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Abstract: The application of hydrological and water quality models is an efficient approach to 

better understand the processes of environmental deterioration. This study evaluated the 

ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict 

runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed 

of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual 

and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the 

two water quality components were calibrated. The results showed that the model satisfactorily 

simulated runoff at annual and monthly scales, both during calibration and validation 

processes. Additionally, results of parameter sensitivity analysis showed that the parameters 

Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to 

TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer 

inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, 

calibration was performed. TN loading produced satisfactory results for both the 

calibration and validation processes, whereas the performance of TP loading was slightly 

poor. The simulation results showed that AnnAGNPS has the potential to be used as a 

valuable tool for the planning and management of watersheds. 
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1. Introduction 

Non-point source pollution occurs when rainfall or irrigation water runs over land or through the 

ground, picks up pollutants and deposits them into rivers, lakes, or coastal waters or introduces them into 

ground water [1]. It is an important environmental and water quality management problem, and non-point 

sources presently account for the majority of water quality problems [2]. The increases in nutrient losses 

and riverine nutrient loads have resulted in nuisance algal blooms, the depletion of dissolved oxygen, and 

other water quality impairments [3]. Severe problems with water quality seem to make it unlikely that the 

water body will continue to support aquatic life and human consumption [4]. 

Watershed modeling can be a valuable tool for studying the relationships between conditions and the 

quality of water in a watershed [5]. The modeling of environmental deterioration to better understand and 

manage natural resources, such as river basins and watersheds, is a continuous process. Basin scale models 

that incorporate weather data and watershed characteristics such as topography assist in the delineation of 

the watershed and are tools for the development of management strategies in a watershed and river basins 

[6]. In the last four decades, several hydrological and water quality models have been developed to assist in 

understanding hydrologic systems and pollutant loadings [7], such as AnnAGNPS (Annualized 

Agricultural Non-Point Source Pollution Model) [8], ANSWERS (Areal Non-point Source Watershed 

Environment Response Simulation) [9], SWAT (Soil and Water Assessment Tool) [10], and HSPF 

(Hydrological Simulation Program FORTRAN) [11]. These models can be used to simulate the transport 

processes of runoff, sediment, nutrients and other chemical substances. Detailed reviews of these models 

can be found in the literature [12–14]. 

The AnnAGNPS model combines the latest advances in GIS (Geographic Information System) data 

manipulation with physical characterization of the catchments, offering modeling opportunities for 

ungauged areas or for areas with limited data that prohibit the use of models relying on calibration for 

the derivation of input variables [15]. The model has been successfully used in many areas of the 

world in recent years, including Spain [16–18], Nepal [19], Italy [20], Canada [21],  

USA [22–24] and China [5]. These studies evaluated the ability of the AnnAGNPS model to predict 

runoff and pollutant loadings under different climate or land-use conditions in various watersheds with 

areas ranging from 0.1 to 130 km2. However, many of those studies have focused on evaluating the 

model’s suitability and on testing its performance regarding hydrologic and sediment transport 

estimation [16–24], and few efforts have been made to analyze the sensitive parameters for nutrient 

concentrations and to evaluate the model’s ability to predict them [4,15,25,26].  

Thus, the purpose of this study is to validate the capability of the AnnAGNPS model to predict runoff 

and to analyze the sensitive parameters in regard to nutrient concentrations and evaluate the capability of 

the model to simulate nutrient loadings in a small watershed for a long time period (nine years). 
  



Int. J. Environ. Res. Public Health 2015, 12 10957 

 

2. Materials and Methods 

2.1. AnnAGNPS Model Description 

In this study, AnnAGNPS version 5.1 was applied. AnnAGNPS is a batch-process, continuous 

simulation, watershed-scale model designed to aid in the evaluation of long term, hydrologic and water 

quality responses to agricultural management practices [27]. It was jointly developed by the United States 

Department of Agriculture (USDA), the Agricultural Research Service (ARS) and the Natural Resources 

Conservation Service (NRCS) [28]. It consists of a system of computer models developed to predict 

NPS pollutant loadings within an agricultural watershed [16]. With the support of a routing system, 

continuous simulation has been realized [29]. The model simulates runoff, sediments, nutrients and 

pesticides, leaving the land surface and shallow subsurface and moving through the channel system to 

the watershed outlet, with output available atthe event, monthly and annual scales [30]. AnnAGNPS 

model is also designed to assist in determining BMPs (Best Management Practices), TMDLs (Total 

Maximum Daily Loads), and in risk cost/benefit analysis. 

