss ecoinvent database is a reliable database utilized in life cycle assessments conducted in
various fields in Korea. In the future, if a Korean database were developed, comparative analysis can
be conducted with the ecoinvent database.

Table 2. LCI Database.

Division Reference Nation

Raw material

Cement National LCI Korea
Coarse aggregate National LCI Korea

Fine aggregate National LCI Korea
Blast furnace slag Ecoinvent Switzerland

Fly ash Ecoinvent Switzerland
Water National LCI Korea

Chemical admixture Ecoinvent Switzerland

Energy
Electric National LCI Korea
Diesel National LCI Korea

Kerosene National LCI Korea

Transportation Truck National LCI Korea
Train National LCI Korea

3.2.3. Impact Assessment

Impact assessment is divided into four steps: (1) classification, in which the inventory
items extracted from the inventory analysis are assigned to the corresponding impact categories;
(2) characterization, in which the impact of each item classified into its impact category on each category
is quantified; (3) normalization, in which the environmental impact exerted on the environmental
categories are divided into local or global environmental impacts; and (4) weighting, in which relative
importance among the impact categories is determined as shown in Figure 2. According to ISO 14044,
the classification and characterization steps are mandatory assessment steps, and the normalization
and weighting steps may be optionally assessed depending on the assessment purpose. In this
study, assessment was performed for the classification and characterization steps because factors for
concrete-related normalization and weighting suitable for Korean situations are yet to be developed.

The substances discharged from the raw materials and energy sources used for concrete
production contaminate air and water, leading to environmental problems such as global warming,
ozone depletion, photochemical oxidant creation, abiotic depletion, eutrophication, and acidification.
Therefore, this study calculated concrete’s characterization value for each of these six environmental
impact categories on the basis of the standard substance and impact potential unique to the
category concerned. The standard substances and impact potentials for these six environmental
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impact categories were applied in accordance with the respective databases used in the Ministry of
Environment for the eco-labeling of the Environmental Declaration of Products [17]. The classification
and characterization steps of assessment were performed on the basis of the previously selected
LCI database.
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Classification

Classification is done by categorizing and compiling the inventory items according to the
environmental impact categories. By linking the inventory items derived from the LCI database
to the pertinent environmental impact categories and integrating them by category, the environmental
impact of each inventory item can be clearly identified. For example, inventory items for GWP
are GHGs such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), with CO2 as
the standard substance, and their respective classifications based on the Korean LCI database for
OPC are 9.31 × 10−2 kg-CO2/m3, 1.71 × 10−2 kg-CH4/m3, and 1.95 × 10−4 kg-N2O/m3. Table 3
shows example classifications for OPC, coarse aggregate, diesel fuel, and electricity among the
LCI database classification items. CO2, CH4, and N2O belong to the 23 GHGs specified in the
Intergovernmental Panel on Climate Change (IPCC) guidelines [18], of which the standard substance
is CO2. The classification of abiotic depletion potential (ADP) based on the standards provided by
Guinee (1995) [19], takes into account a total of 89 resource items including crude oil, natural gas,
and uranium (U). Acidification potential (AP) varies widely according to regional characteristics and
atmospheric environments, and this study applied the AP index presented by Heijung et al. and
Hauschild and Wenzel [20] applicable to all regional types. A total of 23 inventory items linked to
acidification category, including sulfur dioxide (SO2), hydrogen sulfide (H2S), and hydrogen fluoride
(HF), are expressed in terms of their standard substance SO2. Likewise, the index proposed by
Heijung et al. and Hauschild and Wenzel was applied for the classification of the eutrophication
potential (EP), with phosphate (PO4

3−) used as the standard substance for a total of 11 inventory
items including phosphate (PO4

3−), ammonia (NH3), and nitrogen oxides (NOx). For the ozone
depletion potential (ODP), this study applied the ODP index specified in the World Meteorological
Organization (WMO) [21] for a total of 23 inventory items, including CFC-11, Halon-1301, and CFC-114,
with trichloro-fluoro-methane (CFC-11) as the standard substance. For the photochemical oxidant
creation potential (POCP), a total of 128 inventory items were considered, including ethylene, NMVOC,
and ethanol, with ethylene being the standard substance, thereby applying the POCP index proposed
by Derwent et al. [22] and Jenkin and Hayman [23].
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Table 3. Classification value of Composition material for concrete.

