
International  Journal  of

Environmental Research

and Public Health

Article

A Method for Formulizing Disaster Evacuation
Demand Curves Based on SI Model
Yulei Song and Xuedong Yan *

MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, School of Traffic
and Transportation, Beijing Jiaotong University, Beijing 100044, China; 14120879@bjtu.edu.cn
* Correspondence: xdyan@bjtu.edu.cn; Tel.: +86-184-0160-6819

Academic Editor: Suren Chen
Received: 6 August 2016; Accepted: 27 September 2016; Published: 10 October 2016

Abstract: The prediction of evacuation demand curves is a crucial step in the disaster evacuation
plan making, which directly affects the performance of the disaster evacuation. In this paper,
we discuss the factors influencing individual evacuation decision making (whether and when to
leave) and summarize them into four kinds: individual characteristics, social influence, geographic
location, and warning degree. In the view of social contagion of decision making, a method based on
Susceptible-Infective (SI) model is proposed to formulize the disaster evacuation demand curves to
address both social influence and other factors’ effects. The disaster event of the “Tianjin Explosions”
is used as a case study to illustrate the modeling results influenced by the four factors and perform
the sensitivity analyses of the key parameters of the model. Some interesting phenomena are found
and discussed, which is meaningful for authorities to make specific evacuation plans. For example,
due to the lower social influence in isolated communities, extra actions might be taken to accelerate
evacuation process in those communities.

Keywords: evacuation demand curves; social influence; Susceptible-Infective model; sensitivity
analyses; Tianjin Explosions

1. Introduction

The past decades have witnessed an increasing number of disasters which have caused huge losses
of life and property [1]. Hurricane Katrina in 2005 resulted in more than 10.5 billion dollars of damage.
The WenChuan earthquake killed around 70 thousand people and caused direct economic losses of
8451 billion Yuan. To prevent or at least minimize the losses, an efficient evacuation plan is regarded
to be crucial [2]. In the whole process of evacuation planning, the evacuation demands estimation
is considered a key step. Lacking an accurate prediction of the evacuation demands, large traffic
congestions might happen in disaster evacuations [3,4]. In general, the times at which people begin
to evacuate can be expressed as an evacuation response curve or an evacuation demand curve [5–7].
However, it is hard to predict evacuation demand curves since the individual evacuation-decision
making (whether and when to evacuate) is influenced by many factors (i.e., individual characteristics,
location, and social influence). In fact, it is regarded as a socio-psychological process and may be easily
influenced by other people, which is called a “herd behavior” [8]. In spite of the qualitative insights
from many social science studies about the impact of social influence on socio-psychological process,
such as epidemics spreading, rumors spreading, and diffusion of innovation, models formulizing
evacuation demand curves with the perspective of social contagion in decision making are lacking [9].
This study aims to develop a model taking into account both social influence and other important
factors like individual characteristics, location, and warning degree to formulize the disaster evacuation
demand curves.
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1.1. About the Disaster Evacuation Demand Curve

The disaster evacuation demand curve is used to describe the time distribution of evacuation
demand. The point of the curve represents the cumulative evacuation demand as a function of time.
Predicting this curve is regarded as an important step for the disaster management authorities to make
an evacuation plan. However, it is not an easy job to predict this curve, as the individual evacuation
decision making is a complex process which is influenced by many aspects [10]. Fortunately, previous
studies have focused on the relationship between the individual decision making and influencing
factors, which can be roughly summed up in four types: individual characteristics, social influence,
geographical location, and warning degree. It was found that the evacuation decision making was
related with individual characteristics like gender, race, age, or children in the household [11–13].
Specifically, the families with a child or elder were considered to be more likely to leave their home
when they are exposed in risk [14,15]. Similarly, home ownership, the number of individuals in the
household, and income levels were found to be significantly related with mobilization times, which
were regarded as an important component of the time of departure for the evacuees [16]. Moreover,
the individual risk perception was argued as an important factor affecting evacuation decision making
and people who have perceived a high risk prefer to leave [15,17]. Besides individual characteristics,
the geographical location was reported to affect the evacuation decision [18]. It was found that people
who live close to threats or have access to evacuation resources were more likely to evacuate [5,19,20].
Additionally, the evacuation warning was found to be an important variable affecting public response
and those who receive the warning information in the risk areas are more than twice as likely to
evacuate [15]. The warning information (like wording and content of evacuation orders) can influence
not only the evacuation demand, but also the urgency at which people leave [21,22].

1.2. Social Influence on Individual Evacuation Decision

In recent studies, researchers began to emphasize the role social influences played in individual
evacuation decision making [23–25]. In social psychology, people′s emotions, opinions, or behaviors
are easily influenced by others, which can be expressed as herd behavior. Herd behaviors were found
to occur frequently in everyday decisions based on learning from the information of others [8,26,27].
There is no exception in the individual evacuation decision making. Evidence was found in previous
studies demonstrating that social influence plays a key role on the decision to evacuate or not [24,28–31].
This social influence is always from people you contact like friends or relatives. Without enough
information about the disaster, people’s risk perceptions are always based on the evacuation decisions
of others that they contact [21]. Moreover, people are more likely to evacuate when they find most of
friends or relatives contacted have decided to leave even if their initial response were to remain [14].
With social influence, in many actual evacuations, it has been observed that a large number of people in
low risk areas evacuated along with evacuees from high risk areas, which is often referred as shadow
evacuation [32,33].

