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Abstract: Taihu Lake in China is suffering from severe eutrophication partly due to non-point
pollution from the watershed. There is an increasing need to identify the regions within the
watershed that most contribute to lake water degradation. The selection of appropriate temporal
scales and lake indicators is important to identify sensitive watershed regions. This study selected
three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal
region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil
erosion intensity was designated as a watershed indicator, and the lake algae area was designated
as a lake quality indicator. The sensitive watershed region was identified based on the relationship
between these two indicators among different lake divisions for a temporal sequence from 2000 to
2012. The results show that the relationship between soil erosion modulus and lake quality varied
among different lake areas. Soil erosion from the two bay areas was more closely correlated with
water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to
10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be
used as an indicator for identifying key watershed protection areas. Different lake areas need to be
considered separately due to differences in geographical features, land use, and the corresponding
effects on lake water quality.

Keywords: soil erosion modulus; eutrophication; algal blooms; buffer distance; sensitive
watershed region

1. Introduction

Anthropogenic activities and land use/cover change (LUCC) have greatly increased soil erosion
and non-point source (NPS) pollution loading in many watersheds, which can have significant
impacts on lake ecosystems [1–3]. Many lakes in China are undergoing eutrophication and
approaching their ecological limits [4]. Lake water deterioration can have serious effects on the health
of local inhabitants. Therefore, there is a critical need to study the relationship between watershed
pollution and lake water quality for the purpose of aquatic environment protection. The delineation
of the watershed region sensitive to lake ecosystem deterioration is a fundamental issue in watershed
environment management [5–7].

Many studies have directly or indirectly examined the response of lake ecosystems to changes
in watershed land use. Lake nutrient concentrations and primary production have been associated
with agricultural nutrient loading [8,9], while dissolved organic carbon (DOC), total suspended
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solids (TSS), and water turbidity have had a negative correlation with the percentage of natural
forestland [10–12]. In many studies, landscape indicators and water quality indicators have been
examined at a sub-watershed scale, and, in many developed valleys, dense river networks make
the differentiation of sub-basins difficult [13]. One approach to these complex analyses is the use
of multi-buffer zones, which represent different distances within the watershed to the lake [14].
However, different studies provide conflicting views on the value of using geographic buffers with
respect to whole catchments. Some studies showed that watershed indices from buffered regions
close to the lake could explain many characteristics of lake water quality [15], while other studies
demonstrated that information from the whole catchment must be considered to determine water
quality [16,17]. Some of these inconsistent results were attributed to: (i) the use of a single time phase
in the previous study, which can only represent the condition of a specific time period. For this case, a
long temporal sequence is more suitable to discuss the relationship between watershed pollution and
lake quality [18]; (ii) the use of a variety of water indicators in previous studies, as different indicators
led to different assessment results [19], and, most importantly; (iii) the widespread use of land use
and landscape patterns as watershed indicators in the previous study. LUCC indicators influenced
lake degradation by the process of soil loss and non-point source pollution loads, which implied that
direct indicators (e.g., soil erosion and NPS loads) are necessary in relevant studies [20–22].

Taihu Lake is one of the most severely eutrophic lakes in China. Currently, Taihu Lake is deeply
troubled with lake eutrophication and algae blooms [23]. For the purpose of lake environment
protection, the provincial water resources protection bureau established a 5 km buffer around
Taihu Lake as a critical lake conservation region in the watershed [24]. Although the critical lake
conservation region was a positive step for improving lake conditions and managing the lake, the
differentiation of watershed regions or different lake divisions may be more effective. In the present
study, the spatial-temporal tendency of soil erosion on lake districts around Taihu Lake was examined
with respect to its impact on lake water quality, overcoming limitations cited in the previous studies.
First, instead of using a variety of water indicators (e.g., Total Phosphorus (TP), Total Nitrogen
(TN), Dissolved Organic Carbon (DOC), Particulate Organic Carbon (POC), and chlorophyll) that
are obtained by field sampling, a comprehensive and spatial indicator of lake quality was used in
this study. The total amount of algae was usually measured by Chlorophyll-a, and the algae bloom
was triggered by nitrogen and phosphorus accumulation in lakes. Therefore, the algae area, which
was usually acquired using remote sensing algorithms, could be used as a suitable water indicator.
Second, a long temporal sequence (between 2000 and 2012) of soil erosion intensity and lake algae area
was developed, and the soil erosion intensity was always represented spatially by erosion modulus
in abundant relative studies. The two indicators were obtained by remote sensing technology and
compared seasonally to enhance the accuracy of the assessment. Finally, the study identifies a new
approach to determine critical lake conservation areas based on the identification of the most sensitive
buffer regions related to lake eutrophication.