Inventory List
Environmental Impact Categories Composition Material

GWP ADP AP EP ODP POCP Cement Aggregate

Ammonia (NH3) - - � � - - - 6.95 × 10−7

Carbon dioxide (CO2) � - - - - - 9.31 × 10−1 3.40 × 10−1

CFC-11 � - - - � - 2.05 × 10−9 4.02 × 10−13

Ethylene - - - - - � - -
Methane (CH4) � - - - - � 1.71 × 10−2 5.57 × 10−4

Nitrogen oxides (NOx) - - � � - - - 1.38 × 10−6

Sulfur dioxide (SO2) - - � - - � 1.27 × 10−2 4.42 × 10−4

Phosphate (PO4
3−) - - - � - - - 4.22 × 10−8

�: included, -: not included.

Characterization

Characterization is a process of quantifying the environmental loads of inventory items itemized
for each category in the classification step.

In the classification step, inventory items are assigned to their respective environmental impact
categories, but there is a limitation in quantifying the potential impacts of inventory items in common
metrics due to different impact potentials. Category indicator results, i.e., characterization values,
are calculated in the characterization step where the environmental load (=inventory data) of each
inventory item is multiplied with the characterization factor (=impact potential) unique to the impact
category concerned, and the resulting environmental loads thus converted into impacts are aggregated
within each impact category to yield the overall environmental impact of that category. Equation (1)
expresses this process as shown in Appendix A:

CIi = ∑CIi,j = ∑(Input materialj · eqvi,j) (1)

where CIi is the category indicator of the impact category (i), i.e., the total impact of all its inventory
items assigned to the impact category (i), CIi,j is the impact exerted by the inventory item (j) on the
impact category (i), Input materialj is the impact of the j-th inventory item on the impact category (i),
and eqvi,j is the characterization factor of the impact category (i) [24]. Here, impact category (i)
is the Global Warming Potential (GWP), Ozone Depletion Potential (ODP), Acidification Potential
(AP), Abiotic Depletion Potential (ADP), Photochemical Oxidant Creation Potential (POCP) and
Eutrophication Potential (EP). Taking the global warming category of OPC as an example, which
involves three inventory items, CO2 (standard substance), CH4, and N2O, and the GWPs of CH4 and
N2O are 21 kg-CO2/kg-CH4 and 310 kg-CO2/kg-N2O, respectively, as calculated by multiplying their
environmental loads (index data) with the characterization factor of the global warming category of
OPC. The total environmental impacts (=category indicator) on the global warming of OPC can be
then obtained by adding the GWPs of the three inventory items involved. Table 4 shows the results
of the category indicators of the input materials and energy sources during concrete production as
a calculation example performed in this study.

Table 4. Characterization value example of Composition material for concrete.

Composition Material Unit

Environmental Impact Categories

GWP AP EP POCP

kg-CO2eq/Unit kg-SO2eq/Unit kg-PO4
3−

eq/Unit kg-Ethyleneeq/Unit

Cement kg 0.948 0.00128 0.000134 0.00243
Fine aggregate kg 0.00149 0.011 0.00192 0.000107

Fly ash kg 0.015 0.000116 0.0000694 0.0000657
Water kg 0.114 0.000194 0.0000657 0.000000486

Chemical admixture kg 0.0129 0.0000248 0.000319 0.000209
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(1) Global Warming Potential (GWP)

Global warming is a phenomenon that refers to the rising average surface temperature of the
Earth, primarily due to the increasing level of GHG emissions. The standard substance for GWP is
CO2. Global warming causes changes in the terrestrial and aquatic ecosystems and in coastlines due to
rising sea levels.

(2) Ozone Depletion Potential (ODP)

Ozone depletion refers to the phenomenon of decreasing ozone density through the thinning of
the stratospheric ozone layer (15–30 km altitude) as a result of anthropogenic pollutants. This leads
to increased UV exposure of human skin, which implies a potential rise in incidence of melanoma.
The standard substance for ODP is CFCs.

(3) Acidification Potential (AP)

Acidification is an environmental problem caused by acidified rivers/streams and soil due to
anthropogenic air pollutants such as SO2, NH3, and NOx. Acidification increases mobilization and
leaching behavior of heavy metals in soil and exerts adverse impacts on aquatic and terrestrial animals
and plants by disturbing the food web. The standard substance for assessing AP is SO2.

(4) Abiotic Depletion Potential (ADP)

Input materials (natural resources) required for concrete production are classified into renewable
resources, such as groundwater and wood, and nonrenewable resources, such as minerals and
fossil fuels. Abiotic depletion refers to the exhaustion of nonrenewable resources and the ensuing
environmental impacts.