In AnnAGNPS, the analyzed watershed can be divided into many homogenous (in terms of soil 

type, land use and land management) cells or subwatersheds (up to 40 km2) to quantitatively estimate 

precipitation runoff and sediment, as well as nutrient and pesticide loadings [16,31]. The cells are irregular 

basins with comparatively uniform physical and hydrological characteristics, which allows for the analysis 

of any point within the watershed. The physical or chemical constituents are routed from each cell and 

are either deposited within the reaches or transported out of the watershed [4]. Cells and reaches and 

their topographic properties can be estimated by TOPAGNPS (Topographic Parameterization program 

used for AGNPS) and AGFLOW (Agricultural watershed Flownet generation program), which are 

additional modeling components in AnnAGNPS [32]. 

Surface runoff is estimated based on the Soil Conservation Service [33] Curve Number (CN) method. 

CN represents the runoff producing potential of soils, and has a range of 0–100.  

The Revised Universal Soil Loss Equation (RUSLE) [34] is used to estimate the daily sheet and rill 

erosion of the area. Considering that the RUSLE does not simulate the transport of eroded particles, the 

Hydro-Geomorphic Universal Soil Loss Equation (HUSLE) is used to simulate sediment delivery to the 

stream [35]. For N and P, a basic mass conservation equilibrium is employed to estimate nutrients 

generation and loading for rainfall events [36]. The model has a fixed N and P cycle, which considers 

the amounts of N and P joining or leaving the watershed [15]. 

2.2. Study Area 

The study watershed is named Wucun and is located in the western basin of Taihu Lake in China. 

The area of the watershed is 1.81 km2 (181ha). The river originates from low hilly terrain with a maximum 

elevation of approximately 360 m, and it travels 2500 m while finding its way to the outlet (sampling 

stations), which is at an elevation of approximately 27 m (Site 1) (Figure 1).  

The watershed is characterized by a subtropical monsoon climate, with a mean annual rainfall of  

1169.3 mm and an annual average temperature of 15.4 °C (2005–2013), and the rainy seasons mainly 

occur over 4–9 months. The soil type in the upstream of the watershed is generally Typic Ali-Udic 

Argosols (TAUA) and that in the downstream of the watershed is Typic Hapli-Stagnic Anthrosols 
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(THSA). Properties of soils are presented in Table 1. The land use in this watershed is largely 

dominated by forest, and other land uses mainly include urban land and agriculture. 

 

Figure 1. The Map of the Wucun watershed showing sampling sites, the digitized stream 

and the watershed boundary. 

Table 1. Properties of soils in the study area. 

Classification [37] Hydrological K Factor Value Depth (mm) 
Content (%) 

Clay Silt Sand Very Fine Sand 

TAUA B 0.04 

0–16 15.12 41.98 42.9 3.01 

16–29 17.41 37.69 44.9 3.11 

29–56 16.84 40.26 42.9 3.01 

THSA C 0.04 

0–14 19.22 53.06 27.72 1.97 

14–24 12.9 59.38 27.72 1.97 

24–36 12.73 57.3 29.97 2.12 

36–100 13.26 31.21 55.53 3.50 

2.3. Data Acquisition 

2.3.1. Climate Data 

Climate data required for running the AnnAGNPS model includes maximum temperature, minimum 

temperature, precipitation, dew point temperature, sky cover or solar radiation, and wind speed. In this 

study, the time span of climate data was nine years from January 2005 to December 2013. Data of 

maximum temperature, minimum temperature, and precipitation were downloaded from the Liyang 

national climate station (31°26′N, 119°29′E; at 7.7m height) for 2005 to 2010 and were provided by 

the Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences from 2011 to 2013. 

