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Abstract: Source apportionment of river water pollution is critical in water resource management
and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical
methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system
(China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October,
February–April and November–January) and the 66 sampling sites into three groups (groups A,
B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined
that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn), 5-day biochemical
oxygen demand (BOD5), NH4

+–N, total phosphorus (TP) and volatile phenols were significant
variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis
(PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part
of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics
from cropland and woodland runoff were the main latent pollution factor for group A. For group B,
the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C,
the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics.

Keywords: spatial and temporal patterns; source apportionment; Liao River; geographic information
system (GIS); multivariate analysis

1. Introduction

Surface water quality and aquatic ecosystems have been seriously impacted by complex human
activities and natural processes at both river and basin scales, including domestic wastewater, industrial
sewage, runoff, land reclamation, oil development, mining exploitation, atmospheric deposition and
climate change [1–4]. Because of the complexity of river water environments [5,6] and obvious
differences in regional pollution characteristics [2,4,5], regulators and experts of environmental
protection face severe challenges in preventing and controlling water pollution. Accordingly,
understanding the spatial and temporal patterns in the hydrochemistry of river water [1,7], extracting
the most useful information from complicated monitoring data [2] and identifying the major sources
of regional water pollution [3,5] can aid regulators in establishing priority measures for the efficient
conservation and restoration of river water resources and aquatic ecosystems.

Int. J. Environ. Res. Public Health 2016, 13, 1035; doi:10.3390/ijerph13101035 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2016, 13, 1035 2 of 27

The Liao River is situated in northeast China and is one of seven major rivers in China.
The Liao River is one of the most seriously polluted rivers in China [8]. In the past two decades, the
rapid development of industry and agriculture has profoundly changed environmental conditions in
the Liao River basin, particularly in the middle and lower reaches [9]. The rapid development of heavy
industry (such as energy, petrochemical, metallurgy, machinery and building material production) in
the Liao River basin has made a great historical contribution to the rapid growth of urbanization and
industrialization in China [10–12]. However, the conflict between the use of water for production and
residents caused by rapid economic growth versus use for ecological water has had a negative effect
on water quality in Liao River basin (Northeast China), and the level of surface water utilization in the
Liao River basin reached 77% in 2000. Furthermore, the urban areas surrounding the river discharge
large amounts of water pollutants (including 130.265 × 104 t/a COD (chemical oxygen demand) and
13.267 × 104 t/a NH4

+–N in 2000), causing deterioration of surface water quality [13]. Degradation of
the water environment not only hinders sustainable societal development but also endangers human
health and aquatic life [3].

Pearson correlations are currently widely employed in evaluating the relationships among river
water quality parameters [5]. Clustering analysis (CA) is applied to group objects into categories
based on their similarity through an unsupervised multivariate technique [4,6], whereas discriminant
analysis (DA) provides statistical classification of samples and helps group samples with common
properties [6,14]. Principal component analysis (PCA) and factor analysis (FA) have been used to
determine latent sources of pollution, while effectively reducing data dimensionality with minimal loss
of meaningful information and grouping multiple variables according to their common characteristics
in studies on water environments [4,6,15,16]. The positive matrix factorization (PMF) approach has
been successfully used to quantitatively apportion concentrations to their sources [17] and demarcate
major sources of pollution [18].

Pearson correlations, CA, DA, PCA, FA and PMF have been effectively applied for assessment of
the spatial and temporal variations in surface water and estimation of latent pollution factors [2,3,5,6].
These show the reliability and feasibility of the above multivariate statistical techniques in the research
and management of river water environment.

Several commonly applied statistical techniques are used for pollution source apportionment,
with their own advantages and limitations [5]. A summary of relevant statistical methods employed
in recent years is provided in several publications [3,5,16]. Some recent publications [2,3,6,19,20]
have described the application of different statistical analysis techniques, such as CA, DA, PCA and
PMF, to explore the spatial and temporal patterns of water quality and determine latent pollution
sources in studies on the water environment in China. However, few of these works have been
able to geographically link water pollution with specific anthropogenic activities, which can then be
applied to guide strategies for the protection of water resources and aquatic ecosystems. Few studies
have used multivariate statistical methods to obtain the pollution characteristics of key areas of the
Liao River basin (China) based on the geographic information system (GIS) environment.

In this study, we expanded on previous research [5] via the integrated application of various
GIS-based multivariate statistical methods with large datasets obtained during a 3-year (2009–2011)
water quality monitoring program to investigate latent pollution sources for the Liao River basin,
Northeast China. The main purpose of this study was to identify the main factors involved in the
pollution of the Liao River system. These results could be helpful for more effectively developing river
water pollution control strategies for the Liao River system.
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2. Materials and Methods

2.1. Study Area and Monitoring Sites

The Liao River basin, including the majority of Liaoning Province and parts of the Inner Mongolia
Autonomous Region and Jilin and Hebei Provinces, covers an area of approximately 21.96 × 104 km2,
extending from 40◦30′ to 45◦10′ N and 117◦00’ to 125◦30’ E [21]. The Liao River basin is located in the
temperate and warm temperate belt and is the monsoon climate [9]. The mean annual temperature in
this area is 9.4 ◦C; January is the coldest month during the year, and July is the hottest. Total annual
rainfall is approximately 628 cm, and the amount of rainfall during monsoon months (May–September)
accounts for more than 80% of the total annual rainfall. The Liao River system comprises two main
rivers (the Liao River and Daliao River). The Liao River system exhibits a main stream of more 513 km
in length and over 40 tributaries. The water in the middle reaches of the Liao River mainly comes
from the East Liao River (the main tributary of the Liao River), where there is sufficient precipitation
and a high percentage of vegetation coverage (more than 60% of the East Liao River watershed area,
Figure A1) [9,22,23]. The Daliao River has two main tributaries (the Hun River and the Taizi River),
and its basin has been affected by the rapid development of heavy industry in Northeast China.
The Daliao River basin encompasses several large and mid-sized cities, such as Shenyang city, which is
a super city and is the capital of Liaoning Province [24,25]. The upstream areas of the Liao River basin
mainly consist of woodland and grassland (more than 80% of the upstream watershed area of the
Liao River basin, Figure A1). The middle and downstream areas of the Liao River basin mainly consist
of cropland (more than 85% of the middle and downstream watershed area, Figure A1), with scattered
urban land (less than 10% of the middle and downstream watershed area, Figure A1) [9,25,26]. In 2005,
the population of the Liao River basin was approximately 3500 × 104, and gross domestic product
(GDP) production was approximately 6000 billion Yuan. The majority of the population and GDP
production is centered in towns and cities in this area. The GDP per capita in the Liao River basin
is higher than the national average [9]. The 66 water quality sampling sites examined in this study
covered a wide range of key areas of the Liao River system in Northeast China to reasonably represent
river water quality.

2.2. Data Sources

Datasets for 66 sampling sites (Figure 1) including 13 typical variables analyzed monthly for
three years (2009–2011) were provided by the Environmental Protection Bureau of Liaoning Province.
The samples were collected once a month between 9:00 am and 16:00 pm. The chemical analysis
was performed in the laboratory within 24 h of collecting the water samples. The monitored
parameters included temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn),
5-day biochemical oxygen demand (BOD5), ammonical nitrogen (NH4

+–N), total phosphorus (TP),
mercury (Hg), lead (Pb), volatile phenols, petroleum, fecal coliforms (E. coli) and electrical conductivity
(EC). The sampling, preservation and analytical procedures were performed according to national
standard methods for China [27]. Analytical methods for water quality parameters are listed in
Table A1. Hydrological data (streamflow discharge) for 10 years (2000 and 2002–2010, Liaozhong
Gauging Station) were obtained from the Hydrological Bureau of Liaoning Province. The land use
data set was provided by Data Center for Resources and Environmental Sciences, Chinese Academy of
Sciences (RESDC) [28].
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Figure 1. Study area and water quality sampling sites.