To describe the role of social influence in socio-psychological processes, Susceptible-Infective (SI),
Susceptible-Infective-Recovered (SIR), and Susceptible-Infective-Susceptible (SIS) models used several
differential equations to depict the social influence in disease spread process [34,35]. Daley and Kendall
(DK) model and Maki and Thompson (MT) model used several simple multiplication formulas to
formulize the rumor spreading process with social influence [36,37]. Threshold, cascade, and voters
models were used to describe the diffusion of innovation. However, studies developing models with
social influences to explicitly depict evacuation decision making process are lacking [2,9,25].

1.3. Disaster Evacuation Demand Curve Modeling

Numerous studies have been focused on the topic of evacuation-plans modelling and models’
validation issues [17], models for evacuation demand curves are relatively few. Early approximations
of demand curves were based on empirical evidence, stated intention surveys, planner judgment,
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and simulation of the warning information diffusion [5,38]. In the 1980s, S-curves (named for their
sigmoid shape) were used to predict evacuation demand curves [39,40]. In the S-curves, the evacuation
rate (the percentage of people who choose to evacuate) starts slowly, then increase rapidly, and finally
slow and gradually close to zero. Based on behavioral analyses of past disasters, the S-curves can
be classified as rapid, medium, and slow types [41]. With the advantages of mathematically simple
expression and roughly matching the data from a typical evacuation, the S-curves have been widely
used by researchers [41,42]. Nevertheless, some disadvantages also exist in S-curves: it is too simplistic
to formulize a mechanism of people’s evacuation decision making toward disaster and the selection of
demand curve (rapid, medium, and slow types) is subjective [43].

To remedy the drawbacks in S-curves, a sequential logit model based on empirical data was
proposed in 2004 [43,44]. In 2007, Fu et al. [45] selected several predictor variables for logistic
regression and calculated corresponding coefficients using data from Hurricane Floyd. Although the
sequential logit model considers characteristics of disasters and geographic locations, it is hard
to effectively explain the significant power of social influence on individual behaviors toward the
evacuation decision.

Recently, with social science studies increasing, some researchers began to describe the evacuation
demand curves in the view of social science. A threshold model was used to describe the evacuation
decision making process [25]. Moreover, a probabilistic model incorporating both individual
characteristics and social influence were also proposed based on a social network [2]. These studies
focused on people’s evacuation decision making at individual levels through an underlying social
network and how solutions would be more difficult to get when a large population was considered as
the subject in models.

Overall, models are lacking that can fundamentally formulize an evacuation decision making
process influenced by many factors, especially by social influence.

1.4. Motivation and Objective of This Study

In this paper, we aim to develop a model to mathematically depict the disaster evacuation demand
curves with the perspective of social contagion of decision making and discuss how the potential factors
influence the curves. Inspired by social influence mechanisms of SI model in the epidemic-spreading
process, an improved model with an emphasis of social influence is developed, which can also
effectively capture other factors for deducing the evacuation decision making process. The model is
developed not at an individual level, but from an aspect of evacuation group and the group can be
selected as a community or a set of people with homogeneous individual characteristics in a risk area.
The evacuation demand curves in different groups are discussed in this paper. The rest of the paper is
organized as follows. In Section 2, we develop the susceptible-infective model framework for disaster
evacuation demand curves and formulize the effect of all factors on the curves. In Section 3, we propose
a method for parameter sensitivity analyses. In Section 4, the Tianjin Explosion is used as a studying
case for the model application. Sections 5 and 6 are the conclusion and discussion, respectively.

2. Model Development for Evacuation Demand Curves Estimation Based on SI Model

2.1. Model Framework

In this paper, the evacuation is supposed to be an irreversible monotone process and once an
individual decides to evacuate he/she would remain evacuating. Based on whether to decide to
evacuate or not, people can be in a corresponding state of either evacuated (have decided to evacuate)
or non-evacuated (have not decided to evacuate). The evacuation decision making is supposed
to be influenced by four factors: individual characteristics, social influence, geographical location,
and warning degree as is shown in the Figure 1.



Int. J. Environ. Res. Public Health 2016, 13, 986 4 of 21
Int. J. Environ. Res. Public Health 2016, 13, 986  4 of 22 

 

 
Figure 1. Four factors influencing individual evacuation decision making. 

The SI model, a simple epidemic model, was initially created to explain the epidemic spreading 
process by Kermack, W.O. and McKendrick, A.G.A in 1927 [34]. In this model, a fixed population (Q) 
is taken into consideration with only two compartments: Susceptible and Infective. S(t) and I(t) 
represent respectively the percentage of “Susceptible” and “Infective” people at time t. It is assumed 
that every person contacts λ  people every day and the susceptible people will be infected once 
contacted by infected people. The spreading process of epidemic diseases can be easily expressed: 

0( ) ( ) 1 (0)dQ QSI S I I
d

λ= + = =
I

t I t
ｔ

 (1) 

It can be shown that Equation (1) is a logistic model and the solution is: 

λ−
=

+ −
I t

0

1( )
11 ( 1)e t

I

 
(2) 

Inspired by social influence mechanisms of SI model in the epidemic spreading process, the herd 
behavior in the disaster evacuation decision making process can be described well by the SI model 
framework or a differential equation as there are many similarities between them. On the one hand, 
the contacts in epidemic spreading also happened in the evacuation decision making by an 
underlying social network. On the other hand, there are also only two states (evacuated and 
unevacuated) in the evacuation decision making process. With the four factors into consideration, 
the disaster evacuation decision making process can be described by a modified SI model that has 
changed or added additional variables as shown in Equation (3). 