(5) Photochemical Oxidant Creation Potential (POCP)

Photochemical oxidant creation refers to the reaction of airborne anthropogenic pollutants with
sunlight that produces chemical products such as ozone (O3), leading to increase in ground level ozone
concentration causing smog of chemical compounds adversely affecting ecosystems and hazardous to
human health and crop growth. Ethylene is used as the standard substance for POCP.

(6) Eutrophication Potential (EP)

Eutrophication is a phenomenon in which inland waters are heavily loaded with excess nutrients
due to chemical fertilizers or discharged wastewater, triggering rapid algal grow and red tides.
The standard substance for EP is PO4

3−.

4. Concrete Lifecycle Assessment System (CLAS)

4.1. Overview

This study developed the CLAS, a concrete-specific user-friendly LCA system, on the basis of the
assessment technique proposed previously and LCI database.

The scope of assessment is the concrete production process (cradle to gate) deriving the results
from the classification and characterization steps, which are mandatory LCA steps. Additionally,
the scope of assessment was defined as the following six environmental impact categories: global
warming, acidification, eutrophication, ozone depletion, abiotic depletion, and photochemical oxidant
creation [25].

4.2. Program Composition

4.2.1. Raw Material Stage

In this stage, the environmental impact of the raw materials used for concrete production is
assessed. As shown in Figure 3b, upon entering the data for the water-binder (W/B) ratio, fine
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aggregate ratio (S/a), and mix amounts (kg/m3) of OPC, aggregates, mixing water, and admixtures of
the assessment quantity of 1 m3 concrete, CLAS links them to the category indicators of individual raw
materials embedded in the system as database and assesses the environmental impacts of concrete in
six environmental impact categories. Additionally, the replacement ratio (%) of recycled aggregate can
be inputted so that the environmental impacts dependent upon the replacement level can be compared.

4.2.2. Transport Stage

In this stage, the environmental impacts exerted by the transport of the raw materials to the batch
plant are assessed. As shown in Figure 3c, the means of transport and the travel distance inputted
to the program are linked to the category indicators for transport-related variables and the relevant
environmental impacts are assessed.
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4.2.3. Manufacture Stage

In this stage, the environmental impacts related to the energy consumption and waste generation
of concrete production facilities are assessed. As shown in Figure 3d, if the values of annual concrete
production of the given concrete manufacturer are entered along with the energy consumption in the
form of fuel oil, water, and electricity, the energy consumption amounts of the inputted inventory
items are linked to the category indicators of the individual energy sources and waste materials
(solid waste/liquid waste) embedded in the system and assessed.

4.2.4. Assessment Result

As shown in Figure 3f, the LCA results are outputted according to the assessment stages and
input materials, revealing the assessment result for the environmental impact of each inventory item
on the six environmental impact categories investigated (global warming, acidification, eutrophication,
abiotic depletion, ozone depletion, and photochemical oxidant creation), broken down into concrete
production steps (raw material, transport, and manufacture) and emerge source. The result outputs
are displayed in radar charts that provide an intuitive graphical visualization of the magnitudes of
impact of inventory items on each environmental impact category. The assessment results derived
for the six environmental impact categories can also serve as database for Korean Environmental
Product Declaration.

5. Case Study

5.1. Method

The newly developed Concrete Lifecycle Assessment System was applied to a cases analysis
of 1 m3 concrete of 24 MPa strength level stemming from a batch plant located in Gyeonggi-do,
South Korea. The system boundary was selected to be the production step (cradle to gate). In the case
analysis, the impacts of the input materials and energy sources used for concrete production on six
environmental impact categories were analyzed [26,27].

Table 5 outlines the assessment results of the raw material input amounts (kg/m3) required for
the production of 1 m3 concrete (OPC: 297 kg/m3, coarse aggregates: 931 kg/m3, fine aggregates:
896 kg/m3, GGBS: 33 kg/m3, mixing water: 160 kg/m3, and admixtures: 2.6 kg/m3).

The vehicle type and travel distance for the transport of each raw material to the batch plant were
identified. All the raw materials were transported by truck. Mixing water was excluded from the
analysis of the transport step because on-site tap water and sewer were used.

Then, this study investigated the annual energy consumption of electricity and fuel
(diesel/kerosene) required for concrete production and the quantity of produced concrete. As presented
in Table 6, 3.74 kwh/m3 electricity, 0.2 L/m3 diesel fuel, and 0.03 L/m3 kerosene were consumed,
and 3.1 kg/m3 waste materials were generated. Wastewater was excluded from analysis because
this batch plant did not use recycling water for concrete production and discharged wastewater after
on-site effluent treatment.

