Supplementary Materials: Childhood Fish Consumption and Learning and Behavioral Disorders

Jenny L. Carwile, Lindsey J. Butler, Patricia A. Janulewicz, Michael R. Winter and Ann Aschengrau

Table S1. Varieties of fish typically consumed by participants in the Cape Cod Health Study reporting childhood (ages $7-12$ years) fish consumption ($\mathrm{N}=1057$), according to mercury levels previously published by the FDA ${ }^{\text {a }}$.

Variety of Fish	N (\%) ${ }^{\text {b }}$	Mercury, Mean ($\mu \mathrm{g} / \mathrm{g}$)	2004 FDA/EPA Consumption Advice ${ }^{\text {b }}$
Low-mercury			Up to 2 meals/week
Fish sticks, frozen	59 (5.6)	$0.003{ }^{\text {c }}$	
Salmon, fresh/frozen	13 (1.2)	$0.02{ }^{\text {d }}$	
Pollock	1 (0.1)	$0.04{ }^{\text {d }}$	
Haddock	62 (5.9)	$0.07{ }^{\text {d }}$	
Bass, striped	17 (1.6)	$0.07{ }^{\text {d }}$	
Flatfish	45 (3.7)	$0.08{ }^{\text {d }}$	
Cod/ scrod	224 (21.2)	0.09 d	
Mullet	1 (0.1)	$0.15{ }^{\text {d }}$	
Halibut	4 (0.4)	0.22 d	
Canned tuna	$\begin{gathered} 569 \\ (53.8) \end{gathered}$	Chunk light: 0.12 de Albacore: $0.35 \mathrm{~d}, \mathrm{e}$	Up to 2 meals/week Up to $1 \mathrm{meal} /$ week
High-mercury			
Bass, freshwater	1 (0.1)	$0.32{ }^{\text {d }}$	
Bluefish	30 (2.8)	$0.35{ }^{\text {d }}$	
Tuna, fresh, all species	2 (0.2)	0.39 d	
Swordfish	29 (2.7)	1.00 d	Avoid

${ }^{\text {a }}$ Mercury levels vary within species according to factors such as size and age of the fish and geographic location; ${ }^{\text {b }}$ Percentages do not sum to 100 due to rounding; ${ }^{\text {c }}$ Fish: what pregnant women and parents should know. Draft updated advice by the FDA and EPA/June 2014 [1]; d U.S. Food and Drug Administration. 2014 [2]; e Variety of canned tuna was not reported.

Table S2. Characteristics of 1179 participants, by typical variety of fish consumed during childhood ($\mathrm{N}(\%))^{a}$.

	Fish Typically Consumed during Childhood			
Characteristic	None $\mathbf{(N = 1 2 2)}$	Low-Mercury Fish $(\mathbf{N}=\mathbf{4 2 5})$	Canned Tuna $\mathbf{(N = 5 7 0)}$	High-Mercury Fish (N = 62)
Year of birth				
1969-1974	$21(17.2)$	$116(29.3)$	$144(25.3)$	$16(25.8)$
1975-1980	$72(59.0)$	$213(50.1)$	$285(50.0)$	$26(41.9)$
1981-1983	$29(23.8)$	$96(22.6)$	$141(24.7)$	$20(32.3)$
Current age (years), mean \pm SD	29.1 ± 3.5	29.9 ± 3.9	29.7 ± 3.9	29.2 ± 3.9
Male	$52(42.6)$	$179(42.1)$	$209(36.7)$	$31(50.0)$
White race	$122(100.0)$	$418(98.4)$	$561(98.4)$	$62(100.0)$
Birthweight (grams), mean \pm SD	3480 ± 537	3470 ± 506	3459 ± 496	3482 ± 458
Preterm (<37 weeks gestation)	$8(6.6)$	$16(3.8)$	$26(4.6)$	$4(6.5)$
Participant was breastfed	$70(57.4)$	$268(64.7)$	$355(63.6)$	$42(68.9)$
Current level of education				
High school graduate or less	$17(13.9)$	$52(12.2)$	$68(12.0)$	$7(11.3)$
Some college	$37(30.3)$	$105(24.7)$	$131(23.0)$	$13(21.0)$
≥ 4 years of college	$68(55.7)$	$268(63.1)$	$370(65.0)$	$42(67.7)$

Table S2. Cont.