1 2 1 2
dI g g f f
dt

γ  + + +  ＝  (3) 

Where I(t) represents the total number of evacuated people at time t. The population is assumed to 
be fixed as Q. γ  is the effective transformation rate which is assumed to be related only with 

individual characteristics. 1g , 2g , 1f , and 2f  respectively represent the social influence inside and 

outside of the community, geographical location, and warning degree. Similarly, γ 1g , γ 2g , γ 1f

Risk 
Source

Community 7

Community 2

Community 3

Community 4

Community 5

Community 6

Community 1

Community 8

Evacuated people
No-evacuated people

Impressio

Neutral

Standpat
Categorize

According to individual characteristics

With different degrees of warning information issued

Figure 1. Four factors influencing individual evacuation decision making.

The SI model, a simple epidemic model, was initially created to explain the epidemic spreading
process by Kermack, W.O. and McKendrick, A.G.A in 1927 [34]. In this model, a fixed population (Q) is
taken into consideration with only two compartments: Susceptible and Infective. S(t) and I(t) represent
respectively the percentage of “Susceptible” and “Infective” people at time t. It is assumed that every
person contacts λ people every day and the susceptible people will be infected once contacted by
infected people. The spreading process of epidemic diseases can be easily expressed:

Q
dI
dt

= λQSI S(t) + I(t) = 1 I(0) = I0 (1)

It can be shown that Equation (1) is a logistic model and the solution is:

I(t) =
1

1 + (
1
I0
− 1)e−λt

(2)

Inspired by social influence mechanisms of SI model in the epidemic spreading process, the herd
behavior in the disaster evacuation decision making process can be described well by the SI model
framework or a differential equation as there are many similarities between them. On the one hand,
the contacts in epidemic spreading also happened in the evacuation decision making by an underlying
social network. On the other hand, there are also only two states (evacuated and unevacuated) in the
evacuation decision making process. With the four factors into consideration, the disaster evacuation
decision making process can be described by a modified SI model that has changed or added additional
variables as shown in Equation (3).

dI
dt

= γ [g1 + g2 + f1 + f2] (3)

where I(t) represents the total number of evacuated people at time t. The population is assumed to be
fixed as Q. γ is the effective transformation rate which is assumed to be related only with individual
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characteristics. g1, g2, f1, and f2 respectively represent the social influence inside and outside of
the community, geographical location, and warning degree. Similarly, γg1, γg2, γ f1, and γ f2 means
increasing the number of evacuated people in unit time respectively by the four aspects above.

2.2. Formulization for Effect of Factors on Disaster Evacuation Demand Curves

2.2.1. Individual Characteristic

The individual characteristics are one kind of important factor affecting the evacuation decision
making. The individual characteristics have many aspects that can influence the evacuation decision
like gender, age, individual risk belief, family member, income, having a car, knowledge about threat,
evacuation experience, individual physical condition (like injuries present), and so on. To reflect
the influence of individual characteristics, people are divided into three types (“Impressionable”,
“Neutral”, and “Standpat”) in this paper. As the name implies, “Impressionable” means the people
who are most easily influenced by social influence, geographical location, and warning degree during
the process of evacuation decision making while “Standpat” is on the contrary. It should be pointed
that there are many ways to categorize people in statistics or fuzzy mathematics. In this paper,
a method of multiple discriminate analysis is applied in people categorization. Specifically, six variables
(age, risk belief, family member structure, evacuation experience, income, and gender) were chosen as
explanatory variables and “Impressionable”, “Neutral”, and “Standpat” were chosen as explained
variables based on degrees of people’s evacuation willingness.

With the effect of individual characteristics, Equation (3) can be modified as Equation (4):

dI
dt

= γk [g1 + g2 + f1 + f2] k = 1, 2, 3 (4)

where γ1, γ2 and γ3 respectively represent effective transformation rates for the “Impressionable”,
“Neutral”, and “Standpat” types. Obviously, γ1 > γ2 > γ3. It should be pointed that all parameters
other than gamma in Equation (4) are assumed to be type-independent in this paper.

In this paper, it is assumed that there are N communities in risk areas. So the total people are
divided into 3 × N groups. With the two evacuation states, the total people in the risk area can
be expressed:

Q =
N

∑
j=1

Qj =
3

∑
k=1

Qk =
N

∑
j=1

3

∑
k=1

Qk
j =

N

∑
j=1

3

∑
k=1

(Sk
j + Ik

j ) (5)

I = ∑
k

Ik = ∑
k

∑
j

Ik
j = ∑

j
Ij (6)

S = ∑
k

Sk = ∑
k

∑
j

Sk
j = ∑

j
Sj (7)

where Qk
j , Ik

j , and Sk
j respectively represent the numbers of total, evacuated, and unevacuated people

in type k in community j. Qk, Ik, and Sk respectively represent the number of total, evacuated,
and unevacuated people in type k. Qj, Ij and Sj respectively are the number of total, evacuated,
and unevacuated people in community j. Function Ik

j ,Ij, and I are the evacuation demand curves in
respective groups.

2.2.2. Social Influence

Given the social influence, it is obvious that an evacuee is more likely to evacuate when most
of his neighbors or people he contacts decide to evacuate. In other words, the individual evacuation
decision can be influenced by the present evacuation state of society. However, among all of the people
who the evacuee may contact in any communities, the people who live in the same community may



Int. J. Environ. Res. Public Health 2016, 13, 986 6 of 21

have a greater influence than those from other communities [46]. Based on this point, the evacuation
state inside and outside community are both taken into consideration in this paper.