2.3. Statistical Analysis

2.3.1. Data Treatment

The following data pretreatment measures were applied: (1) Missing data were evaluated
based on average values from the corresponding datasets [16,20]; (2) When water quality parameter
values (<1%) were below the minimum detection limits, the values were set to the detection
limits [29]; (3) The normality of the distribution of each water quality parameter was checked through
analysis of kurtosis and skewness before applying the multivariate statistical analyses [6,16,30].
After log-transformation of the data, the their skewness and kurtosis were significantly reduced;
these variables (with the exception of DO, CODMn, NH4

+–N, TP, petrol, Hg, Pb and EC) showed values
ranging from −0.723 to 0.44 and from −1.002 to 1.252, respectively; (4) Datasets were standardized
(mean = 0, variance = 1) when using CA and PCA to minimize the effects of dimension and differences
in the variance of water quality parameters [1,16,30]; and (5) the Kaiser-Meyer-Olkin (KMO) measure
and Bartlett’s sphericity tests were used to evaluate the suitability of the datasets prior to PCA [20].

PMF analysis of the datasets was performed using the EPA PMF 5.0 program (Environmental
Protection Agency, Washington, DC, USA). The other statistical computations were performed with
SPSS 19.0 (IBM SPSS, Chicago, IL, USA) for Windows. GIS maps were generated using ArcGIS 10.0
(ESRI, San Diego, CA, USA).

2.3.2. Analysis of Variance (ANOVA)

ANOVA was performed to analyze the significant spatial and temporal differences (p < 0.05).
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2.3.3. Pearson Correlation

Pearson correlations are currently widely employed in evaluating the relationships among river
water quality parameters [5]. Relationships among the considered water quality parameters were
tested using Pearson’s coefficient with statistical significance set at p < 0.05.

2.3.4. Cluster Analysis (CA)

CA is a multivariate statistical analysis technique that classifies all dissimilar objects into different
groups with an unsupervised pattern based on the characteristics they possess [2,30–32]. High internal
(within-group) homogeneity and external (between-group) heterogeneity should be observable in the
resulting groups of objects [19,33]. CA was used to analyze our dataset to determine the temporal and
spatial similarity of river water quality [1,16,20]. We performed hierarchical CA on the standardized
dataset using Ward’s method, with squared Euclidean distances as a similarity measure, to present
an illustrated dendrogram [1,6,33]. The temporal and spatial variability of water quality in the
Liao River basin was evaluated based on hierarchical CA using linkage distance [6,20], and the
(Dlink/Dmax) ratio between the linkage distance for a particular case (Dlink) divided by the maximal
linkage distance (Dmax) was used to standardize the linkage distance [1,33,34].

2.3.5. Discriminant Analysis (DA)

DA was performed to classify samples exhibiting similar properties with prior knowledge of
objects and to identify the most significant discriminant variables for several naturally occurring groups
compared with CA [1,33,35]. If DA is effective for a specific data source, the table of classification
matrices (including correct and incorrect estimates) will provide a high correct percentage [16,33].
DA was applied in stepwise mode to confirm the groups obtained via CA and to estimate both
temporal and spatial variations on the basis of the discriminant variables [16,36]; the sampling periods
(temporal variation) and sites (spatial variation) were the clustering (dependent) variables; and all the
analyzed water quality parameters were the independent variables [16,20,36].

2.3.6. Principal Component Analysis (PCA)

PCA was used to extract eigenvalues and eigenvectors (loadings or weightings) from the
covariance matrix of the original variables to generate new orthogonal (uncorrelated) variables
referred to as varifactors (VFs) through VARIMAX rotation; VFs are linear combinations of the
original variables [14,19,20,33,37–39], and a VF can comprise both potential and hypothetical
variables [1,4,39,40]. PCA is usually applied to obtain the minimal number of factors accounting
for the maximal variance in the dataset [19,21]. Finally, the few identified factors will usually explain
the vast majority of the entire original information [1,33]. PCA was applied to obtain composite
variables identified as latent water pollution factors for the Liao River basin in Northeast China.

2.3.7. Positive Matrix Factorization (PMF)

PMF is a multivariate factorization model based on a least squares approach, using a data point
weighting method [17,18]. The model can be written as follows in Equation (1):

Xij = ∑p
k=1 gik fkj + eij (1)

where Xij represents the elements of the input data matrix of i (number of samples) by j (chemical
species) dimensions; gik represents the elements of the factor scores; fkj represents the factor-loading
matrices; eij is the residual for each sample/species; and p is the number of factors.

The task of PMF is to minimize the objective function, Q (Equation (2)), based on the
uncertainties [17].

Q = ∑n
i=1 ∑m

j=1

[
xij −∑

p
k=1 gik fkj

uij

]2

(2)

where uij is the uncertainty in the jth species for sample number i.
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3. Results

3.1. Temporal/Spatial Grouping

Hierarchical CA was applied to group the water quality dataset based on the temporal and spatial
variation (using sampling sites in key areas of the Liao River basin) in river water quality in the
resulting dendrogram. There is a seasonal flow change law applying to most rivers in the world,
so the flow period division is in accordance with the seasonal flow change of the river [41]. Temporal
CA generated a dendrogram (Figure 2) that clearly separated the 12 months of the year into three
groups at (Dlink/Dmax) × 100 < 50, with significant differences between the three groups. Group 1
included May–October, which approximately corresponded to the high flow period (HF period) in
the Liao River basin. More than 80% of the annual total precipitation falls in this period according to
ten years of hydrology data. Group 2 consisted of February–April, which closely corresponded to the
low flow period (LF period). Finally, Group 3 comprised November–January, which approximately
corresponded to the normal flow period (NF period). A statistical description of discharge that
coincides with each type of flow period is listed in Table A2. The spatial CA rendered a dendrogram
that grouped all 66 monitoring sites into three different groups at (Dlink/Dmax) × 100 < 80 (Figure 3),
similar to the temporal cluster analysis. Group A contained sites S1–S3, S9–S11, S16–S23, S27–S29, S31,
S44–S53, S58–S61, and S66; group B comprised sites S4–S8, S12–S13, S24–S26, S32–S33, and S35–S43;
and group C contained sites S54–S55, S62–S65, S14–S15, S30 and S34. The spatial CA generated three
groups of sampling sites with similar water pollution characteristics in a very convincing manner.
In group A, seven sites (S1–S3, S27–S29, and S31) were situated in the upper and middle reaches of the
Liao River; 13 sites (S9–S11 and S44–S53) were situated in the upper reaches of the Hun River; and
13 sites were situated in the Taizi River (S16–S23, S58–S61 and S66). In group B, two sites (S30 and S34)
were situated in the middle reaches of the Liao River; four sites (S14–S15 and S54–S55) were situated
in the lower reaches of the Hun River; and four sites (S62–S65) were situated in the lower reaches of
the Taizi River. In group C, sixteen sites (S4–S8, S32–S33 and S35–S43) were situated in the middle and
lower reaches of the Liao River; four sites (S12–S13 and S56–S57) were situated in the lower reaches of
the Hun River; and three sites (S24–S26) were situated in the lower reaches of the Daliao River.
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cluster analysis. Note: HF represents high flow period, NF represents normal flow period, LF represents
low flow period.
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3.2. Temporal/Spatial Variations in River Water Quality

Temporal variations in river water quality were estimated through DA after separating all data for
key areas of Liao River basin into three seasonal groups. Temporal DA produced classification matrices
(CMs) with 81.2% correct assignments using only eight discriminant parameters (Table 1). Thus,
the temporal DA results showed that temperature, DO, pH, CODMn, BOD5, NH4

+–N, total phosphorus
(TP) and volatile phenols were the most significant variables for discriminating between the three
periods and that these eight parameters explained most of the temporal variations in the water quality
of the Liao River system.

Table 1. Classification matrices for stepwise discriminant analysis of temporal and spatial variations.