2. Material and Methods

2.1. Study Site

Taihu Lake is one of the five largest freshwater lakes in China and is located in the developed and
highly populated Yangtze River Delta. The total water area is 2400 km2, and the mean water volume is
approximately 44ˆ 108 m3. The water depth ranges from 1.0 to 2.5 m, with an average of 1.89 m. The
average annual precipitation is 1100–1150 mm, and the average annual temperature is 16.0–18.0 ˝C,
with an average monthly temperature of 6 ˝C in winter (including December, January and February),
and 30 ˝C in summer (including June, July and August). The lake is ice-free all year. The average
annual lake outlet runoff amount is 75 billion cubic meters, and the water storage capacity is 44 billion
cubic meters [25].
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The Taihu Lake watershed experienced significant urbanization over the last 20 years [26].
In addition, deforestation, soil erosion and poorly regulated horticultural and agricultural activities
resulted in a heavy inflow of nutrients into the lake from catchment areas. This study explored the
watershed-lake relationships for three highly eutrophic lake areas: Mei Liang Bay (ML), Zhu Shan Bay
(ZS) and the Western Coastal region (WC). The corresponding watershed area for ML belongs to the
Binhu district of Wuxi city, the watershed area for ZS is located in the Wujin district of Changzhou city,
and the watershed area for WC belongs to Yixing City [27]. Rapid land use change and agriculture
non-point pollution characterize all three areas [28]. It has been estimated that the annual river input
of total phosphorus (TP) was approximately 7032 t/km2¨ a to the whole lake, and the total nitrogen
(TN) was approximately 27,234 t/km2¨ a [29,30]. The major soil types in the study sites are Alfisols
and Histic, both of which are commonly enriched with organic matter in the top soil. The particle size
of the soil is dominated by silt and sand (their percentages were higher than 90%), which represents
high soil erodibility [31].

Six watershed buffer regions around the three lake divisions were selected using ArcGIS 10.0
based on different distances to the lake boundary. The buffer distances were 1 km (B1), 5 km (B5),
10 km (B10), 20 km (B20), 30 km (B30) and 40 km (B40) (Figure 1).
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2.2. Spatial-Temporal Representation of Soil Erosion

The erosion modulus represented the soil erosion amounts in the unit area and in certain periods.
The erosion modulus is widely used to characterize soil erosion intensity. Among many soil erosion
assessment models, the Revised Universal Soil Loss Equation (RUSLE) has been widely applied to
evaluate soil erosion by integrating several factors, including climate, land use, soil, topography,
and vegetation [32,33]. In this study, the RUSLE was calculated in GIS for the purpose of spatial
characterization. The fundamental form of RUSLE is:

A “ Rˆ LSˆ Kˆ Cˆ P

where A is the average soil loss due to water erosion (Mg¨ha´1/year), R is the rainfall and runoff
erosive factor (MJ¨mm¨ha´1¨h´1 per year), K is the soil erodibility factor (Mg¨h¨MJ´1¨mm´1), L is
the slope length (m), S is the slope steepness, C is the cover and management practice factor, and P
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is the conservation support practice factor based on land uses [34]. LS is based on the topographic
features of the study site, and K is based on the soil type. L and S do not change over time and
were determined from Digital Elevation Model (DEM) data. The DEM data were acquired from the
official website of the U.S. Geological Survey (USGS) [35], and the spatial accuracy was 30 m. K was
obtained from a local soil type distribution map (1:1,000,000), and the data were digitized from the
publication of <Soil Annals of Jiangsu Province> [36]. R, C, and P showed significant variations over
the study period. R was calculated as R = 0.689Pm

1.474 [37,38], where Pm is the average precipitation in
the month (MJ¨mm¨km´2¨h´1¨month´1). C is the protective effect of soil cover against the erosive
action of rainfall, and the C factor was determined by using remotely sensed NDVI (Normalized
Difference Vegetation Index) estimates [39]. Landsat Thematic Mapper (TM) satellite images were
used to calculate the NDVI values, and the TM images were obtained for each season in 2000
(7 January, 19 April, 12 June and 12 October), 2002 (3 February, 12 April, 12 August and 1 December),
2005 (18 February, 9 April, 30 July and 11 December), 2007 (17 January, 12 March, 8 August and
21 November), 2010 (3 February, 13 April, 8 August and 23 October) and 2012 (24 January, 2 April,
30 June and 21 November). The cloud coverage of each satellite image was lower than 10% and the
selected images can represent four seasons for these years. P is determined as the ratio between the
soil losses expected for certain soil conservation practices, based on land use type. In this study, P
was taken from Xu et al for the Taihu Lake Basin (Table 1) [38].