Evacuation State Inside the Community

As is shown in Figure 1, every community can be seen as a small network. Every person is like
a vertex and the contact with other people inside community is like a side of the network. So the
contact frequency of an individual per unit time in the community is like the degree of a node in the
network. In a random graph, the node degrees have been traditional assumed to follow a Poisson
distribution [47], which indicates that most nodes have approximately the same number of links
(close to the average degreeλ) as Equation (8).

P(k) =
λ

k!
e−λ, k = 0, 1... (8)

In a community, the contact frequency of an individual per time can also be regarded to follow
a Poisson distribution. For simplicity, it is assumed to equal to λ0 (the expectation of the Poisson
distribution) in this paper.

With the effect of evacuation state inside the community, Equation (4) can be further modified as
Equation (9):

dIk
j

dt
= γk

[
λ0

Sk
j

Qj
Ij + g2 + f1 + f2

]
(9)

where λ0 is the contact frequency of an individual per time and γkλ0
Sk

j
Qj

means that if every evacuated

people of Community j contacts λ0 people of Community j over unit time, there are an average γkλ0
Sk

j
Qj

unevacuated people (in Community j and type k) who will change their mind to evacuate.

Evacuation State Outside the Community

Obviously, contacts also exist between communities. In this paper, the contact frequency per time
is assumed to be only related with the geographic distance between two communities. In general,
there is a negative correlation between the contact frequency and the geographic distance, which can
be described with a normal distribution probability density function in Equation (10).

λ(d) = λ0
α√
2πσ

e−
d2

2σ2 ∝
1
d

λ0, α, σ, d ≥ 0 (10)

where ∝ represents a correlation. For example, A ∝ B means A is in positive correlation with B and
A ∝ 1

B means A is negative correlation with B. So, λ(d) ∝ 1
d means that λ(d) is negative correlation

with d.
In addition to the contact frequency, the effect of other communities on an evacuation decision is

also related with the risk level of those communities. In a simple example, an unevacuated resident
may be more likely to evacuate when he receives a leaving message from an evacuated resident in
a low-risk community than one in a high-risk community. Thus, a negative correlation is existed
between the influence (l) of other communities and the risk level (r). Usually, the risk level (r) is
negatively correlated with the distance (d) from the community location to the risk source. Therefore,
the influence (l) of other communities should be positively related with the geographic distance (d),
which can be substituted by a function h(d) in Equation (11).

l(r) ∝
1
r

r(d) ∝
1
d

⇒ h(d) = l(r(d)) ∝ d (11)
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where l(r) is the influence function about risk level r and r(d) is the risk level function about the
distance to the risk resource d, which derives the final influence functionh(d).

So the influence of the evacuation state outside the community on an evacuation decision can be
described as Equation (12):

dIk
j

dt
= γk

[
λ0

Sk
j

Qj
Ij +

Sk
j

Qj
∑
k

∑
i 6=j

Ik
i λ(di,j)h(di,0) + f1 + f2

]

= γk

[
λ0

Sk
j

Qj
Ij +

Sk
j

Qj
∑
k

∑
i 6=j

Ik
i λ0

α√
2πσ

e−
di,j

2

2σ2 h(di,0) + f1 + f2

] (12)

where di,0 is the distance from community i to the risk source.

2.2.3. Geographical Location

In addition to the contact frequency in Section 2.2.2, the geographical location also influences the
risk level. In most disasters, the risk level is negatively related with the distance to the risk source.
In other words, the further away from the risk source where a resident lives, the lower risk that
he/she will receive. In this paper, without consideration of disasters changing over time, the effect of
geographical location on the evacuation decision is assumed to be weakened. Based on assumptions
above, the influence function of geographical location should decrease monotonically with time and
the distance to the risk source as follows:

f (dj,0, t) ∝
1

dj,0
,

1
t

j = 1, 2, ..., N; ∀t (13)

With the effect of geographical location, Equation (12) can be extended as below:

dIk
j

dt
= γk

[
λ0

Sk
j

Qj
Ij +

Sk
j

Qj
∑
k

∑
i 6=j

Ik
i λ(di,j)h(di,0) + Sk

j f (dj,0, t) + f2

]
(14)

the expression shows that γkSk
j f (dj,0, t) number of unevacuated people (in type k in community j) will

change minds to evacuate per time influenced by the location at time t.

2.2.4. Warning Degree

With the great power of warning information on evacuation demands, almost all of cities in the
world have developed warning system to guide people evacuation under emergency [10]. The issue of
evacuation warnings (like “blue”, “yellow”, “orange”, and “red”) can directly influence evacuation
decision making. In most cases, people’s perceived risk levels are mainly from the warning degree.
For example, a “red” warning degree means that people are more likely to be heavily threated by the
disaster and their perceived risk level will be very high. In fact, there are many warning types and,
in general, the types are not same in different countries. For an example, there are four warning levels
(“blue”, “yellow”, “orange”, and “red”) for hurricane warnings in China; in America, there are five
types including a “white” warning level. Those warning types are considered to be able to directly
reflect the danger level of disasters and there are also other forms of warning types like various
evacuation orders which can also reflect the danger level of disasters. An evacuation order that people
within 5 km to the risk source are needed to evacuate can be seen as a higher degree of warning than
one that people within only 1 km are need to evacuate. No matter what the warning types are, the
role warning degree plays in individual evacuation decision making is the same. In general, like the
injection effect in patients or the weakening social effect of many policies over time, we assume that the
effect of evacuation warning is also weakened with time before the next degree of warning information
coming. To describe the effect, we build an influence function of warning information, which is
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monotonically decreasing with time in every warning degree. When several different degrees of
warning information were issued respectively in a disaster evacuation process, the influence function
of warning degrees in this evacuation can be a piecewise function consisting of several monotonically
decreasing influence functions of warning information.