This study also compared the environmental impacts of different concrete mix designs in which
the OPC and natural aggregates were replaced by GGBS and recycled aggregates, as shown in Table 7.
Four different mix ratios (0%, 10%, 20%, and 30%) of GGBS were compared, and the same mix ratios
were applied to the recycled aggregates as well in compliance with the ordinance for the mandatory
use of recycled aggregate in South Korea.

Table 5. Concrete mix design and transportation distance.

OPC W G S GGBS AE

Mix design (kg/m3) 297 160 931 896 33 2.6
Transport distance (km) 201 - 14 66 122 90

OPC: Ordinary Portland cement W: Water GGBS: Granulated ground blast furnace slag; G: Coarse aggregate
S: Fine aggregate AE: Chemical admixture.
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Table 6. Energy consumption of manufacturing process.

Production of
Concrete (m3/year)

Energy Consumption
Waste (ton/year)

Electric (kwh/year) Diesel (L/year) Kerosene (L/year)

506,739 1,895,631 101,348 15,202 1570

Table 7. Classification of concrete mix design.

Strength (MPa)
Mix Design (kg/m3)

OPC GGBS G R.G S R.S W AE

24

100% 0%

Same
90% 10%
80% 20%
70% 30%

90% 10%

100% 0% 100% 0%

Same
90% 10% 90% 10%
80% 20% 80% 20%
70% 30% 70% 30%

OPC: Ordinary Portland cement W: Water GBS: Granulated ground blast furnace slag G: Coarse aggregate
S: Fine aggregate AE: Chemical admixture; R.G: Recycled coarse aggregate R.S: Recycled fine aggregate.

5.2. Results

Table 8 presents the analysis results. The contributions of concrete with the strength level of
24 MPa to the environmental impact categories of global warming, acidification, eutrophication,
ozone depletion, abiotic depletion, and photochemical oxidant creation potentials (GWP, AP, EP, ODP,
ADP, and POCP, respectively) were assessed to amount to 309 kg-CO2eq/m3, 28.7 kg-SO2eq/m3,
5.21 kg-PO4

3−eq/m3, 0.000049 kg-CFC-11eq/m3, 34 kg/m3, and 21 kg-ethylene-eq/m3, respectively.
In all environmental impact categories, raw materials accounted for over 90%, with the proportions of
transport and production considered insignificant [28].

Figure 4 demonstrates that OPC exerted the greatest impacts on GWP and POCP, accounting
for about 90% and 80%, respectively, of the entire environmental impact categories. This is assumed
to be ascribable to the emissions of sulfur dioxide and sulfuric acid due to the use of dynamites
comprising sulfuric acid, nitric acid, and sulfur when mining limestone and iron ore, which are primary
components of OPC. Furthermore, NOx and PO4

3− are emitted through the power consumption when
crushing the extracted ore and clinker. Clinkering is the work unit that emits the largest amount
of energy input and release of substances with environmental impact. When producing clinker in
a rotary kiln, the temperature inside the kiln is raised to 1000–1450 ◦C, using various fuel sources
such as Bunker C oil, coal, waste tires, and waste plastics, from which substances such as CO2 and
NH3 are emitted. Most of these fuels are based on crude oil, which contains the elements carbon and
hydrogen as primary components and additionally nitrogen, oxygen, and sulfur compounds. Sulfur
and nitrogen compounds also cause corrosion and stench.

Of the raw materials, coarse aggregates show the highest contribution to AP, EP, ODP, and ADP,
accounting for about 65%, 65%, 60%, and 50%, respectively. This is primarily attributable to the
lubricants and dynamites used for logging and rock blasting because their primary components are
coal minerals and sulfuric acid, respectively, which emit substances with high contributions to AP, EP,
and ODP, such as SO2, H2SO4, and NO3. Crushing blasted rocks also involves diesel fuel and electric
power, emitting NH3, NH4+, PO4

3−, NOx, etc. These impact substances emitted by diesel fuel and
electric power have similar tendencies, as similar substances are emitted from crude oil, which is the
main component of diesel fuel, and coal used as fuel for thermoelectric power generation.
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Table 8. Environmental impact assessment result.