Table 1. The assignment of the conservation support practice factor based on land uses (P) in the
study site.

Land
Use

Planted Forest/
Grass Land

Original
Forest

Water/Building
Land Bare Land

Arable Land (Assigned according to Slope) *
1.1–2.0 2.0–7.0 7.0–12.0 12.0–18.0 18.0–24.0

P 0.3 0.2 0 1 0.6 0.5 0.6 0.8 0.9

* The P assignment in arable land was based on the cropping system and slope. In the study site, the cropping
system was unified as contour tillage, and slope could be divided into 5 grades, which are shown in Table 1.

The seasonal change of the erosion modulus was calculated in raster form at 30 m spatial
resolution, which is consistent with remote sensing images. The erosion modulus over the whole
time series was extracted from three lake divisions and six buffer distance regions.

2.3. The Spatial-Temporal Representation of the Algae Area

An aggregate indicator was used to represent water quality, rather than individual and
inconsistent indices used in previous studies. Algae bloom area was used as an aggregate indicator to
describe the degree of eutrophication. NDVI and EVI (Enhanced Vegetation Index) present challenges
in determining bloom areas in shallow lakes, as there are limited differences between pixels associated
with algae and aquatic vegetation. This can result in overestimates of algal bloom areas. The Floating
Algae Index (FAI), which was calculated by spectral bands, including Near Infrared Red(NIR),
Short-wavelength Infrared Red(SWIR) and Red bands, can be used with moderate-resolution imaging
spectra-radiometer (MODIS) images [40] and provides good estimates of algal blooms in shallow
turbid waters [23,41]. The Terra/Aqua MODIS 250-m resolution Level-0 data were obtained from the
U.S. NASA Goddard Flight Space Center. More than 1000 near cloud free Level-0 granules of Lake
Taihu were converted to calibrated radiance data using the SeaDAS software package (Version 6.1).
Atmospheric absorption and Rayleigh scattering were corrected for use with the computer software
provided by the MODIS Rapid Response Team [40]. The FAI values were extracted from all the valid
images in the selected years (563 images in total). The FAI was defined as

FAI “ Rrc p859q ´R1rc p859q

R1rc p859q “ Rrc p645q `
rRrc p1240q ´ Rrc p645qs p859´ 645q

1240´ 645
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where Rrc pλq is the baseline reflectance of each band, which had been corrected by Rayleigh
scattering. We used a threshold of ´0.004 as the distinction criteria of algae pixels and non-algae
pixels, following recent studies [23,41,42]. The daily algae area was mapped and then the seasonal
changes were determined from daily data using a moving average method.

2.4. Relationship between Soil Erosion and Algae Area

As soil erosion is a critical factor for watershed nutrient loss and lake eutrophication, we focused
on the relationship between soil erosion modulus and lake eutrophication areas across a temporal
sequence (2000–2012).

A total of 24 data pairs, including four seasons for six years, were used. The buffer region of
the three lake divisions was identified. A normal distribution test was conducted and all data sets
were normally distributed (p < 0.05). Correlation coefficients between soil erosion intensity and algae
areas were calculated to identify the best match between buffer regions and lake water quality. The
determination coefficient (R2) was used to evaluate the relationship between soil erosion modulus
and algae areas and to compare the effects in different lake divisions and buffer regions.

3. Results

3.1. The Spatial-Temporal Tendency of Soil Erosion

The soil erosion modulus calculated by RUSLE varied significantly over the six selected years
within the 12 year period (Figure 2) and showed clear differences between lake areas. Generally,
the WC region was eroded slightly when compared with the other regions, and the ZS region had
the severest erosion intensity, with the erosion modulus exceeding 3000 Mg¨ha´1 in most cases and
even reaching higher than 4000 Mg¨ha´1 for the 20 km buffer region in 2007. Moreover, the erosion
modulus varied notably in the temporal series and with no regularity and reached a maximum value
between 2005 and 2007 for all three regions.
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Figure 2. Tendency of erosion modulus within each region between 2000 and 2012 (W: winter;
SP: spring; S: summer; A: autumn).