Number of
Clusters

Temporal Variation Spatial Variation

%Correct 1st
(HF)

2nd
(LF)

3rd
(NF) %Correct 1st (A) 2nd (B) 3rd (C)

Three
Cluster

1st 57.6 98 58 14 83.4 493 24 74
2nd 64.9 78 146 1 65.3 13 79 29
3rd 91.3 50 17 700 83.2 31 19 248

Total 81.2 226 221 715 81.2 537 122 351

Note: HF represents high flow period, NF represents normal flow period, LF represents low flow period.

Box and whisker plots of the selected water quality variables supporting the temporal variations
identified through temporal DA are given in Figure 4. The results showed that temperature and pH
were generally higher in the HF season than the other seasons, whereas higher values for CODMn,
BOD5, NH4

+–N, TP and volatile phenols were observed in the LF season than in the other seasons.
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Spatial variations in water quality were evaluated through DA after classifying the data for
the study area into three spatial groups. DA also produced CMs with approximately 81.2% correct
assignments for the three groups identified by spatial CA (Table 1). The stepwise DA showed that all
river water quality parameters were discriminant variables of spatial variation.

Box and whisker plots of the discriminant parameters supporting the spatial variations determined
through spatial DA are included in Figure 5. Figures 5 and 6 show that most of the parameters
(apart from T, pH, volatile phenols, petrol and EC) presented higher values (DO exhibited an inverse
pattern) in group B than in the other two groups. Petroleum and EC were higher in group C than in the
other groups, and volatile phenols were higher in group A than in the other groups. CODMn, BOD5

and NH4
+–N were higher in urban areas than in nearby rural areas, while DO displayed an inverse

trend with the urbanization level [5,37]. Hg was higher in the lower reaches of the Taizi River, whereas
Pb was higher in the middle reaches of the Hun River and Liao River. TP was higher in the lower
reaches of the Liao River, and E. coli was higher in the middle and lower sections of the Hun and
Taizi Rivers. The effects of volatile phenols in the Fushun section of the Hun River and the Benxi
section of the Taizi River (sites 17, 51 and 58) were greatest in the Liao River system. The EC values
were higher in the Liao River Estuary than the other areas (Figure 6).
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analysis. Note: SD and SE are the abbreviation of standard deviation and standard error, respectively.
DO = dissolved oxygen, CODMn = chemical oxygen demand, BOD5 = 5-day biochemical oxygen
demand, TP = total phosphorus.
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E. coli and EC in the study area. Note: EC = electrical conductivity.

3.3. Identification of Latent Pollution Factors

The 66 monitoring sites were applied to evaluate the correlation matrix of the 13 measured
parameters (Table 2). CODMn was highly correlated with BOD5, TP and E. coli in groups A and C
(r = 0.566–0.902, p < 0.01). High positive correlations were observed between E. coli and NH4

+–N in
the all three groups (r = 0.374–0.664, p < 0.1).
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PCA was used to evaluate the latent pollution factors based on the standardized datasets
separately for three different groups (groups A, B and C), as determined via CA (Table 3 and Figure 7).
The KMO values for the three groups (groups A, B and C) were 0.709, 0.610 and 0.647, respectively,
and the significance levels determined by Bartlett’s sphericity test were all less than 0.001, which
showed that the PCA was useful for significantly reducing the dimensionality of the data [1,16,20,33].
The PCA with VARIMAX rotation produced 5–6 VFs (eigenvalues equal or greater than 1) and
explained 61.217%, 69.645% and 63.57% of the total variance in groups A, B and C, respectively.
PCA results (including the loading of the 13 water quality parameters, the variance contribution
rate of each VF and the accumulated variance contribution rate) for the three groups are listed in
Table 3. Some studies [6,33] classify factor loading values of 0.50–0.30, 0.75–0.50 and >0.75 as “weak”,
“moderate” and “strong”, respectively, corresponding to the absolute loading. The VF loading plot
(Figure 7) of the three different groups (groups A, B and C) revealed relationships among the river
water quality variables, with a shorter distance corresponding to a stronger correlation between the
parameters [6,16,20,29,33].
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For group A (Table 3 and Figure 7), VF1, which explained 24.036% of the total variance, exhibited
strong positive loading on only CODMn, BOD5 and NH4

+–N and moderately positive loading on
EC. Thus, VF1 represented oxygen-consuming organic pollution from non-point pollution caused
by nutrient runoff from cropland and woodland [6,25]. VF2 (accounting for 10.786% of the total
variance) displayed moderately positive loading on temperature and moderately negative loading
on DO and was attributed to seasonal changes [14,16,20]. Additionally, VF3 (explaining 9.817% of
the total variance) presented strong positive loading on E. coli and moderately positive loading on
TP and may be interpreted as fecal and nutrient (TP) pollution originating from local livestock farms
and domestic wastewater [10]. VF4, accounting for 8.608% of the total variance, exhibited strong
positive loading on pH and moderate positive loading on temperature and may be interpreted as the
physicochemical source of the variability [16,20,33,34]. VF5 (explaining 7.971% of the total variance)
showed strong positive loading on Pb and moderately positive loading on Hg and was subject to
heavy metal pollution originating from mining activity [10]. For group B (Table 3 and Figure 7),
VF1 (explaining 21.781% of the total variance) presented strong positive loading on EC, moderately
positive loading on NH4

+–N and TP, and moderately negative loading on DO, likely representing
nutrient pollution from domestic wastewater and sewage treatment works [23,26,42]. VF2 (accounting
for 12.599% of the total variance) exhibited strong positive loading on Petrol and BOD5 and, thus,
represented oil pollution originating from the petroleum chemical industry [2,12,42,43]. Additionally,
VF3 (explaining 9.62% of the total variance) showed strong negative loading on temperature, similar to
VF2 of group A, representing natural source impacted by seasonal changes. VF4 (accounting for 9.331%
of the total variance) presented strong positive loading on E. coli and moderately positive loading on
TP, similar to VF3 of group A. VF5 (explaining 8.28% of the total variance) exhibited strong positive
loading on Pb and moderately positive loading on Hg and was attributed to heavy metal pollution
from industrial sewage [42,44]. For group C (Table 3 and Figure 7), VF1 (accounting for 20.494% of the
total variance) showed strong positive loading on CODMn and moderately positive loading on BOD5,
NH4

+–N, Petrol and Volatile phenols, which represented mixed pollution, including oil.
Pollution, oxygen-consuming organic pollution and toxic organic pollution. Oil pollutants

originated from oil production and the petroleum chemical industry, whereas oxygen-consuming/toxic
organics mainly originated from steel-making, gas-firing, cooking water, industry, domestic wastewater,
garbage produced by humans and bilge water [10,12,42,44]. VF2 (explaining 15.835% of the total
variance) presented strong positive loading on DO and moderately positive loading on pH, similar to
VF4 of group A (physicochemical sources). VF3 (accounting for 10.523% of the total variance) exhibited
strong positive loading on temperature and moderately positive loading on Hg and was attributed to
heavy mental pollution originating from industrial sewage during different flow periods [1,2,6,44].
VF4 (explaining 8.623% of the total variance) showed strong positive loading on E. coli and TP, similar to
VF3 of group A.
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Table 2. Pearson correlation matrix of the 13 analyzed physical-chemical water quality variables.