For a case that three kinds of warning degrees are published at different instants of time
(the “yellow”, “orange”, and “red” warning degrees are issued at t1, t2, and t3 in sequence) in
the process of an evacuation, the influence function of warning degree can be easily depicted in
Equation (15). Equation (16) is used to reflect the different influences caused by the three degrees of
warning information and Figure 2 shows an example for the degradation patterns in the effects of the
three warning degrees over time.

w(t) =



b0 0 ≤ t < t1

a1
t + b1 t1 ≤ t < t2

a2
t + b2 t2 ≤ t < t3

a3
t + b3 t3 ≤ t


(15)

a1 < a2 < a3; b0 <
a1

t1
+ b1 <

a2

t2
+ b2 <

a3

t3
+ b3 (16)
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In fact, the effect of warning degree on individual evacuation decision is always discussed with
warning message dissemination technique. Warning dissemination is regarded to be achieved through
both “formal systems” (from official warning through TV, radio, telephone, sirens, and door-to-door
knocking) and “informal systems” (personal notification from neighbors, friends, and relatives) [48,49].
In this paper, we do not add a function to reflect the effect of warning message dissemination technique
because this effect can be expressed in the function w(t) by changing the shape of the function.

2.3. The Complete Model for Formulizing a Disaster Evacuation Demand Curve

Taking into consideration of the four factors above, the complete model for formulizing disaster
evacuation demand curves based on the SI model is shown as follows:

dIk
j

dt
= γk

[
λ0

Sk
j

Qj
Ij +

Sk
j

Qj
∑
k

∑
i 6=j

Ik
i λ(di,j)h(di,0)+Sk

j f (dj,0, t) + Sk
j w(t)

]
(17)

k = 1, 2, 3; j = 1, 2, ..., N; ∀t
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h(d) = l(r(d)) ∝ d f (d, t) ∝
1
d

,
1
t

λ(d) = λ0
α√
2πσ

e−
d2

2σ2 γ1 > γ2 > γ3 > 0 (18)

Qk = ∑
j

Qk
j Qj = ∑

k
Qk

j Qk
j = Sk

j + Ik
j k = 1, 2, 3; j = 1, 2, ..., N; ∀t (19)

Qk
j , Sk

j , Ik
j , di,j ≥ 0 k = 1, 2, 3; i, j = 1, 2, ..., N; ∀t (20)

Sk
j (0) = Sk

j,0 Ik
j (0) = Ik

j,0 k = 1, 2, 3; j = 1, 2, ..., N (21)

In fact, Equation (17) contains 3*N differential equations, which reveals the mechanism
of the model. Constraints (18) define some necessary properties of functions like the warning
influence function.

Unfortunately, it is hard to get the analytic solutions of Equation (17), though Function h(d) and
f (d, t) are both easily depicted as a linear function. However, it is easy to get the numerical solution
with an iterative algorithm.

3. Method for Parameter Sensitivity Analyses

Generally, a sensitivity analysis is a crucial step to study how the variation in the output of a
model can be apportioned to different sources of variations. In this paper, the sensitivity analysis
aims to examine the variation of total evacuation demand curve caused by the changing parameter
values within a certain range. To describe the variation, the values of the curve in five moments
(t1, t2, t3, t4, t5) are used as output variables in this sensitivity analysis. So, the output values
should be a five-dimensional vector. Equations (22) and (23) are the output with a set of parameters
β = (β1, β2, ..., βm) and a set of basic reference parameters β∗ = (β1

∗, β2
∗, ..., βm

∗).

O = P(β1, β2, ..., βm) = (Iβ(t1), Iβ(t2), Iβ(t3), Iβ(t4), Iβ(t5)) (22)

O∗ = P(β1
∗, β2

∗, ..., βm
∗) = (I∗(t1), I∗(t2), I∗(t3), I∗(t4), I∗(t5)) (23)

In this paper, the single factor sensitivity analysis is used and the output is shown in the
Equation (24) with only one parameter changed:

Oβk (βk) = P(β∗1, ..., β∗k−1, βk, β∗k+1, ..., β∗13) = (Iβk (t1), Iβk (t2), Iβk (t3), Iβk (t4), Iβk (t5)) (24)

So, we define the sensitivity function (SF) using a dimensionless method:

S(βk) , lim
∆βk→0

∣∣∣∣∣
∣∣∣∣∣∆Oβk

Oβk

∣∣∣∣∣
∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∆βk

βk

∣∣∣∣∣∣∣∣ = lim
∆βk→0

∣∣∣∣∣
∣∣∣∣∣Oβk (βk + ∆βk)−Oβk (βk)

Oβk

∣∣∣∣∣
∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∆βk

βk

∣∣∣∣∣∣∣∣ (25)

where S(βk) is the sensitivity value about parameter βk and a higher value indicates a higher sensitivity
of model about the parameter. ||.|| is a norm in mathematics, which represents the size or length of the
vector. In this paper, ||.|| is defined below, which is like the “Euclidean norm”.