3.2. Spatial-Temporal Tendency of Algae Area

The FAI values showed the expected seasonal behavior, with minimum values in the winter and
maximum values in the summer each year (Figure 3). Inter-annual trends showed low coverage until
2005 and a maximum in 2007 in the ML and ZS areas (Figure 4). Algal bloom coverage showed a
positive trend in the WC lake area (Figure 3).

In general, massive algal bloom coverage did not occur frequently before 2005, such that the
total algae area for the three divisions was largely less than 25% of the lake surface area. Algae
areas increased from 2005 to 2007, with the algae area of ZS covering up to 45% of the whole lake
division area in the spring and autumn of 2007. After 2007, the phenomenon of algae blooms had
been controlled to some extent, the algae area in ZS and ML was greatly decreased. However, the
WC region continued to have elevated blooms, with algae covered area proportions of approximately
35% in 2012.
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3.3. Relationship between Soil Erosion and Algae Areas

The relationship between the erosion modulus and algae areas within the WC region had a best
fitting for the 1 km buffer region (r = 0.72). However, the general fitting effect was not ideal, as the
r2 was less than 0.5 for the other buffer regions (Table 2). Conversely, the ML and ZS regions showed
a better correlation between the erosion modulus and algae areas, and the best fitting results were in
the 10 km and 5 km buffer regions (Table 2). The correlation coefficient value for the 10 km region
within ML and ZS reached 0.88 and 0.83, respectively, and the Root Mean Square Error (RMSE) was
also low. These fitting effects were much greater than the value for the WC.

Table 2. Statistical data for the correlation coefficients between the erosion modulus and algae within
different buffer regions (* p < 0.05; ** p < 0.01).

Correlation Coefficient (r) r2 RMSE

ML

1 km ´0.190 0.04 9.19
5 km 0.77 ** 0.59 0.52

10 km 0.88 ** 0.77 0.184
20 km 0.50 * 0.25 0.795
30 km 0.41 * 0.17 8.29
40 km 0.18 0.03 9.68

ZS

1 km 0.63 ** 0.40 6.94
5 km 0.75 ** 0.56 1.02

10 km 0.83 ** 0.69 0.48
20 km 0.53 * 0.28 3.40
30 km 0.57 * 0.32 5.67
40 km 0.49 * 0.24 7.55

WC

1 km 0.72 ** 0.52 6.40
5 km 0.69 ** 0.48 8.99

10 km 0.48 * 0.23 4.80
20 km 0.29 0.08 7.73
30 km ´0.10 0.01 9.03
40 km ´0.12 0.01 12.32

The relationship between soil erosion and lake water quality is discussed within each region,
which was divided into four groups according to different seasons (the 1 km, 10 km, 20 km and
40 km regions are shown). These data are plotted in Figure 5 using a scatter diagram of the erosion
modulus and algae area, with the erosion modulus designated as independent and the algae area
designated as dependent.

Seasonal differences were notable for all regions and buffer distances. The relationship between
the erosion modulus and the algae areas in winter was significantly worse than it was during the
other three seasons. Specifically, with respect to the 10 km region within the ML and ZS regions,
which were the most sensitive watershed regions relating to lake algae, the plots representing spring,
summer and autumn were situated close to the trend lines. The winter plots exhibited the opposite
status, which made the r2 for these two regions approximately 0.77 and 0.68, respectively (Figure 5).
This feature was reflected more notably in the WC region, in which more than half of the plots in the
winter were located far from the trend lines (Figure 5). It directly resulted in the WC region having
the worst fitting results between watershed soil erosion and lake algae intensity.
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three watersheds.

4. Discussion

4.1. Sensitive Watershed Regions within Lake Divisions

The correlations between soil erosion and lake eutrophication varied significantly not only
within different lake divisions but also within different watershed buffer regions (Figures 2–4). The
closest relationship was observed in the 10 km regions within ML and ZS, and in the 1 km buffer
region within the WC. All of these fitting results within these buffer regions were much better than
those of the 40 km regions that represented the whole watershed area of ML, ZS and WC. These
results further proved that the classification and comparison of multi-buffer regions are necessary in
studies investigating the linkage between watershed soil erosion and lake degradation.