Parameters Temperature DO pH CODMn BOD5 NH4
+–N TP Hg Pb Volatile Phenols Petrol E. coli EC

Group A

Temperature 1 - - - - - - - - - - - -
DO −0.057 1 - - - - - - - - - - -
pH −0.308 0.132 1 - - - - - - - - - -

CODMn 0.256 −0.739 ** −0.333 1 - - - - - - - - -
BOD5 0.009 −0.365 * −0.068 0.644 ** 1 - - - - - - - -

NH4
+–N 0.087 −0.490 ** −0.038 0.679 ** 0.836 ** 1 - - - - - - -

TP 0.310 −0.703 ** −0.431 * 0.846 ** 0.617 ** 0.650 ** 1 - - - -
Hg 0.212 −0.634 ** 0.033 0.357 * 0.126 0.149 0.388 * 1 - - - -
Pb 0.073 0.379 * 0.244 −0.157 −0.109 −0.238 −0.321 −0.161 1 - - - -

Volatile phenols −0.093 −0.170 0.072 0.385 * 0.637 ** 0.475 ** 0.394 * −0.014 −0.121 1 - - -
Petrol −0.099 −0.187 0.101 0.409 * 0.904 ** 0.792 ** 0.340 −0.034 −0.116 0.500 ** 1 - -
E. coli −0.049 −0.556 ** -0.172 0.755 ** 0.633 ** 0.374* 0.592 ** 0.357 * 0.018 0.500 ** 0.400 * 1 -

EC 0.192 −0.616 ** -0.173 0.665 ** 0.451** 0.626 ** 0.540 ** 0.278 −0.143 0.096 0.402 * 0.285 1

Group B

Temperature 1 - - - - - - - - - - - -
DO 0.360 1 - - - - - - - - - - -
pH 0.544 −0.104 1 - - - - - - - - - -

CODMn −0.102 −0.863 ** 0.456 1 - - - - - - - - -
BOD5 -0.124 −0.441 −0.136 0.494 1 - - - - - - - -

NH4
+–N −0.272 −0.689 * 0.187 0.790 ** 0.731 * 1 - - - - - - -

TP −0.608 −0.748 * −0.178 0.486 0.419 0.570 1 - - - - - -
Hg 0.258 −0.231 0.149 0.366 0.306 0.534 −0.183 1 - - - - -
Pb 0.003 0.420 −0.613 −0.544 0.434 −0.104 −0.096 −0.045 1 - - - -

Volatile Phenols −0.152 −0.670 * −0.092 0.644 * 0.588 0.808 ** 0.404 0.732 * −0.010 1 - - -
Petrol −0.385 −0.117 −0.534 −0.091 0.689 * 0.286 0.549 −0.252 0.747 * 0.146 1 - -
E. coli 0.081 −0.474 0.734 * 0.786 ** 0.094 0.598 0.219 0.291 −0.752 * 0.347 −0.429 1 -

EC −0.037 −0.786 ** 0.435 0.721 * 0.165 0.558 0.510 0.413 −0.586 0.468 −0.184 0.562 1

Group C

Temperature 1 - - - - - - - - - - - -
DO 0.092 1 - - - - - - - - - - -
pH 0.351 0.709 ** 1 - - - - - - - - - -

CODMn 0.495 * −0.039 0.229 1 - - - - - - - - -
BOD5 0.648 ** 0.060 0.409 0.90 2 ** 1 - - - - - - - -

NH4
+–N 0.252 −0.338 −0.227 0.482 * 0.588 ** 1 - - - - - - -

TP 0.407 −0.136 0.384 0.607 ** 0.665 ** 0.299 1 - - - - - -
Hg 0.429 * 0.162 0.500* 0.195 0.320 −0.086 0.673 ** 1 - - - - -
Pb 0.078 −0.059 0.264 −0.438 * −0.297 −0.318 0.218 0.468 * 1 - - - -

Volatile Phenols 0.567 ** −0.080 0.082 0.620 ** 0.624 ** 0.492 * 0.442 * 0.300 −0.232 1 - - -
Petrol 0.504 * −0.023 0.077 0.744 ** 0.722 ** 0.639 ** 0.306 0.000 −0.510 * 0.866 ** 1 - -
E. coli 0.271 −0.251 −0.101 0.566 ** 0.549 ** 0.664 ** 0.295 −0.080 −0.419 0.774 ** 0.805 ** 1 -

EC −0.149 −0.349 −0.512* 0.335 0.009 0.139 −0.131 −0.421 * −0.522 * −0.032 0.109 0.205 1

* Correlation is significant at the 0.01 level and ** correlation is significant at the 0.05 level (2-tailed). DO = dissolved oxygen, CODMn = chemical oxygen demand, BOD5 = 5-day
biochemical oxygen demand, TP = total phosphorus, EC = electrical conductivity.
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Table 3. Loading of 13 water quality variables on significant varifactors (VFs) for group A, group B and group C.

Parameters
Group A Group B Group C

VF1 VF2 VF3 VF4 VF5 VF1 VF2 VF3 VF4 VF5 VF6 VF1 VF2 VF3 VF4 VF5

Temperature −0.163 0.625 −0.076 0.549 −0.072 −0.042 −0.102 −0.867 −0.006 0.094 0.139 −0.119 −0.085 0.836 0.003 −0.033
DO −0.290 −0.741 −0.117 0.058 −0.017 −0.665 −0.070 0.439 0.008 −0.030 0.404 −0.036 0.870 −0.142 −0.105 −0.017
pH −0.122 0.021 0.035 0.795 −0.004 0.124 −0.033 −0.221 0.075 0.015 0.851 0.228 0.739 0.396 0.170 −0.058

CODMn 0.860 0.041 0.032 0.021 0.097 0.710 0.285 0.178 −0.202 −0.047 0.184 0.823 −0.147 −0.003 −0.023 0.040
BOD5 0.774 0.061 −0.006 −0.02 0.053 0.226 0.759 0.187 0.153 0.074 0.207 0.713 0.312 0.181 0.158 0.078

NH4
+–N 0.785 −0.108 0.125 −0.009 0.031 0.684 0.277 0.223 0.149 0.030 0.125 0.590 0.032 −0.439 0.243 −0.041

TP 0.370 0.108 0.725 −0.131 0.036 0.564 −0.178 0.045 0.549 −0.195 0.055 0.230 −0.150 −0.207 0.754 −0.158
Hg 0.080 0.387 −0.097 0.012 0.631 0.183 −0.050 0.093 −0.137 0.718 0.205 0.169 0.321 0.557 −0.107 −0.160
Pb −0.067 −0.208 0.061 −0.035 0.806 −0.202 0.088 −0.120 0.189 0.754 −0.200 −0.086 0.189 0.310 0.176 −0.567

Volatile Phenol 0.455 −0.371 0.002 0.413 0.015 0.331 0.022 0.434 −0.122 0.245 −0.151 0.510 0.145 −0.242 −0.134 −0.142
Petrol 0.283 0.059 0.010 −0.042 −0.112 −0.035 0.792 −0.046 −0.183 −0.030 −0.247 0.712 0.023 0.078 −0.113 0.165
E. coli −0.139 −0.026 0.865 0.116 −0.038 −0.128 0.013 −0.057 0.882 0.071 0.057 −0.295 0.137 0.112 0.759 0.180

EC 0.687 0.206 0.015 −0.241 −0.023 0.793 −0.105 0.016 −0.073 0.049 0.062 0.050 0.055 0.042 0.113 0.794
Eigenvalue 3.125 1.402 1.276 1.119 1.036 2.832 1.638 1.251 1.213 1.076 1.044 2.664 2.058 1.368 1.121 1.052

%Total Variance 24.036 10.786 9.817 8.608 7.971 21.781 12.599 9.620 9.331 8.280 8.033 20.494 15.835 10.523 8.623 8.095
Cumulative% Variance 24.036 34.822 44.639 53.246 61.217 21.781 34.381 44.001 53.331 61.611 69.645 20.494 36.329 46.852 55.474 63.570

Note: bold values indicate strong loadings and italic values indicate moderate loadings.
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To identify the spatial patterns in latent pollution factors, the loadings and scores of the VFs
were plotted [1,6,16,45] for three different group (groups A, B and C) of monitoring sites to illustrate
spatial differences (Figure 8). The larger VF scores presented a greater effect [2,6,16,20,33]. In group A
(Figure 8a,b), some sites (e.g., 58, 50, 51, 17 and 61) were strongly influenced by organic pollution,
whereas other sites (e.g., 2, 1, 27, 3, 31, 53 and 28) were primarily influenced by nutrient pollution.
In group B (Figure 8c), some sites (e.g., 62, 63 and 64) were predominantly influenced by nutrient
pollution. In group C (Figure 8d), some sites (e.g., 38, 39, 40 and 41) were strongly influenced by
oil pollution.
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PCA was also applied to the datasets from three different periods (HF, LF and NF) for each group
(A, B and C) of sampling sites to consider the influence of temporal variation on the VFs. The results
(Table 4) for KMO and Bartlett’s test showed that PCA was effective in reducing dimensionality for all
datasets from the Liao River system. The statistical analysis procedures were the same as the previous
PCA. Table 5 summarizes the results of source identification for the monitoring sites (groups A, B and
C) in the different periods. Most sampling sites in group A were not obviously affected by heavy metal
pollution during the NF period. In group B, most sampling sites were influenced by toxic organic
pollution during HF and NF periods.