Additionally, dew point temperature was calculated from the relative humidity and mean air temperature, 

and solar radiation was deduced from temperature and sunshine duration, as suggested by the China 

Meteorological Administration (CMA) [38]. 
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2.3.2. Topographic Data 

This study utilized a 1:50,000 relief map, which was scanned and then digitized to construct a 

Digital Elevation Model (DEM) (30 m ×30 m). The DEM is used for topographic evaluation, drainage 

identification, watershed segmentation, and subcatchment parameterization.CSA (Critical Source 

Area) and MSCL (Minimum Source Channel Length) are employed to divide the watershed. The CSA 

value defines a minimum drainage area below which a permanent channel is defined, and the MSCL is 

the minimum acceptable length of the cell swale for the source channel to exist. Various combinations 

of CSA/MSCL values were tried for watershed delineation. Finally, values of 2 ha and 70 m were 

adopted to define CSA and MSCL, respectively. As a result, 78 cells and 36 reaches were obtained, 

and the cell area ranged from 428 to 157,940 m2. 

2.3.3. Soil Data 

Running the AnnAGNPS model requires specific properties of all soil layers. The physical properties 

include particle size distribution, bulk density, saturated hydraulic conductivity, field capacity, wilting 

point, etc. Chemical properties such as pH, organic matter, organic and mineral nitrogen and phosphorous 

were considered. The digital soil map obtained from the Soil Survey Office in Jiangsu Province of 

China provided little information about the properties of soil. Thus, parts of properties such as saturated 

hydraulic conductivity, field capacity and wilting point were calculated by the Soil Water Characteristics 

(SWCT) module of the SPAW (Soil Plant Atmosphere Water) model [39]. Additionally, the soil erodibility 

factor (K) was derived following Wischmeier and Smith [40]. The soil properties for various types of 

soil in the study area are shown in Table 1. 

2.3.4. Land Use Data 

The original land use map was obtained from an aerial image taken in 2009 with a resolution of  

0.5 m × 0.5 m. The image data of the study watershed was reclassified into six types of land uses by 

visual interpretation. As shown in Figure 2, most of the study area was covered by forest and 

agricultural land use types with proportions of 66% and 17%, respectively. The remaining area was 

covered by the bare land, urban land, grass land and water body land-use types. The agriculture is 

rotated between rice and rape. The information concerning the management schedule (Table 2) was 

obtained by interviewing local farmers. 

 

Figure 2. Land use map of the Wucun watershed. 
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Table 2. Schedules of annual cultivation and agricultural practices in the Wucun watershed. 

Land Use Date Operation Observation 

Rice 

21 May Seeding Combined seeding machine 

12 June Fertilization Carbamide 

10 July Fertilization Ammonium bicarbonate 

10 August Fertilization Compound fertilizer 

25 August Weeding Triadimefon/Diniconazole 

3 September Fertilization Compound fertilizer 

18 October Grain harvesting 5000–6000kg·ha−1 

25 October Tillage Moldboard 

Rape 

1 November Seeding Combined seeding machine 

10 December Fertilization Carbamide 

5 February Fertilization Carbamide 

10 March Fertilization Carbamide 

11 March Fertilization Ammonium bicarbonate 

10 May Grain harvesting 2200–3000kg·ha−1 

18 May Tillage Moldboard 

2.3.5. Hydrologic and Nutrient Loading Data 

Due to the lack of long-term runoff records in the Wucun watershed, the realistic annual runoff was 

estimated by an empirical formula of rainfall–runoff [41], which was developed in the similar hilly 

region of the Taihu Lake watershed. Thus, the simulated annual runoff at Site 1 (Figure 1) could be 

compared with the estimated one to calibrate and validate the AnnAGNPS model. Regarding the 

climate data, data from 2005–2009 were used for annual calibration, and data from 2010 to 2013 were 

used for annual validation. 

Monthly water samples (total nitrogen and total phosphorus) at three monitoring sites (see Figure 1) 

were sampled and then analyzed in the laboratory during December 2012 to December 2013.  

Monthly runoff data were also measured at this period. Thus, the nutrient loadings were calculated by 

multiplying nutrient concentrations by monthly runoff. The monthly runoff could be calibrated at  

Site 1, while Site 2 and Site 3 were employed to validate the simulation processes. For nutrients, there 

was a similar process to that of monthly runoff. Site 1 was chosen to calibrate the nutrients, and Site 2 

and Site 3 were used for validation. This calibration and validation method is similar to a random spot 

check, which may more accurately reflect the efficiency of the model. 