Division
Production Stage (Cradle to Gate)

Total
Raw Material Transportation Manufacture

GWP (kg-CO2eq/m3) 3.05 × 102 5.95 × 10−1 2.95 3.09 × 102

AP (kg-SO2eq/m3) 2.87 × 10 7.45 × 10−3 1.16 × 10−2 2.87 × 10
EP (kg-PO4

3−
eq/m3) 5.21 8.76 × 10−4 1.55 × 10−3 5.21

ODP (kg-CFC-11eq/m3) 4.87 × 10−5 2.25 × 10−7 3.86 × 10−10 4.90 × 10−5

ADP (kg/m3) 3.39 × 10 4.08 × 10−3 6.91 × 10−2 3.40
POCP (kg-Ethyleneeq/m3) 9.08 × 10−1 1.89 × 10−4 3.45 × 10−4 9.08 × 10−1
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5.2.1. Analysis of Environmental Impacts According to the Mix Ratio of Admixtures

Figure 5 depicts the analysis results of environmental impacts according to the mix ratio of ground
granulated blast-furnace slag (GGBS) in the concrete of 24 MPa strength level. GGBS is produced
by crushing and mixing blast furnace slag (by-product of iron ore) and natural gypsum, followed
by cooling. All GGBS production facilities were found to be fueled by electricity and diesel, which
emitted as many as 45 substances including CO2, CH4, S, NH3, and NOx. The higher the mix ratio of
GGBS was, the lower the contribution to GWP, AP, ODP, ADP, and POCP became, while the impact on
EP increased. The impacts on GWP and POCP were assessed to be reduced by 10%–28% as compared
to OPC, as the GGBS mix ratio increased from 10% to 20% and 30%. This was analyzed to be ascribable
to the reduced emissions of CO2, CH4, N2O, CO, and S that contribute to GWP and POCP. As the mix
ratio of GGBS increased, impacts on AP, ODP, and ADP were found to be reduced by about 1%–5%
as compared to OPC. This was due to the reduction of NOx, SO2, halon, CFC, soft coal, hard coal,
and crude oil in the GGBS production process compared to OPC, albeit to a negligible degree. Of the
six environmental impact categories, the impact on EP was analyzed to increase by about 1%–2%
compared to OPC, as the mix ratio of GGBS. This is due to the increased emissions of NH4, NH3,
NO3, N2, PO4

3−, which greatly contribute to EP, in the GGBS production process compared to OPC
production [29,30].

5.2.2. Analysis of Environmental Impacts According to the Mix Ratio of Recycled Aggregate

As shown in Figure 6, this study analyzed the environmental impacts according to the mix ratio
of recycled aggregate in the concrete of 24 MPa strength level. Recycled aggregates are produced
with construction wastes from demolition or dismantling of buildings and other structures (roads,
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bridges, etc.) through physical or chemical processes of shredding, separating, sorting, and grain size
optimization. All equipment used for the production of recycled aggregate was found to be fueled by
electricity and diesel, which emitted 45 substances including CO2, CH4, S, NH3, and NOx. The higher
the mix ratio of recycled aggregate was, the lower the contribution to AP, EP, ODP, ADP, and POCP
became, while the impact on GWP increased. The impacts on AP, EP, ODP, and ADP were assessed to
be reduced by about 9%–29% as compared to concrete using only natural aggregates, as the recycled
aggregate mix ratio increased from 10% to 20% and 30%. This was analyzed to be ascribable to the
reduced emissions of NOx, NH3, SO2, NH4, halon, and CFC (from soft coal, hard coal, and crude oil),
which contribute to AP, EP, ODP, and ADP, in the production process of recycled aggregates compared
to natural aggregates. As the mix ratio of recycled aggregate increased, impact on POCP was found to
decrease by about 2%–7% compared to concrete using only natural aggregates. This was due to the
reduction of CH4, CO, S, and C4H10 emission in the recycled aggregate production process compared
to natural aggregates, but the differences were not significant [31,32].

Of the six environmental impact categories, the impact on GWP was analyzed to increase up to
11%–34% compared to concrete with only natural aggregates, as the mix ratio of recycled aggregates
increased. This is due to the increased emissions of CO2, CH4, and N2O, which primarily contribute to
GWP, in the recycled aggregate production process compared to natural aggregates proposed.
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(f) eutrophication potential (EP).

6. Discussion

This study evaluates the environmental impact of mixing recycled aggregate and ground
granulated blast furnace slag on concrete.