Table 4. Results for KMO and Bartlett’s sphericity test.

Periods KMO Bartlett’s Sphericity Significance

Group A
HF Period 0.704 1487.28 0.000
LF Period 0.702 771.018 0.000
NF Period 0.582 545.283 0.000

Group B
HF Period 0.632 443.34 0.000
LF Period 0.533 173.94 0.000
NF Period 0.597 169.06 0.000

Group C
HF period 0.662 925.21 0.000
LF period 0.571 556.05 0.000
NF Period 0.484 251.88 0.000
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Table 5. Source apportionment results for each period for the three different regions of pollution.

Periods VF1 VF2 VF3 VF4 VF5

Group A

HF Oxygen Consuming +
Toxic Organic Pollution

Nutrient + Fecal
Pollution

Heavy Metal
Pollution (Hg)

Physicochemical
Pollution

Heavy Metal
Pollution (Pb)

LF Oxygen Consuming
Organic Pollution

Physicochemical
Pollution

Nutrient + Fecal
Pollution

Toxic Organic
Pollution

Heavy Metal
Pollution (Pb)

NF Oxygen Consuming
Organic Pollution

Nutrient + Fecal
Pollution Nature Pollution Toxic Organic

Pollution
Physicochemical

Pollution

Group B

HF Oxygen Consuming
Organic Pollution Oil Pollution Nutrient + Fecal

Pollution
Toxic Organic

Pollution
Heavy Metal

Pollution

LF Oxygen Consuming
Organic + Oil Pollution Fecal Pollution Physicochemical

Pollution
Heavy Metal
Pollution (Pb) -

NF
Oxygen Consuming

Organic Pollution + Fecal
Pollution

Nutrient +
Heavy Metal

Pollution (Hg)

Physicochemical
Pollution

Toxic Organic
Pollution -

Group C

HF Oxygen Consuming
Organic + Oil Pollution

Physicochemical
Pollution

Nutrient + Fecal
Pollution

Heavy Metal
Pollution -

LF Oil + Oxygen Consuming
Organic Pollution

Heavy Metal
Pollution (Hg)

Nutrient
Pollution Fecal Pollution Heavy Metal

Pollution (Pb)

NF
Oxygen Consuming

Organic + Toxic Organic +
Oil Pollution

Heavy Metal
Pollution (Hg)

Heavy Metal
Pollution (Pb)

Nutrient + Fecal
Pollution

Physicochemical
Pollution

4. Discussion

4.1. Temporal/Spatial Similarities and Groupings

The temporal variation in water quality (Figure 2) in the Liao River system was clearly affected
by hydrologic conditions (high, normal and low flow periods) and also by seasonal changes and
river water pollution characteristics to some degree [2,6,16,20,33]. As shown by the results (Figure 3)
of spatial CA, the sites in group A were primarily situated in the upper and middle reaches of the
Liao, Hun and Taizi Rivers. The most upstream sites in the study area were located in a timbered
mountainous region receiving little influence from human activities [9,25]. In group B, the sites were
situated in the middle reaches of the Liao River and the lower reaches of the Hun and Taizi Rivers, which
pass through the areas showing the highest population density and greatest industrialization within the
Liao River watershed and are subject to serious river water pollution problems [9–12,26,43,44]. The sites
in group B primarily received discharge from industrial sewage, domestic wastewater and sewage
treatment works in city areas and non-point source pollution in rural areas [10,11,14,21,25,26]. The sites
in group C were situated in the middle and lower reaches of the Liao River and the lower reaches
of the Hun and Daliao Rivers, which are primarily influenced by oil production and petrochemical
industry pollution [12,43,44,46,47]. The results of temporal and spatial CA showed that the monitoring
frequency and number of monitoring sites may be appropriately reduced through selecting monitoring
periods in different seasons and sampling sites from different groups [1,2,20].

4.2. Temporal/Spatial Variations in River Water Quality

The characterization of seasonal and spatial variations in water quality is important for evaluating
river pollution caused by anthropogenic or natural factors [5,6,16,37]. Temperature and pH were
generally higher, while DO was generally lower in the HF season (20.0 ◦C for water temperature,
7.85 for pH and 6.78 mg/L for DO) than the other seasons (6.5 ◦C for water temperature, 7.72 for pH
and 8.03 mg/L for DO), whereas higher CODMn, BOD5, NH4

+–N, TP and volatile phenols values were
observed in the LF season (30.07 mg/L for CODMn, 8.61 mg/L for BOD5, 5.289 mg/L for NH4

+–N,
0.417 mg/L for TP and 0.0123 mg/L for Volatile phenols) than in the other seasons (22.73 mg/L for
CODMn, 5.75 mg/L for BOD5, 2.451 mg/L for NH4

+–N, 0.2556 mg/L for TP and 0.0066 or mg/L for
Volatile phenols) (Figure 4 and Table A3). The lower DO values recorded during the HF period were
due to many factors. For example, the local climate differed between seasons, with an obviously higher
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mean temperature occurring during the HF period (May–October) than the other periods (Figure 4);
thus, the lower DO in the river water observed in summer than in the other seasons results from
a natural process because warm water shows lower saturation values for dissolved oxygen and is able
to hold less dissolved oxygen [1,5,16,20,48]. Additionally, intense rainfall washes continental organic
matter (such as agricultural, forestal and municipal wastes) into the surface water, and organic matter
consumes a large amount of dissolved oxygen through biodegradation [6,21,25]. Lower NH4

+–N,
volatile phenol and petrol concentrations were detected during the HF period, due to the effect of
dilution by rainfall on point source pollution [2,3,6,42,43,46,47]. The average CODMn, BOD5 and TP
concentrations were all higher during the LF period than the NF and HF periods due to a lower flow
(which would dilute oxygen-consuming organics and nutrients). Hg, Pb and E. coli displayed no
statistically significant differences (Figure 4) among the three periods, which was attributed to the
relatively low values of these variables and the investigation of sampling sites with similar sources
during the different periods [21,42].

Among the measured water quality variables, most of the variables in group A (sites 9, 16, 44,
45 and 48) exhibited low values because these areas were nearly pristine, without significant point
source pollution (Figure 6) [10,21,25]. Within the Liao River basin (Figure 6), the average concentrations
of volatile phenols were highest in the Fushun section of the Hun River and the Benxi section of the
Taizi River (sites 17, 51 and 58), coming from industrial effluents of the organic chemical industry
and steel-making and coke plants [2,10,42,46,47]. Higher CODMn, BOD5, NH4

+–N, TP, and Hg values
and lower DO and pH values were found in group B (Figures 5 and 6 and Table A3). The higher
NH4

+–N, CODMn, and BOD5 values and lower pH values were attributed to the fact that most of
these monitoring sites were located in watercourses downstream of or near large urban areas in the
Liao River basin, where factories are scattered along the low and middle reaches of the Liao and
Daliao Rivers [10,12,42,43,46]. Large amounts of incompletely treated domestic and industrial
wastewater (domestic wastewater is over 5 × 104 t/a and industrial wastewater is over 4 × 105 t/a)
from urban areas are discharged into the Liao River system [10], exceeding the self-purification ability
of the river and deteriorating water quality [2,11]. The hydrolysis of some acidic materials from
point sources (industrial wastewater) causes a decrease in water pH values [4,6,46]. The higher TP
and E. coli values observed in most group B sites were primarily due to the fact that the region
is a rapidly developing area with the highest population density in the Liao River basin and is
characterized by large-scale livestock and poultry breeding production and large areas of cropland [10].
The highest average Hg concentration in the Liao River basin was found in the lower reaches of
the Taizi River (Figure 6), due to effluents from industrial wastewater from the cities of Benxi and
Anshan [2,10,21,42,44,49,50]. The average Pb concentration in the Liao River basin was higher in the
middle reaches of the Hun River and Liao River (Figure 6) because of the surrounding industrial
wastewater discharge and mining activities [10,21,25,42,49]. The average E. coli concentration was
highest in the middle and lower sections of the Hun and Taizi Rivers (Figure 6), which show the
highest population densities in the Liao River basin and are characterized by large-scale livestock and
poultry breeding farms [10,11,26]. The average petroleum concentration in group C was higher due to
oil and gas production and the petrochemical industry. The average EC concentrations at most group
C sites were higher in the Liao River Estuary, where the river reaches are affected by tides more often
than the other areas [5].