∣∣∣∣∣∣∆Oβk
Oβk

∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣Oβk
(βk+∆βk)−Oβk

(βk)

Oβk

∣∣∣∣∣∣∣∣ ,
(∣∣∣∣ Iβk+∆βk

(t1)−Iβk
(t1)

Iβk
(t1)

∣∣∣∣2 + ∣∣∣∣ Iβk+∆βk
(t2)−Iβk

(t2)

Iβk
(t2)

∣∣∣∣2 +

∣∣∣∣ Iβk+∆βk
(t3)−Iβk

(t3)

Iβk
(t3)

∣∣∣∣2

+

∣∣∣∣ Iβk+∆βk
(t4)−Iβk

(t4)

Iβk
(t4)

∣∣∣∣2 + ∣∣∣∣ Iβk+∆βk
(t5)−Iβk

(t5)

Iβk
(t5)

∣∣∣∣2
) 1

2 (26)

Consequently, if we have a set of basic reference values of parameters and respective value ranges
of parameters, we will get all of the parameter sensitivities of this model.
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4. Case Study-Tianjin Explosions

In this section, the disaster event of Tianjin Explosions is used as a studying case. Without access
to partial data, this case is mainly used to (a) illustrate numerical solution of this model; (b) analyze
the effects of the four factors on the evacuation demand curves; and (c) perform the sensitivity analysis
of parameters in the model.

4.1. Tianjin Explosions Description

The explosions occurred in a dangerous materials storage at about 11:30 pm (Beijing time) at
the Port of Tianjin on 12 August 2015, which resulted in 173 deaths, 8 missing, and 798 non-fatal
injuries. The first two explosions were occurred within 30 s, which were equal to about 24 tons of
TNT exploding and fire—caused by the initial explosions—repeatedly caused secondary explosions.
In the blasts, many chemicals leaked, like sodium cyanide, which can react with water to form highly
toxic and flammable hydrogen cyanide gas. Out of consideration for risk of secondary explosions and
toxic substances spreading, the local authority issued two evacuation orders. The first one, issued
half an hour after the first two explosions happened, ordered people within one kilometer to evacuate.
Sixty hours later, the second one was issued to order people within three kilometers to move out. Like a
general evacuation, the shadow evacuation behaviors were also found in this evacuation namely that
people, especially those living three to six kilometers from explosion source, also joined the evacuation.

4.2. Preliminary

As is shown in Figure 3, there are 61 communities labeled as 1–61 according to the distance
to the explosion source and the distance between every two communities can be calculated easily.
There are totally around 115,350 residents living within six kilometers to the explosion source. It is
assumed that people in every community are divided equally into three types according the individual
characteristics. The two evacuation orders can be seen as two different degrees of warning information
just like “orange” and “red” warnings, which issued at t = 0 and t = 60. Note that t = 0 represents the
moment when the first evacuation order was issued rather than the moment of the first two explosions.
In fact, t = 0 started at half an hour later after the explosions happened. In this example, Function h(d)
is a simple linear function of distance d. Functions f (d, t) and w(t) are also expressed with simple
elementary functions and the main model expression is described as follows:

dIk
j

dt
= γk

[
λ0

Sk
j

Qj
Ij

Sk
j

Qj
∑
k

∑
i 6=j

Ik
i λ0

α√
2πσ

e−
di,j

2

2σ2 (a1di,0 + b1) +Sk
j (

a2

dj,0
2 +

b2

t + 10
) + Sk

j w(t)

]
(27)

w(t) =


a3

t + 10
+ b3 0 ≤ t < 60

a4

t + 10
+ b4 60 ≤ t

(28)

Other model parameters used in this example are shown in Table 1.

Table 1. Values of parameters in this case.

Parameter λ0
γk λ(d) h(d) f (d, t) w(t)

γ1 γ2 γ3 α σ a1 b1 a2 b2 a3 b3 a4 b4

Value 0.25 0.5 0.3 0.2 0.01 1 1 0.1 0.01 0.01 0.01 0.001 0.2 0.01

In Table 1, the selection of parameter values is to illustrate the effect of the four factors on the
evacuation demand curves and conduct sensitivity analyses of the parameters. The values of γ1,
γ2, andγ3 are assumed to be the same, independent of any community. Those parameter values are
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assigned on the basis of reasonable and realistic evacuation scenarios. For an example, λ0 = 0.25 means
that on average, every four hours an evacuated person will contact one person inside of the community.

1 
 

 

Figure 3. Maps of Tianjin explosions.

4.3. Model Results

In this example, the initial value I1
1 (0) is assumed to be equal to 150 based on a report that around

400–500 people in Wanke Community (Community 1 in this case) have left their home before the
evacuation order were issued [50]. Without data about the initial numbers of evacuated people in
other communities, we cannot directly get other initial values forIk

j (0). In fact, the initial percentage of
evacuated people in each community is mainly influenced by the risk level of the disaster. In general,
the risk level is considered to be related with the distance to the risk source. So we assume that there
is an inverse proportional relationship between the initial percentage of evacuated people in each
community and a third power of the distance to the explosions source. The third power can also be
substituted with first power or second power depending on how deep the distance is regarded to
affect the initial percentage of evacuated people. In fact, the method above to set initial values is often
used in many model solving cases [51].