2.4. Parameter Sensitivity Analysis 

Sensitivity analysis is a methodological study of the response to the selected output variables to 

variations in parameters and driving variables [5]. It has been widely applied in hydrological models 

such as SWAT [42,43] and HSPF [44] to help users identify crucial parameters. 

2.4.1. Runoff Parameter 

Most of the worldwide studies evaluating AnnAGNPS [19,22,30,45] showed that CN is the most 

sensitive parameter to surface runoff prediction, and these studies were successfully calibrated for 
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surface runoff simulation by adjusting CN values. Therefore, in this study, we also make the simulated 

runoff approximate the actual runoff by adjusting the values of CN. 

2.4.2. Nutrients parameters 

The nutrient parameters used in some literature [4,15,31,46] are not clear. These studies predicted 

nutrients by using the AnnAGNPS model, but the correlative parameters that they used were not reported. 

Additionally, some previous studies had made some contributions to analyzing the sensitivity parameters 

for nutrients [5,47,48]. Yuan et al. [47,48] indicated that the Initial nitrogen concentration in the soil, 

Plant uptake and Fertilizer mixing code were sensitive parameters for nitrogen loading, and Initial soil 

p contents as well as p application rate were sensitive parameters for phosphorus loading. Liu [5] 

concluded that CN, Rainfall quantity, Fertilizer application and Fertilizer available were sensitive 

parameters for both total nitrogen (TN) and total phosphorus (TP). 

In this study, sensitivity analysis was considered necessary, and was carried out before calibration 

for nutrients. Parts of the parameter values were obtained from the survey data, such as Initial soil N 

and p contents, as mentioned above. We mainly wanted to evaluate the effects of human factors on 

nutrient simulation, including the fertilizer and crop parameters Residue Mass Ratio, Root Mass, 

Canopy Cover, Fertilizer Rate, Fertilizer Depth, Fertilizer Inorganic, and Fertilizer Organic. Based on 

a literature review [16,49,50], Differential Sensitivity Analysis (DSA) was employed to evaluate the 

sensitivity due to its simplicity and low-need for computation time. The DSA calculate one point in the 

parameter space by adjusting the parameter with a fixed percentage while the other factors remain constant. 

As shown below, each selected parameter would be changed by an increment of ∆x = ±10%, ±20%, 

±30%, ±40%, ±50%, ±60% while fixing the values of the other parameters. The gradient of the output 

response with respect to the selected parameter was used to quantify the degree of sensitivity I. Each 

term of ∆x would have a value of I′, and I was defined by the average of the six terms. I′ was computed 

as follows: 

( )2 1 0

0

'
2

y y y
I

x x

−
=


 (1)

The model output y0 is calculated with an initial value x0 of the parameter x; x0 is varied by ±∆x, 

yielding x1= x0−Δx and x2 = x0+ Δx; and y1 and y2 correspond to x1 and x2. 

The Sensitivity Index is ranked into four categories [51] as follows: less than 0.05—small to 

negligible sensitivity; 0.05–0.2—medium sensitivity; 0.2–1.0—high sensitivity; and more than 1.0—

very high sensitivity. 

2.5. Evaluation of Model Performance 

The results of the simulation were analyzed for “goodness-of-fit” with the observed data.  

The performance evaluation of AnnAGNPS was carried out in a comprehensive manner, as suggested 

by Legates and McCabe et al. [20,52,53]. The coefficient of determination (R2), coefficient of 

efficiency (E), root mean square error (RMSE), and coefficient of residual mass (CRM) were employed 

for model assessment. Additionally, it should be noted that R2 and E are overly sensitive to extreme values, 

which may mislead the evaluation of model performance. To avoid this, a revised coefficient of efficiency 
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was defined as E′, which could reduce the effect of squared terms [52]. 

The formulas for these coefficients are listed in following. 

The coefficient of determination ranges from 0 to 1, with higher values indicating better agreement 

and is given as: 
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The coefficient of efficiency E is given as: 
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E is dimensionless and ranges from minus infinity to 1. As proposed by Van [54], the results are 

highly satisfactory for an E value equal or larger than 0.75, satisfactory between 0.36 and 0.75, and 

unsatisfactory for an E value smaller than 0.36. 