4.3. Identification of Latent Pollution Factors

The 66 sampling sites were combined to calculate the Pearson correlation matrix of the 13 analyzed
variables (Table 2). The Pearson correlation coefficients should be interpreted with caution due to
the simultaneous effects of temporal and spatial variations on river water quality [1,48,51]. However,
some hydro-chemical relationships could be inferred [1,26,48]. CODMn was highly correlated with
BOD5, TP and E. coli in groups A and C, which were responsible for point source pollution. NH4

+–N
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was highly positively related to E. coli in the all three groups, indicating that these pollutants came
from similar sources [1,11,16,20,48].

EPA PMF software was further used to identify the source of the watercourses in the Liao River
basin of Northeast China. The number of source factors should be calculated before running the PMF
model [17,18]. Considering the Q Value, the number of source factors for PMF was set to five for three
groups (groups A, B and C).

The concentrations of species and the percentages of each species for the three groups are shown
in Figure 9. For group A, factor profile 1 (F1) is dominated by TP, COD and BOD, and it seems
reasonable to conclude that F1 represents nutrient and oxygen-consuming organic pollution originating
from cropland and woodland runoff [6,25]. Factor profile 2 (F2) was characterized by enrichment
with NH4

+–N, and F2 appears to be associated with domestic waste [10,21]. Factor profile 3 (F3)
was characterized by enrichment in Petrol, showing an association with oil production at some
sampling sites. Factor profile 4 (F4) was dominated by Temperature, and F4 represents seasonal
changes [14,16,20]. Factor profile 5 (F5) is dominated by E. coli, DO, pH, Pb, Hg and volatile phenols,
which appear to be associated with wastewater from local livestock farms, mining activity and the
industrial wastewater [10,11,13]. For group B, T, Pb, Hg, pH, TP and E. coli dominated in F1, F1 was
best suited for industrial sewage and seasonal changes [14,16,20]. F2 was dominated by DO, pH and
Pb, which appear to represent physicochemical pollution [16,20,33,34]. F3 was enriched with NH4

+–N,
TP and E. coli, and it is reasonable to conclude that F3 is associated with local livestock farms and
domestic wastewater [10,25,26,42]. Volatile phenols, CODMn and BOD5 dominated in F4, which appear
to represent gas-fired and cooking water from industry [2,12,13]. F5 was enriched with Petrol and BOD5

and appears to be associated with oil production and petroleum chemical industry [2,12]. For group C,
F1 was dominated by NH4

+–N, which appears to be associated with domestic waste [25,26,42]. T, Hg
and Pb dominated in F2, which is also associated with industrial sewage and seasonal changes [12,16,20].
F3 was dominated by CODMn, BOD5, DO, pH, and which appear to represent oxygen-consuming
organic pollution from the industrial sewage and physicochemical sources [25,37,42]. F4 was enriched
with TP and might be associated with nutrient pollution from wastewater from local livestock farms.
F5 was dominated by Petrol, and it therefore seemed reasonable to conclude that F5 is associated with
oil production and petroleum chemical industry [2,12].

The source apportionment results of the PCA and PMF methods are listed in Table 6. Most of the
PMF results exhibited good agreement with the PCA results qualitatively, except for F3 (oil pollution)
of group A and F4 (gas-fired and cooking water from industry) of group B; however, F3 (oil pollution)
of group A and F4 (gas-fired and cooking water from industry) of group B represent continual
extensions and refinements of the unexplained variance in their own groups. The results from
PMF analysis are in close agreement with the results from PCA method. Compared with PCA,
PMF could further quantitatively analyze different pollution sources [17]. However, the results
obtained via the PMF method might introduce uncertainty into the conclusions [18,52]. The assessment
of source apportionment by the PMF model must be confirmed via PCA to improve its reliability;
to a certain extent, the PCA model is the foundation of the PMF, and the PMF model provides more
details and expands upon the PCA; the combination of the two methods can provide more valuable
information [17,18,52,53].

The actual levels and types of river pollution may be determined by many water quality
parameters, and each river presents unique characteristics due to the different influence of natural
and human activities [3,5,6,16,20,37]. The above 13 variables were selected, and the following
eight pollution types were identified in key areas of the Liao River basin: oxygen-consuming
organic pollution [2,29] (mainly influenced by non-point sources for group A and point sources
for groups B and C, non-point source pollution including agricultural and forestal plant litter and
point sources including industrial sewage, domestic wastewater and wastewater treatment plants);
toxic organic pollution [2,12,25,33,46,47] (mainly from steel-making, gas-fired and coking plants);
nutrients [5,33,54,55] (mainly from non-point sources); fecal pollution [6,12,26] (mainly from livestock
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and poultry breeding and domestic sewage); heavy metals [2,6,21,49,56,57] (mainly from mining
development and industrial sewage); oil pollution [2] (mainly from oil development); physicochemical
pollution [16,20,33] (physicochemical sources of the variability); and natural pollution [16,33]
(natural sources impacted by seasonal changes). The pollution types at the sampling sites of the
three different groups (groups A, B and C) differed markedly during the HF, NF and LF periods
(Table 5). The majority of monitoring sites in group A clearly received more heavy metal pollution
during HF period than NF and LF periods. Because the areas surrounding some sites in group A were
characterized by mineral exploitation activity [10,21,25,50], heavy rainfall carried heavy metals to the
surrounding river (e.g., upstream regions of the Hun and Taizi Rivers). Most sites in groups A and
C received more nutrient and fecal pollution during the HF period than in the NF and LF periods.
The majority of sites in group B showed the inverse pattern, receiving more fecal pollution during the
LF and NF periods than the HF period. The sites in group B showed the highest population density and
contained many intensive livestock and poultry breeding farms, where a high flow in the HF period
diluted fecal pollution; whereas the sites in groups C and A presented lower population densities
and less intensive livestock and poultry breeding than group B, and the abundant rainfall in the HF
period carried more fecal pollution from non-point pollution sources [10,11,26,42]. Some sites in group
C were subject to more serious heavy metal and toxic organic pollution during the NF period than
during the HF and LF periods, suggesting that there were more sources of toxic organics and heavy
metals during the NF period [9,11,21,25,41,42]. These results of source apportionment considering
different periods may be helpful for the prevention and control of water pollution caused by human
activities in different seasons [2,16,20,35].
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Table 6. Results from two different multivariate statistical models.