With the analyses above, we can get the initial number of evacuated people in each community
as follows:

Ik
j (0) =

γk

γ1

( dj,0

d1,0

)3 Qk
j

Q1
1

I1
1 (0) k = 1, 2, 3; j = 1, 2, ..., 61 (29)

The time interval equals to one hour in this case. A simple numerical iteration algorithm is used to
get the model results. This algorithm discretizes Equation (17) and calculates the increased percentage
of each type of evacuated people in each community at the next time point based on the relevant
cumulative percentage at present time point. With the Matlab software, the model results are shown in
the following parts.
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4.3.1. Total Evacuation Demand Curve

From Figure 4a, the percentage of evacuated people is just 0.6% (770) at t = 0 and t = 0. However,
the percentage increases rapidly from t = 0 to t = 72 and then the total evacuation demand rises slowly,
and at t = 72 it approaches the peak. The whole total evacuation demand curve is like an S-curve and
the increasing rule follows “slowly-rapidly-slowly”. The first “slowly” can be explained that the social
influence power is weak because the total percentage of evacuated people is small at the initial stage.
Similarly, at the final stage the total percentage of unevacuated people is also small, which can explain
the second “slowly”.Int. J. Environ. Res. Public Health 2016, 13, 986  13 of 22 
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people in Type 1 are more likely to make an evacuation decision than that in Type 2 or Type 3, for people 
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Figure 4. The total evacuation demand curve.

Figure 4b shows the increased percentage of evacuated people in every hour. It is shown that
the increased percentage of evacuated people in an hour has a “rise-decrease” trend as a whole.
Specifically, the percentage is rising from 0.002 to 0.020 until t = 50 and then begins to drop. However,
the percentage moves up sharply from 0.017 to 0.027 during t = 60 to t = 61, which can be explained
because the issue of a second evacuation order accelerates the evacuation demand. After t = 61,
the percentage is slowing down.
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4.3.2. Effect of Individual Characteristics

In the Section 2.2.1, people were divided into three types (“Impressionable”, “Neutral”,
and “Standpat”) with the consideration of individual characteristics. So it is easily shown in
Figure 5 that people in Type 1 are more likely to make an evacuation decision than that in Type 2
or Type 3, for people in Type 1 are more easily influenced by social influence, geographic location,
and warning degree.Int. J. Environ. Res. Public Health 2016, 13, 986  14 of 22 
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Figure 5. The evacuation demand curves in different types.

4.3.3. Social Influence and the Effect of Geographic Location

In the Section 2.2.2., it is considered that the social influence on evacuation decisions is related
with the influence function, the contact frequency function, and the risk level function, all of which are
mainly related with the location of communities. So it is meaningful to compare the evacuation demand
curves in different communities. Figure 6 shows five evacuation demand curves in Communities 1, 10,
27, 31, and 61. The geographic locations of them are shown in Table 2.
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Table 2. The geographic locations of the five communities.

Community Distance to the Explosion Source (km) Surrounding Community

1 0.67 2, 4
10 2.06 8, 9, 16
27 4.12 41
31 4.21 23, 30, 38, 48, 50
61 6.10 60

According to the Figure 6, it is obvious that the cumulative percentage of evacuated people
in Community 1 is consistently higher than that the other communities all the time. It can be
explained that Community 1 is closest to the explosion source among the five communities. Although
the explosion source is slightly farther to Community 31 than Community 27, the cumulative
evacuation demand in Community 31 is always less than that in Community 27, which is due to
the weaker social influence in Community 27 (with only one adjacent community) or low contacts
with other communities. This result is consistent with the conclusions in the previous research.
Samiul Hasan [9] indicated that people in the community with few adjacent communities always
have a lower propagation of disaster evacuation decisions. Moreover, it is pointed out by Perry [52]
that the more the people have social contacts with other communities, the more likely that they will
evacuate. The finding is significantly revelatory for the authorities to make specific evacuation plans.
For example, due to the weak social influence in isolated communities, extra actions might be taken to
accelerate evacuation process in those communities (i.e., enhancing the warning degree in this area).

4.3.4. The Effect of Warning Degree

During the evacuation process, the two evacuation orders were issued respectively at t = 0 and
t = 60. From the Figure 7, it is clear that when the second evacuation orders were issued, the total
demand increases more quickly than that without this evacuation order, which can be explained that
the enhancing evacuation degree improves people’s perceived risk levels. This finding is meaningful
in reality. The issue of warning information can be regard as a management strategy for the authorities,
which can change the evacuation demand curves efficiently.
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4.4. Sensitivity Analyses

According to the method in Section 3, we perform sensitivity analyses of parameters one by one.
Firstly, a set of basic reference values and respective value ranges of parameters are given in Table 3.
Then, from Equation (30), we get the sensitivity curves of parameters using the Matlab software.

Table 3. The values of parameters and some results in sensitivity analyses.

Parameter Basic Reference Value Value Range Maximum Sensitivity Average Sensitivity

λ0 0.25 (0–1) 2.2165 1.7619
γ1 0.5 (0–1) 0.8012 0.7344
α 0.1 (0–10) 0.7795 0.2301
σ 1 (0–10) 0.3051 0.1168
a1 0.1 (0–10) 0.7493 0.2281
b1 0.1 (0–10) 0.6477 0.4832
a2 0.1 (0–2) 0.6005 0.3940
b2 0.02 (0–2) 0.4308 0.3522
a3 0.1 (0–2) 0.4224 0.3470
b3 0.002 (0–0.2) 0.4371 0.3131

It should be pointed out that we just analyze the sensitivity of parameter γ1 instead of γ2 and γ3,
which is reasonable because of the same role played in this model. It is same with a3 and b3.