The modified coefficient of efficiency is calculated as: 
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In general, 'E  has a lower value than E, and the model can be considered satisfactory when 'E  

ranges from 0.51 to 0.71 [20]. 

The root mean square error (RMSE) is given as: 
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The coefficient of residual mass (CRM) is given as: 
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where Oi is the observed data, Si is the simulated data, O  is the mean of the observed data set, S  is the 

mean of the simulated data set, i is the ith event, and N is the number of observations. 

3. Results and Discussion 

During the nine-year study period, annual rainfalls ranged from 828.10 to 1267.50 mm with a mean 

and standard deviation of 1052.92 and 122.60 mm, respectively. At the monthly scale, only the runoff 
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data from 2013 were available, and the recorded rainfalls were in the range of  

10–136.60 mm with resulting runoff varying from 4.43 mm to 53.23 mm. Approximately 45% of 

rainfall was concentrated from May to July. 

3.1. Runoff Calibration 

In watershed modeling, calibration and validation are important steps for ensuring the quality of 

model simulations. Upon completion of the data entry using the AnnAGNPS Data Input Editor, runoff 

was calibrated by adjusting CN for all landuse categories. The best results (Figure 3) were obtained by 

increasing the CN values of agriculture, forest, grassland and urban land by 20%, 30%, 20%, 20%, 

respectively (Table3). Before calibration, E and E′ both had negative values, and the CRMs had high 

values (Table 4). These parameters indicated that substantial differences existed between simulations 

and observations. However, acceptable statistical parameters were obtained after calibration processes. 

As shown in Table 4, at annual scale, the difference between simulated and observed average annual 

runoff was very small (as indicated by small CRMs), and the other statistical parameters included  

R2 = 0.93, E = 0.81, and E′ = 0.65. At the monthly scale, the statistical analyses showed that R2 = 0.86, 

E = 0.59, E′ = 0.39 and CRM = 0.04. 

Monthly scale simulation was barely satisfactory. Some months were overestimated, whereas some 

were underestimated. The main reason for this is that the monthly runoff data were calculated from the 

measured data when sampling in the middle of each month. This process may lead to a large difference 

for the actual flow, especially in the rainy or dry periods, and it may yield a smaller or larger result 

when estimating the monthly runoff based on this value. 

 

Figure 3. Comparison between observed and simulated runoff at annual (left) and monthly 

(right) scales for calibration process. 
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Table 3. Initial and final CN values for each land-use type. 

Land Use  

Curve Numbers for Hydrologic Soil Groups 

Initial Values Final Values 

A B C D A B C D 

Bare land 65 75 82 95 65 75 82 95 
Residential area 55 68 79 85 66 82 95 99 

Agricultural 60 72 80 85 78 86 96 99 
Forest 48 60 73 80 58 78 95 96 

Grass land 42 69 79 87 50 83 95 98 

Table 4. Estimated statistical parameters of model performance for default and calibration/validation. 

Items 
Calibration Validation 

R2 E E′ RMSE CRM R2 E E′ RMSE CRM 

Annual scale 
Run off 0.93(0.76) * 0.81(−5.32) 0.65(−2.23) 45.09(257.83) 0.05(0.63) 0.88(0.82) 0.86(−8.00) 0.65(−2.2) 26.95(213.62) −0.02(0.58) 

Monthly scale 
Run off 0.86(0.55) 0.59(−3.21) 0.39(−1.33) 11.24(21.58) 0.04(0.62) 0.84(0.75) 0.65(−2.64) 0.42(−1.75) 10.65(20.31) 0.02(0.59) 

0.87(0.78) 0.81(−1.63) 0.62(−0.55) 8.71(15.16) 0(0.45) 
TN 0.91(0.77) 0.86(0.33) 0.71(0.12) 100(180.25) 0.22(0.87) 0.92(0.85) 0.71(0.29) 0.58(0.08) 130.85(210.34) 0.42(0.92) 
TP 0.66(0.38) 0.37(−1.05) 0.46(0.10) 1.67(3.15) 0.14(0.92) 0.62(0.28) 0.18(−1.26) 0.37(−0.55) 1.18(2.67) 0.19(0.88) 