Groups
Principal Component Analysis (PCA) Positive Matrix Factorization (PMF)

Source Explained Variance
(%) Sources Contribution to the

Total Mass (%)

Group A

Cropland and Woodland Runoff 24.0 Cropland and Woodland Runoff 22.2
Seasonal Changes 10.8 Domestic Wastewater 5.0

Local Livestock Farms and Domestic Wastewater 9.8 Oil Pollution 4.3
Physicochemical Source of the Variability 8.6 Seasonal Changes 19.0

Mining Activity 8.6 Local Livestock Farms Wastewater, Mining Activity 49.5
Others 38.1 - -

Group B

Domestic Wastewater and Sewage Treatment Works 21.8 Industrial Sewage and Seasonal Change 33.2
Oil Production and Petroleum Chemical Industry 12.6 Physicochemical Source 13.7

Seasonal Changes 9.6 Local Livestock Farms and Domestic Wastewater 20.3
Local Livestock Farms Wastewater 9.3 Gas-Fired and Cooking Water From Industry 28.0

Industrial Sewage 8.3 Oil Production and Petroleum Chemical Industry 4.8
Physicochemical Source 8.0 - -

Others 30.4 - -

Group C

Oil production and Petroleum Chemical Industry 20.5 Domestic Wastewater 4.6
Physicochemical Sources 15.8 Industrial Sewage and Seasonal Change 44.0

Industrial Sewage 10.5 Industrial Sewage and Physicochemical Sources 39.0
Local Livestock Farms and Domestic Wastewater 8.6 Local Livestock Farms Wastewater 2.1

Seasonal Changes 8.1 Oil Production and Petroleum Chemical Industry 10.0
Others 36.4 - -
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5. Conclusions

The comprehensive application of various GIS-based multivariate statistical methods
(Pearson correlation, CA, DA, PCA and PMF) was successful in elucidating the spatial and temporal
variations of water quality and the source apportionment of water environment pollution in the
Liao River system of Liaoning province. The main conclusions were as follows.

(1) In the Liao River basin of Liaoning province, the 12 months of the year could be grouped into three
periods (May–October, February–April and November–January), and all sites in the area could
be divided into three significantly different groups. It was quite obvious that the CA method was
effective in providing a reliable classification of river water in the Liao River basin of Northeast
China, and the establishment of an optimal sampling strategy with a lower cost will become
possible in the future [2,20].

(2) Temperature, DO, pH, CODMn, BOD5, NH4
+–N, TP and volatile phenols were discriminant

variables showing temporal variations, with 81.2% correct assignments, and all water quality
monitoring parameters were discriminant variables showing spatial variations, also with
81.2% correct assignments.

(3) The patterns of pollution varied significantly on spatial and temporal scales. The results from
PMF analysis are in close agreement with the results from the PCA method. For group A,
oxygen-consuming organics from cropland and woodland runoff were the main latent pollution
source. The main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter for
group B. The evaluated pollutants primarily included oxygen-consuming organics, oil and toxic
organics for group C.

(4) For group B, the main latent pollution factors were oxygen-consuming organics, oil, nutrients
and fecal pollution during the HF and LF periods and oxygen-consuming organics, nutrients,
fecal pollution and heavy metals during the NF period. For group C, the main pollutants
evaluated mainly consisted of oxygen-consuming organics, oil, and heavy metal during the HF
and LF periods and oxygen-consuming organics, toxic organics, oil and heavy metals during the
NF period.
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Appendix A

Table A1. Analytical methods for water quality parameters of the Liao River system in Liaoning
province, China.

Parameters Analytical Methods Limits of
Detection

Temperature (◦C) Thermometer -
DO (Mg/L) Iodimetry 0.2

pH Glass Electrode -
CODMn (mg/L) Potassium Permanganate Method 0.5
BOD5 (mg/L) Dilution and Inoculation Test 0.5

NH4
+–N (mg/L) N−Reagent Colorimetry 0.05

TP (mg/L) Ammonium Molybdate Spectrophotometry 0.01
Hg (mg/L) Cold vapor Atomic Absorption Spectrometry 0.00005
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Table A1. Cont.

Parameters Analytical Methods Limits of
Detection

Pb (mg/L) Atomic Absorption Spectrophotometry 0.01
Volatile phenols (mg/L) Spectrophotometric Determination with 4−Amino−Antipyrin 0.002

Petrol (mg/L) Infrared Spectrophotometry 0.01
E. coli (num/L) Manifold Zymotechnics Method/Filter Membrane Method -

EC (ms/s) Electrometric -

Table A2. Statistical description of discharge (2000 and 2002–2010, Liaozhong Gauging Station) that
coincides with each type of flow period.

Periods Mean ± SD/(104 m3) Minimum/(104 m3) Maximum/(104 m3)

HF 26,916 ± 41,834 692 247,276
LF 4058 ± 3396 79 13,867
NF 4521 ± 6129 128 28,927

Note: SD is the abbreviation of standard deviation.
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Table A3. Comparison of mean values of water quality parameters by ANOVA between pollution regions and periods.

Parameters
Period Mean Value Region Mean Value

HF LF NF Group A Group B Group C

Temperature (◦C) 20.0 ± 4.8c 5.4 ± 3.3a 7.6 ± 4.6b 14.5 ± 7.6a 16.1 ± 8.1b 17.2 ± 7.8b
DO (Mg/L) 6.78 ± 2.56a 8.06 ± 3.37b 8.00 ± 3.90b 8.30 ± 2.87c 4.37 ± 2.27a 7.00 ± 2.77b

pH 7.85 ± 0.44b 7.74 ± 0.42a 7.71 ± 0.41a 7.85 ± 0.39b 7.76 ± 0.50a 7.73 ± 0.46a
CODMn (mg/L) 22.49 ± 15.64a 30.07 ± 21.73b 22.98 ± 16.84a 19.24 ± 18.19a 36.13 ± 15.29c 27.58 ± 13.88b
BOD5 (mg/L) 5.57 ± 4.90a 8.61 ± 24.81b 5.92 ± 6.95a 5.22 ± 16.90a 8.87 ± 5.65c 7.07 ± 4.00b

NH4
+–N (mg/L) 2.560 ± 3.897a 5.289 ± 6.443c 3.343 ± 4.083b 2.255 ± 4.182a 8.967 ± 5.800c 2.363 ± 2.762b

TP (mg/L) 0.266 ± 0.312a 0.417 ± 0.455b 0.244 ± 0.264a 0.214 ± 0.257a 0.693 ± 0.494c 0.232 ± 0.238b
Hg (mg/L) 0.000029 ± 0.000029a 0.000031 ± 0.000046a 0.000027 ± 0.000018a 0.000025 ± 0.000018a 0.000047 ± 0.000070c 0.000029 ± 0.000015b
Pb (mg/L) 0.00593 ± 0.00374a 0.00559 ± 0.00305a 0.00535 ± 0.00226a 0.00504 ± 0.00112a 0.00666 ± 0.00494b 0.00658 ± 0.00463b

Volatile phenols (mg/L) 0.0056 ± 0.0267a 0.0123 ± 0.0481c 0.0077 ± 0.0236b 0.0092 ± 0.0434c 0.0074 ± 0.0113b 0.0045 ± 0.0076a
Petrol (mg/L) 0.137 ± 0.220a 0.171 ± 0.120b 0.169 ± 0.291b 0.088 ± 0.206c 0.160 ± 0.221a 0.258 ± 0.233b

E. coli (num/L) 860,668 ± 5,082,132a 660,360 ± 3,203,293a 588,074 ± 3,250,654a 902,564 ± 5,118,360b 2280673 ± 6,333,392c 7131 ± 22,844a
EC (ms/s) 90.6 ± 225b 103.7 ± 122.0a 85.9 ± 76.6a 62.1 ± 34.1a 92.6 ± 33.3b 149.2 ± 332c
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39. Brūmelis, G.; Lapiņa, L.; Nikodemus, O.; Tabors, G. Use of an artificial model of monitoring data to aid
interpretation of principal component analysis. Environ. Model. Softw. 2000, 15, 755–763. [CrossRef]

40. Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M. Temporal evolution of groundwater composition
in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816.
[CrossRef]

41. Hannaford, J.; Buys, G. Trends in seasonal river flow regimes in the UK. J. Hydrol. 2012, 475, 158–174.
[CrossRef]

42. Duan, B.; Liu, F.; Zhang, W.; Zheng, H.; Zhang, Q.; Li, X.; Bu, Y. Evaluation and source apportionment of
heavy metals (HMs) in sewage sludge of municipal wastewater treatment Plants (WWTPs) in Shanxi, China.
Int. J. Environ. Res. Public Health 2015, 12, 15807–15818. [CrossRef] [PubMed]