	Fish Typically Consumed during Childhood			
	None $\mathbf{(N = 1 2 2)}$	Low-Mercury Fish $(\mathbf{N}=\mathbf{4 2 5})$	Canned Tuna $\mathbf{(N = 5 7 0)}$	High-Mercury Fish (N = 62)
Mother's age at participant's birth (years), mean \pm SD	27.4 ± 4.3	26.9 ± 4.5	27.1 ± 4.5	27.4 ± 4.4
Father's age at participant's birth (years), mean \pm SD	30.1 ± 6.2	29.5 ± 5.7	29.3 ± 5.4	29.8 ± 5.4
Mother's education level at participant's birth				
High school graduate or less	$49(40.2)$	$140(32.9)$	$199(34.9)$	$15(24.2)$
Some college	$41(33.6)$	$140(32.9)$	$172(30.2)$	$18(29.0)$
$\quad \geq 4$ years of college	$32(26.2)$	$145(34.1)$	$199(34.9)$	$29(46.8)$
Father's occupation at participant's birth				
White collar	$59(49.2)$	$212(50.6)$	$296(52.5)$	$36(58.1)$
Blue collar	$39(32.5)$	$139(33.2)$	$167(29.6)$	$16(25.8)$
Other	$22(18.3)$	$68(16.2)$	$101(17.9)$	$10(16.3)$
Mother received prenatal care	121	$421(99.5)$	$563(99.7)$	$61(100.0)$
during participant's gestation	(100.0)			
Maternal smoking during pregnancy			$422(74.7)$	$43(70.5)$
None	$83(68.6)$	$309(73.2)$	$66(11.7)$	$9(14.8)$
Smoked ≤ 10 cigarettes a day	$12(9.9)$	$50(11.9)$	$77(13.6)$	$9(14.8)$
Smoked ≥ 11 cigarettes a day	$26(21.5)$	$63(14.9)$		$316(56.1)$

${ }^{\text {a }}$ Missing: highest education level of participant $(\mathrm{N}=1)$, paternal occupation $(\mathrm{N}=13)$, prenatal care $(\mathrm{N}=8)$, maternal smoking $(\mathrm{N}=10)$, family history of ADD/ADHD $(\mathrm{N}=36)$, family history of learning disabilities $(\mathrm{N}=42)$. Abbreviations: ADD, attention deficit disorder; ADHD, attention deficit hyperactivity disorder; SD , standard deviation.

Table S3. Variety of fish typically consumed during childhood (ages 7-12 years) and odds of learning and behavioral problems ($\mathrm{N}=1179$).

	Fish Typically Consumed during Childhood a			
OR and (95\% CI)	None $\mathbf{(N ~ = 1 2 2)}$	Low-Mercury Fish (N = 425)	Canned Tuna (N = 570)	High-Mercury Fish (N = 62)
ADD/ADHD				
Events/N	$3 / 117$	$31 / 422$	$37 / 566$	$7 / 62$
Model 1: Crude logistic	1.0 (Reference)	$3.0(0.9-10)$	$2.7(0.8-8.8)$	$4.8(1.2-19)$
Model 2: Unadjusted GEE	1.0 (Reference)	$3.1(0.9-11)$	$2.7(0.8-9.3)$	$5.0(1.2-21)$
Model 3: Adjusted GEE a	1.0 (Reference)	$3.3(1.0-11)$	$3.1(0.9-10)$	$4.4(1.1-18)$
Tutoring for reading				
Events/N	$20 / 122$	$69 / 422$	$82 / 565$	$9 / 61$
Model 1: Crude logistic	1.0 (Reference)	$1.0(0.6-1.7)$	$0.9(0.5-1.5)$	$0.9(0.4-2.1)$
Model 2: Unadjusted GEE	1.0 (Reference)	$1.0(0.6-1.7)$	$0.9(0.5-1.4)$	$0.9(0.4-2.1)$
Model 3: Adjusted GEE a	1.0 (Reference)	$1.0(0.6-1.8)$	$0.9(0.6-1.6)$	$1.0(0.4-2.3)$
Tutoring for math				
Events/N	$18 / 114$	$63 / 410$	$77 / 548$	$6 / 62$
Model 1: Crude logistic	1.0 (Reference)	$1.0(0.5-1.7)$	$0.9(0.5-1.5)$	$0.6(0.2-1.5)$
Model 2: Unadjusted GEE	1.0 (Reference)	$1.0(0.5-1.8)$	$0.9(0.5-1.6)$	$0.6(0.2-1.6)$
Model 3: Adjusted GEE a	1.0 (Reference)	$1.0(0.6-1.8)$	$0.9(0.5-1.7)$	$0.6(0.2-1.7)$
Special class placement ${ }^{\mathrm{b}}$				
Events/N	20/122	$53 / 420$	$73 / 567$	$7 / 62$
Model 1: Crude logistic	1.0 (Reference)	$0.7(0.4-1.3)$	$0.8(0.4-1.3)$	$0.6(0.3-1.6)$
Model 2: Unadjusted GEE	1.0 (Reference)	$0.7(0.4-1.3)$	$0.8(0.4-1.3)$	$0.7(0.3-1.7)$
Model 3: Adjusted GEE a	1.0 (Reference)	$0.8(0.4-1.4)$	$0.8(0.5-1.4)$	$0.7(0.3-1.9)$

Table S3. Cont.