* Numbers in parenthesis are default values. 
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3.2. Runoff Validation 

Validation was carried out after calibration. At the annual scale (Figure 4), the difference between 

simulated and observed runoff was only approximately 2.6%, with averages of 361.98 mm and 356.34 

mm, respectively, and with E = 0.86, E′ = 0.65, and CRM = −0.02. At the monthly scale (Figure 5), 

two sites were employed to validate the simulation process, with values of 0.65 and 0.81 for E, and 

0.42 and 0.62 for E′ at Site 2 and Site 3, respectively. Both of these results confirm the ability of the 

model to predict runoff after calibration. 

 

Figure 4. Comparison between observed and simulated runoff at the annual scale for the 

validation process. 

 

Figure 5. Comparison between observed and simulated monthly runoff at Site 2 (left) and 

Site 3 (right) during validation process. 

Site 3 performed more efficient than Site 2 during the validation process. In the geography, Site 3 is 

upstream of Site 2, and thus the watershed based on Site 3 as the outlet is smaller than that based on 

Site 2. As noted by Chahor and Taguas [16,17], the smaller the watershed is, the more satisfactory the 
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model prediction seems to be. Additionally, the cultivated areas mainly concentrate between Site 2 and 

Site 3, and agricultural irrigation is also a factor affecting the validation accuracy of Site 2. 

Nevertheless, Site 2 is still in the range of required accuracy for the model evaluation. In the validation 

process, both of the two sites yield satisfactory results, thus confirming the accuracy of the calibration 

process. 

3.3. Nutrient 

3.3.1. Results of the Parameter Sensitivity Analysis 

Figure 6 depicts the relationship between input variation and output variation, where most of the 

selected parameters had a linear effect on nutrient loading prediction. Fertilizer rate, Fertilizer organic, 

Fertilizer inorganic, and Residue mass ratio had positive correlations (Pearson Correlation = 1,  

p < 0.01) with the nutrient loading model output, while the Root mass and Canopy cover had negative 

correlations (Pearson Correlation = −1, p < 0.01). This might be explained by more fertilizer leading to 

more nutrient loss; otherwise, more vegetation could reduce nutrient loss. 

 

Figure 6.The sensitivity of nutrient for (left) TN and (right) TP to the selected input parameters 

According to Lenhart [51], Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic 

can be classified as high sensitive parameters for TN output, whereas Residue mass ratio, Fertilizer 

rate, Fertilizer inorganic, and Canopy cover are highly sensitive parameters for TP output. The 

remaining parameters have small to negligible sensitivity and medium sensitivity (Table 5). 

Table 5.Sensitivity classification of AnnAGNPS input parameters to nutrient loading. 

Input Parameters Sensitivity Index for TN Sensitivity Index for TP 

Residue mass ratio 0.04 0.39 
Root mass −0.09 −0.10 

Canopy cover −0.26 −0.32 
Fertilizer rate 0.94 0.30 

Fertilizer depth 0.00 0.00 
Fertilizer inorganic 0.25 0.26 
Fertilizer organic 0.69 0.04 
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3.3.2. Nutrient Calibration 

Similar to runoff calibration, nutrient calibration was also made for Site 1. Due to the lack of 

nutrient data, only monthly TN and TP loadings were investigated in this study. Based on the result of 

parameters sensitivity analysis, calibration was first carried out by adjusting the most sensitive 

parameters, and then adjusting the medium-sensitivity parameters. Several efforts were made before 

obtaining the final result. Figure 7 (left) shows the plot of simulated versus observed TN loadings with 

regression. The value of CRM was 0.22 > 0, indicating under-prediction and yielding an  

R2 value of 0.91. The coefficient of efficiency and modified coefficient of efficiency for TN loadings 

showed satisfactory results of 0.86 and 0.71 (Table 4), respectively. Moreover, TP loading was also 

slightly under-predicted (CRM = 0.14). As shown in Figure 7 (right), the coefficient of determination (R2) 

was found to be 0.66, which meant that the model was only able to explain or represent approximately 

66% of the varieties in the observed data. The results for E and E′ were 0.38 and 0.46, respectively. 