43. Yang, L.; Zhu, L.; Liu, Z. Occurrence and partition of perfluorinated compounds in water and sediment from
Liao River and Taihu Lake, China. Chemosphere 2011, 83, 806–814. [CrossRef] [PubMed]

44. Wang, L.; Ying, G.G.; Zhao, J.L.; Liu, S.; Yang, B.; Zhou, L.J.; Tao, R.; Su, H.C. Assessing estrogenic activity
in surface water and sediment of the Liao River system in northeast China using combined chemical and
biological tools. Environ. Pollut. 2011, 159, 148–156. [CrossRef] [PubMed]

45. Kowalkowski, T.; Zbytniewski, R.; Szpejna, J.; Buszewski, B. Application of chemometrics in river water
classification. Water Res. 2006, 40, 744–752. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.apgeochem.2013.06.009
http://dx.doi.org/10.1039/c3em00567d
http://www.ncbi.nlm.nih.gov/pubmed/24509869
http://www.resdc.cn
http://dx.doi.org/10.1016/S0045-6535(01)00101-1
http://dx.doi.org/10.1016/S0272-7714(03)00112-4
http://dx.doi.org/10.1016/S1364-8152(02)00094-4
http://dx.doi.org/10.1016/j.envsoft.2006.02.001
http://dx.doi.org/10.2478/BF02479264
http://dx.doi.org/10.1007/s10661-006-9497-x
http://www.ncbi.nlm.nih.gov/pubmed/17171256
http://dx.doi.org/10.1007/s11356-013-2166-z
http://www.ncbi.nlm.nih.gov/pubmed/24081922
http://dx.doi.org/10.1016/j.marpolbul.2004.06.029
http://www.ncbi.nlm.nih.gov/pubmed/15530525
http://dx.doi.org/10.1016/S1364-8152(00)00060-8
http://dx.doi.org/10.1016/S0043-1354(99)00225-0
http://dx.doi.org/10.1016/j.jhydrol.2012.09.044
http://dx.doi.org/10.3390/ijerph121215022
http://www.ncbi.nlm.nih.gov/pubmed/26690464
http://dx.doi.org/10.1016/j.chemosphere.2011.02.075
http://www.ncbi.nlm.nih.gov/pubmed/21435686
http://dx.doi.org/10.1016/j.envpol.2010.09.017
http://www.ncbi.nlm.nih.gov/pubmed/20951481
http://dx.doi.org/10.1016/j.watres.2005.11.042
http://www.ncbi.nlm.nih.gov/pubmed/16442142


Int. J. Environ. Res. Public Health 2016, 13, 1035 27 of 27

46. Wang, L.; Ying, G.G.; Zhao, J.L.; Yang, X.B.; Chen, F.; Tao, R.; Liu, S.; Zhou, L.J. Occurrence and risk assessment
of acidic pharmaceuticals in the Yellow River, Hai river and Liao River of North China. Sci. Total Environ.
2010, 408, 3139–3147. [CrossRef] [PubMed]

47. Men, B.; He, M.; Tan, L.; Lin, C.; Quan, X. Distributions of polycyclic aromatic hydrocarbons in the Daliao
River Estuary of Liaodong Bay, Bohai Sea (China). Mar. Pollut. Bull. 2009, 58, 818–826. [CrossRef] [PubMed]

48. Kannel, P.R.; Lee, S.; Lee, Y.S. Assessment of spatial-temporal patterns of surface and ground water qualities
and factors influencing management strategy of groundwater system in an urban river corridor of Nepal.
J. Environ. Manag. 2008, 86, 595–604. [CrossRef] [PubMed]

49. Jiang, J.; Wang, J.; Liu, S.; Lin, C.; He, M.; Liu, X. Background, baseline, normalization, and contamination of
heavy metals in the Liao River watershed sediments of China. J. Asian Earth Sci. 2013, 73, 87–94. [CrossRef]

50. Ke, X.; Gao, L.; Huang, H.; Kumar, S. Toxicity identification evaluation of sediments in Liaohe River.
Mar. Pollut. Bull. 2015, 93, 259–265. [CrossRef] [PubMed]

51. Maillard, P.; Santos, N.A. A spatial-statistical approach for modeling the effect of non-point source pollution
on different water quality parameters in the Velhas river watershed—Brazil. J. Environ. Manag. 2008, 86,
158–170. [CrossRef] [PubMed]

52. Bhuiyan, M.A.H.; Dampare, S.B.; Islam, M.A.; Suzuki, S. Source apportionment and pollution evaluation
of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and
pollution evaluation indices. Environ. Monit. Assess. 2014, 187, 1–21. [CrossRef] [PubMed]

53. Khan, M.F.; Hirano, K.; Masunaga, S. Assessment of the sources of suspended particulate matter aerosol
using US EPA PMF 3.0. Environ. Monit. Assess. 2012, 184, 1063–1083. [CrossRef] [PubMed]

54. Huang, L.; Li, Y.; Zhang, Y.; Guan, Y. A simple method to separate phosphorus sorption stages onto solid
mediums. Ecol. Eng. 2014, 69, 63–69. [CrossRef]

55. Huang, L.; Zhang, Y.; Shi, Y.; Liu, Y.; Wang, L.; Yan, N. Comparison of phosphorus fractions and phosphatase
activities in coastal wetland soils along vegetation zones of Yancheng National Nature Reserve, China.
Estuar. Coast. Shelf Sci. 2015, 157, 93–98. [CrossRef]

56. Bu, H.; Wan, J.; Zhang, Y.; Meng, W. Spatial characteristics of surface water quality in the Haicheng river
(Liao River Basin) in Northeast China. Environ. Earth Sci. 2013, 70, 2865–2872. [CrossRef]

57. Yao, H.; Qian, X.; Gao, H.; Wang, Y.; Xia, B. Seasonal and spatial variations of heavy metals in two typical
Chinese Rivers: Concentrations, environmental risks, and possible sources. Int. J. Environ. Res. Public Health
2014, 11, 11860–11878. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scitotenv.2010.04.047
http://www.ncbi.nlm.nih.gov/pubmed/20493517
http://dx.doi.org/10.1016/j.marpolbul.2009.01.022
http://www.ncbi.nlm.nih.gov/pubmed/19268317
http://dx.doi.org/10.1016/j.jenvman.2006.12.021
http://www.ncbi.nlm.nih.gov/pubmed/17287068
http://dx.doi.org/10.1016/j.jseaes.2013.04.014
http://dx.doi.org/10.1016/j.marpolbul.2015.01.020
http://www.ncbi.nlm.nih.gov/pubmed/25680882
http://dx.doi.org/10.1016/j.jenvman.2006.12.009
http://www.ncbi.nlm.nih.gov/pubmed/17316961
http://dx.doi.org/10.1007/s10661-014-4075-0
http://www.ncbi.nlm.nih.gov/pubmed/25416128
http://dx.doi.org/10.1007/s10661-011-2021-y
http://www.ncbi.nlm.nih.gov/pubmed/21472386
http://dx.doi.org/10.1016/j.ecoleng.2014.03.042
http://dx.doi.org/10.1016/j.ecss.2014.09.027
http://dx.doi.org/10.1007/s12665-013-2348-5
http://dx.doi.org/10.3390/ijerph111111860
http://www.ncbi.nlm.nih.gov/pubmed/25407421
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area and Monitoring Sites 
	Data Sources 
	Statistical Analysis 
	Data Treatment 
	Analysis of Variance (ANOVA) 
	Pearson Correlation 
	Cluster Analysis (CA) 
	Discriminant Analysis (DA) 
	Principal Component Analysis (PCA) 
	Positive Matrix Factorization (PMF) 


	Results 
	Temporal/Spatial Grouping 
	Temporal/Spatial Variations in River Water Quality 
	Identification of Latent Pollution Factors 

	Discussion 
	Temporal/Spatial Similarities and Groupings 
	Temporal/Spatial Variations in River Water Quality 
	Identification of Latent Pollution Factors 

	Conclusions 
	