Currently, GWP, AP, EP, ODP, ADP, and POCP values, derived using mid-point method applied
throughout the life cycle environmental impact assessment, are not comparable to GWP and ADP
values. Moreover, it cannot be claimed that ODP has less impact on the ecological environment because
its values are lower than those of GWP and ADP.

This is because each environmental impact category has a different unit of measurement and does
not allow for an integrated and comparative analysis.

However, selection and quantitative analysis of high environmentally-performing concrete is
possible using end-point methodology, which is one of the life cycle impact assessment techniques.
End-point methodology utilizes research results of various natural sciences, such as toxicology and
human epidemiology, to compute the degree of damage an environmental impact substance has
on human health and ecology. This is used to determine its weighted value for conversion and
representation as an index or an environmental cost value.
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As a result of analysis using end-point methodology, acidification (AP) had the largest portion of
the combined environmental costs. This indicates that the degree of damage acidification has on human
health and ecosystem is the most significant. In addition, environmental cost of abiotic depletion (ADP)
and photochemical oxidant creation (POCP) were also significant. In contrast, environmental cost of
global warming (GWP) was less than those of AP, ADP and POCP. Thus, using end-point methodology
will be of great importance in subsequent environmental performance evaluations of concrete.

7. Conclusions

In this paper, this study proposed a concrete-specific LCA technique tailored to Korean situations
by adapting the ISO standards that can assess environmental impacts on the bases of the input data on
concrete mix design, means of transport, travel distance, energy consumption in the batch plant, etc.

This study established a database of category indicators (characterization values) of the raw
materials for concrete mix and energy sources required for the concrete production process on the
basis of the standard substance and impact potential (characterization factor) unique to each of the
six environmental impact categories (global warming, acidification, eutrophication, ozone depletion,
abiotic depletion, and photochemical oxidant creation).

The case analysis of 24-MPa concrete performed using the proposed CLAS yielded the assessment
results of 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO4

3− eq/m3, 0.000049 kg-CFC-11 eq/m3,
34 kg/m3, and 21 kg-Ethylene eq/m3 for global warming, acidification, eutrophication, ozone
depletion, abiotic depletion, and photochemical oxidant creation potentials (GWP, AP, EP, ODP, ADP,
and POCP), respectively.

Of the six environmental impact categories, ordinary Portland cement (OPC) exerted greatest
impacts on GWP and POCP, and aggregates on AP, EP, ODP, and ADP.

While GWP decreased in proportion to the increase in GGBS mix ratio in concrete mix design, the
remaining five environmental impact categories showed negligible reduction or increase. In contrast,
as the mix ratio of recycled aggregate increased, GWP increased and AP, EP, ODP, ADP, and
POCP decreased.

These case analysis results allow the assumption that single-category environmental impact
assessment cannot yield any reliable assessment results regarding the eco-sustainability of concrete,
which requires multi-category assessment. The results derived in this study are not representative of
the impact potentials of concrete of all strength levels, and further analyses should be performed for
different strength levels in order to establish the standard range of impact potentials pertaining to
various strength levels.
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Appendix A

(1) Example of GWP assessment for concrete:

Cement GWP = Input material(i) × GWP(i) (Table 4)

= (240 kg/m3 × 0.9 CO2 factor (kg-CO2/kg) = 216 kg-CO2 eq/kg

(2) Example of ODP assessment for concrete:

Cement ODP = Input material(i) × ODP(i) (Table 4)

= (240 kg/m3 × 0.000000017 CFCs factor (kg-CFCs/kg) = 0.00000408 kg-CFCs eq/kg

(3) Example of AP assessment for concrete:
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Cement AP = Input material(i) × AP(i) (Table 4)

= (240 kg/m3 × 0.0128 SO2 factor (kg-SO2/kg) = 3.072 kg-SO2 eq/kg

(4) Example of POCP assessment for concrete:

Cement POCP = Input material(i) × POCP(i) (Table 4)

= (240 kg/m3 × 0.0243 Ethylene factor (kg-Ethylene/kg) = 5.832 kg-Ethylene eq/kg

(5) Example of ADP assessment for concrete:

Cement ADP = Input material(i) × ADP(i) (Table 4)

= (240 kg/m3 × 0.0192 Antimony factor (kg-Antimony/kg) = 4.608 kg-Antimony eq/kg

(6) Example of EP assessment for concrete:

Cement EP = Input material(i) × EP(i) (Table 4)

= (240 kg/m3 × 0.000134 PO4
3− factor (kg-PO4

3−/kg) = 0.03216 kg-PO4
3−eq/kg
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