Figure 8 shows the variations of sensitivity with parameters in this model. In the most of the
sensitivity curves about parameters, the sensitivity values increase rapidly first to the peaks and
then slow down. Specifically, the sensitivity S(λ0) has a sharp rise (from 0.3 to 2.2) at beginning
and then decreases undulately with the parameter value increasing in the Figure 8a. This undulate
trend of the sensitivity S(λ0) is caused by the nonlinearity of parameter λ0. The sensitivity S(γ1)

increases sharply until γ1 = 4 and then begins to drop slowly in the Figure 8b. In the Figure 8c,e,
the sensitivities S(α) and S(a1) show similar trends (“increase rapidly−decrease sharply−decrease
slowly”), which can be explained in that the two parameters have the same peculiarity in Equation (33).
Similarly, parameters b2 and a3 have the same roles in Equation (33) where they are both coefficients
about t which can account for the similar sensitivity curves in the Figure 8h. However, in the Figure 8d,
the sensitivity S(σ) changes following “increase rapidly-decrease sharply-increase slowly” with the
parameter value increasing.
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Figure 9 shows the maximum and average sensitivity values of parameters in respective value
ranges. It is found that the sensitivity of parameter λ0 is strongest among the 10 parameters based
on the maximum or average sensitivity value, which means that the total evacuation demand curve
is very sensitive with the contact frequency among people in risk areas over unit time. In contrast,
the model is least sensitive with parameter σ, which means that the total evacuation demand curve
is not sensitive with the shape of the contact frequency distribution curve between communities.
It should be pointed out that the sensitivity results are based on a certain set of basic reference values
of parameters. In other words, the sensitivity results may be different if we change reference values
of parameters.
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5. Discussion

Compared with models in previous studies, there are some advantages to this model. Firstly, it is
clear to formulize the roles played by the most important factors in people evacuation decision making
in this model. This model reveals the generating mechanism of evacuation demand curves from the
view of social contagion and it can benefit authorities to adjust the evacuation demand as needed,
which is not fully covered in previous models based on mathematical statistics like the S-curves [37].
Secondly, this model is developed on a group level instead of an individual level, which means that it
is easier to get demand curves when a larger population is chosen. Moreover, the model framework is
flexible for practical application. The flexibility reflects in two aspects. On the one hand, the model
framework can be applied in various disasters just by some adjustment of the functions, such as the
distance influence function in this model. For example, in poisonous gas dispersion, a second order
parabolic partial differential equation can be chosen to describe the risk level influenced by geographic
location and time. On the other hand, when a new factor is proofed to influence the curve, it can
effectively be captured in this model only by changing or adding several variables.

In this paper, the “Tianjin Explosions” were used as a case to analyze the curves influenced by
the four factors and perform the sensitivity analyses of the parameters in this model. The major
conclusions of this study are conducted based on this case:

• The evacuation demand curve in this model is like an S-curve, in which the evacuation demand
increasing rate starts increasing slowly, then rapidly, slowly again, and gradually closes to zero.
This model result agrees with those obtained in mathematical statistics based on empirical data.

• The individual characteristics can dramatically influence people’s evacuation decision making
and the cumulative evacuation demands of the “Impressionable” people are always greater than
that of “Neutral” and “Standpat” people.

• The cumulative evacuation demands of people in isolated communities would be less than the
communities with many adjacent communities, which can be explained in that the isolated
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communities lack social influence and people in these areas cannot easily get information on the
real-time evacuation state of the society.

• A higher warning degree issued can enhance people′s perceived risk levels so as to significantly
increase evacuation demand. Since the influence of warning degrees raised is imposed on the
whole people in the risk areas, the authorities can accelerate or slow the evacuation process by
changing the warning degree.

• In the sensitivity analyses of parameters, the model is more sensitive to the contact frequency
among people over unit time than other parameters. To improve the prediction precision of
evacuation demand curves, great attention should be paid to the contact frequency among people.

In this model, everyone would eventually evacuate, which, however, does not affect that the
model proposed can work in the disaster evacuation scenes with varying severities. In the evacuation
scenes where all people need to eventually evacuate, this model can effectively predict the evacuation
demands in each community no matter the time interval. In the evacuation scenes where the emergency
is not very severe, in this model, the demand curves may be very flat and a long time may have
passed when all people evacuate. The curves can also reflect the evacuation demands in early days,
which may be enough for the emergency authorities. In previous studies, researchers always estimate
the evacuation demands in two steps [10,53,54]. The first step is to identify the region that needs to be
evacuated and estimate the number of people to be evacuated. The second step is to determine the
evacuation departure time or the evacuation demand curves. In this paper, we focus on the evacuation
demand curves rather the whole evacuation demand estimation. There are many models to do the
work in the first step like cross-classification type of trip generation model and logistic regression
models. In future works, we will focus on how to combine these two steps into one model.

6. Conclusions

To prevent or at least minimize the losses caused by disasters, evacuation is regarded as an
effective response. In the whole evacuation plan, estimating the disaster evacuation demand curves
is a significant step which directly affects the evacuation performance. In this paper, we discussed
the factors influencing the individual evacuation decision and summarized them into four parts.
In the view of social contagion of decision making, we developed a model framework based on the
SI model for formulizing the evacuation demand curves and examining the effects of the influencing
factors on the curve shape. Using this model, we analyzed and illustrated the modeling results
and performed the sensitivity analyses of the model parameters in the “Tianjin Explosions” case.
Some interesting phenomena were founded and discussed, which is meaningful for authorities to
make specific evacuation plans.

It should be pointed out that there were also some limitations in this model. In this paper,
the concrete expressions of some functions are not given, such as the risk level function about location
and time for different characteristics of disasters. When the appropriate data about time-dependent
disaster evacuation demands were available, the models′ parameters should be calibrated. Therefore,
we will focus on the concrete expressions of some functions and the parameter calibration for certain
disaster scenarios in future works.
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