The relationship between the erosion modulus and lake algae areas in the WC region was much
weaker than those within the ML and ZS regions. This can be attributed to the inconsistent tendencies
between watershed erosion intensity and the degree of lake eutrophication. In particular, the erosion
modulus in the WC was lower and the values were more stable than those in ML and ZS (Figure 2).
However, the algae area in the WC lake division was more temporally varied from 2000 to 2012
(Figure 3). The different land use constitutions in the WC and other regions are considered to play
a crucial role in the poorer fitting effect in the WC region. As seen in Figure 1, construction land
was largely occupied in the south of the WC region, which has a different land use constitution
than the ML and ZS regions, which were covered with arable land and forestland. Therefore, the
inconsistent change tendency of soil erosion and algae areas implied that soil erosion and agricultural
non-point source pollution may not be the critical factors leading to lake quality degradation in the
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WC region. Instead, the non-point and point pollutions from urban areas play an important role
in lake eutrophication. For instance, most of the area in WC belongs to Yixing City. This city is
dominated by traditional industries, such as iron manufacturing and textile mills. This city also
lacked sewage treatment and diversion equipment for sewage and storms under the impervious
surfaces before 2010. This led to excessive rainfall runoff, and thus, excessive nutrient input from
urban runoff [2,3].

The specified buffer regions between 5 km and 10 km within ML and ZS had the highest
correlations between soil erosion and algae area. The relationship in the other buffer regions was
weak, which indicated that the lake water quality was most sensitive to human activities at the
sub-catchment scale. Arable land is the main land use type in the Taihu Lake Basin, and it is most
vulnerable to soil erosion [42,43]. Therefore, the spatial distribution of arable land in different buffer
regions largely determines soil erosion and lake water quality [44,45]. The amount of arable land
varied substantially in the two regions during the timeframe of this study (Figure 6). Arable land was
most abundant in the 5 km and 10 km buffers, with one exception of arable land covering 69.7% of
the land in the 20 km buffer of ZS in 2000. This anomalous land-use feature was consistent with the
correlation relationships observed between the erosion modulus and lake algae areas in the 20 km
buffer of the ZS region. Arable land and wetlands were primarily located close to the lake, while land
use at greater buffer distances included urban areas. The proportion of arable land has decreased in
recent years, largely due to increased urbanization [46].
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4.2. Soil Erosion as an Indicative Target for Watershed Protection Regionalization

Taihu Lake is a typical shallow eutrophic lake in China. From past studies, watershed soil and
water loss and non-point source pollution result in an increase in the nutrient load to the receiving
lake environment. This is a driving factor in the use of watershed conservation regions, where
improved soil erosion control is employed to slow lake water deterioration. Given the availability
of long time data series, it is possible to identify links between the sensitive watershed regions and
lake eutrophication. The erosion modulus, as an indicator of soil erosion intensity and non-point
sources of nutrient loads, presents an important tool for watershed management [47].

From the results of our study (Figure 5 and Table 2), a relatively good correlation between the soil
erosion modulus and lake water quality (in ML and ZS) for the 10 km buffer region was found, but this
did not exceed 0.8. However, points representing winter appear as outliers (Figure 5), while summer
and spring points were situated close to the trend lines. This indicates, unsurprisingly, that studies
focused on Taihu Lake had confirmed that algae were dormant in the winter and active in the summer
and autumn [48]. On the contrary, there is no significant seasonal trend in the soil erosion modulus
(Figure 2) because the erosion modulus was influenced by factors, such as land use, topography,
rainfall, and soil properties, which show very little or no correlation with seasonal changes [33]. These
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observations demonstrated that the erosion modulus was not closely related to algae areas in the
winter, demonstrating that soil erosion is a strong indicator of lake water quality in the Taihu Lake
Basin, especially in spring and summer during the rainy season.

5. Conclusions

By comparing soil erosion as a watershed indicator to algal bloom areas as indicators of
eutrophication, the present study aimed to identify the sensitive watershed regions of Taihu Lake
using the data from six selected years within a 12 year period. The results showed that the most
sensitive watershed regions in the two impacted bays were at 5 km and 10 km. The arable lands were
consistently dominant in these buffer regions over the study period. The watershed soil erosion in
the Western Coastal region had less influence on the lake water quality. This was probably due to the
large areas of impervious surface leading to lower soil erosion modulus. Instead, lake degradation in
the WC region was mainly sourced from non-point and point pollutions from urban areas, resulting
from the insufficient distribution of sewage treatment and diversion equipment for sewage and storm
events in the region. In addition, we also found that the relationship between watershed soil erosion
and lake algae coverage followed seasonal variations, with the rainy season (spring and summer)
having the strongest relationship between soil erosion and lake algae.

In conclusion, soil erosion is an important indicator that can be used to identify watershed
protection regions within agriculturally dominated catchments. We found that different areas of large
lake divisions behave differently and need to be considered separately. To provide more accurate
information for watershed management, a longer temporal sequence should be considered, and a
better quantification of seasonal and inter-annual nutrient loads needs to be determined.
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