	Fish Typically Consumed during Childhood a			
	None $(\mathbf{N}=122)$	Low-Mercury Fish (N = 425)	Canned Tuna $(\mathbf{N}=570)$	High-Mercury Fish (N = 62)
Individualized Education Plan				
Events/N	$9 / 121$	$33 / 421$	$38 / 564$	$4 / 62$
Model 1: Crude logistic	1.0 (Reference)	$1.1(0.5-2.3)$	$0.9(0.4-1.9)$	$0.9(0.3-2.9)$
Model 2: Unadjusted GEE	1.0 (Reference)	$1.1(0.5-2.4)$	$0.9(0.4-2.0)$	$0.9(0.3-3.2)$
Model 3: Adjusted GEE a	1.0 (Reference)	$1.1(0.5-2.5)$	$1.0(0.5-2.1)$	$1.0(0.3-3.3)$
Attend summer school				
Events/N	$11 / 121$	$47 / 421$	$58 / 568$	$7 / 62$
Model 1: Crude logistic	1.0 (Reference)	$1.3(0.6-2.5)$	$1.1(0.6-2.2)$	$1.3(0.5-3.5)$
Model 2: Unadjusted GEE	1.0 (Reference)	$1.2(0.6-2.4)$	$1.1(0.6-2.2)$	$1.2(0.5-3.1)$
Model 3: Adjusted GEE a	1.0 (Reference)	$1.3(0.6-2.5)$	$1.2(0.6-2.4)$	$1.3(0.5-3.4)$
Repeat a grade				
Events/N	$9 / 120$	$56 / 421$	$63 / 565$	$4 / 62$
Model 1: Crude logistic	1.0 (Reference)	$1.9(0.9-4.0)$	$1.5(0.7-3.2)$	$0.9(0.3-2.9)$
Model 2: Unadjusted GEE	1.0 (Reference)	$1.9(0.9-4.0)$	$1.6(0.7-3.2)$	$0.9(0.2-2.9)$
Model 3: Adjusted GEE a	1.0 (Reference)	$2.1(1.0-4.3)$	$1.7(0.8-3.5)$	$0.9(0.3-3.1)$
High school degree or less				
Events/N	$17 / 122$	$52 / 425$	$68 / 569$	$7 / 62$
Model 1: Crude logistic	1.0 (Reference)	$0.9(0.5-1.6)$	$0.8(0.5-1.5)$	$0.8(0.3-2.0)$
Model 2: Unadjusted GEE	1.0 (Reference)	$0.8(0.5-1.5)$	$0.8(0.5-1.4)$	$0.8(0.3-2.1)$
Model 3: Adjusted GEE a	1.0 (Reference)	$1.0(0.5-1.8)$	$1.0(0.5-1.8)$	$1.2(0.4-3.0)$

${ }^{\text {a }}$ Models adjusted for maternal age at birth ($\leq 21,22-25,26-29, \geq 30$ years), maternal education at time of birth (high school diploma or less, some college, 4 -year college grad or higher), and participant race (white, other), sex, year of birth (1969-1974, 1975-1980, 1981-1983), and combined gestational age/birthweight (preterm or $<2500 \mathrm{~g}$, term and $\geq 2500 \mathrm{~g}$); ${ }^{\text {b }}$ Assigned to a special class because of academic or behavioral problems; Abbreviations: ADD: attention deficit disorder; ADHD, attention deficit hyperactivity disorder; CI, confidence interval; GEE, generalized estimating equation; OR, odds ratio.

References

1. U.S. Food and Drug Administration. Fish: What Pregnant Women and Parents Should Know. Draft Updated Advice by the FDA and EPA. Available online: http://www.fda.gov/Food/Foodbornelllness Contaminants/Metals/ucm393070.htm (accessed on 18 June 2014).
2. U.S. Food and Drug Administration. A Quantitative Assessment of the Net Effects on Fetal Neurodevelopment from Eating Commercial Fish (As Measured by IQ and also Early Age Verbal Development in Children); Center for Food Safety and Applied Nutrition: Silver Spring, MD, USA, 2014.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