 

Figure 7. Comparison between observed and simulated TN (left) and TP (right) loading 

during the calibration process. 

3.3.3. Nutrient Validation 

The validation process was performed for Site 2 and Site 3 (Figure 1). Figure 8 shows the plot of 

simulated versus observed loading for TN and TP in Site 2. TN prediction performed well, with an R2 

value of 0.92 (Figure 8, left) and a CRM value of 0.42. The coefficient of efficiency and modified 

coefficient of efficiency for TN loading also showed satisfactory results of 0.71 and 0.58, respectively. 

These statistical values suggested that the model was able to correctly predict the site conditions. For 

the TP, R2 was 0.624 (Figure 8, right), the results for E and E′ were slightly poor at 0.18 and 0.37, 

respectively, but the CRM of 0.19 was acceptable (Table 4). The largest difference occurred in October, 

where the observed and simulated TP loading were 2.66 kg and 0.09 kg, respectively. 

Clearly, they made a substantial contribution to the low performance of TP. Although the TP prediction 

was not satisfactory, it was still able to represent a certain portion of the observed data. 
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The model performed satisfactorily for TN simulation at Site 2. Otherwise, TP simulation was poor 

at this site. Under-predicted values for TP clearly existed in the calibration and validation processes 

(Figures 7, 8). A lack of reliable information may have leaded to this underestimation, as information such 

as plant uptake and other natural phosphorus cycling were taken from unofficial sources. 

Many vital input parameters are needed for calibration purposes. The performance at Site 3 was poor, 

as large differences were observed in both TN and TP validation processes. The mean values of 

simulated and observed TN loading were 0.56 kg and 143.5 kg, and those of TP were 0.007 kg and 

0.96 kg, respectively. The reason may be that Site 3 was located in the urban area, its concentrations of TN 

and TP were deeply affected by the residential activities, and the samplings from this site would yield 

high values. Thus, this site was not suitable for the calibration or validation processes. 

 

Figure 8. Comparison between observed and simulated TN (left) and TP (right) loading 

during the validation process. 

Compared with previous studies applying the AnnAGNPS model to simulate nutrients, this study 

obtained similar or better results. Shamshad [15] reported the application of the AnnAGNPS model to 

a watershed (63.09 km2) with conditions and climate typical of Malaysia. In their evaluation of the 

model performance, the model performed satisfactorily for runoff simulation. However, poor statistical 

parameters were obtained for TN and TP simulation processes. The results of Pease’s simulation [4] 

also showed low performance for nutrient simulation in an east-central North Dakota watershed with 

an area of 1697 km2. Baginska [25] evaluated the model in a 2.55 km2 watershed of Currency Creek, 

Australia, and concluded that the model produced satisfactory results for event flows, but it yielded a 

high degree of uncertainty for nitrogen. Thus, it can be seen that the model had experienced low 

nutrient simulation performance at various scales. Additionally, the low performance of AnnAGNPS in 

predicting nutrient loading is also reported in other studies [31,55,56]. Due to the mechanism of the 

AnnAGNPS model where nutrient loading is based on mass conservation, any missing input or output 

information of nutrients in watershed will considerably affect the results. Furthermore, Bingner [36] noted 

that the model assumed that there was no tracking of nutrients from one day to the next, which means 

that there will definitely be a loss of mass. Additionally,  

a lack of reliable information and data regarding nutrients is a common phenomenon in many areas, 

and this may further contribute to the low performance of nutrient prediction. More detailed data 

should be monitored to obtain a more realistic watershed simulation. 
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4. Conclusions 

The AnnAGNPS model was applied in a small agricultural watershed called “Wucun” in the 

upstream of the Taihu watershed to validate its capability to predict surface runoff and to test its 

capability to predict nutrient loading using data recorded from January 2005 to December 2013. 

The model was calibrated in the period of 2005–2009 to achieve the best-fit runoff prediction, as 

runoff has a major impact on nutrient prediction. This was completed by adjusting the CN values. 

Then, the model was validated in the period of 2010–2013. The result was evaluated for  

“goodness-of-fit” between predicted and observed data using five statistical measures, namely the root 

mean square error (RMSE), coefficient of residual mass (CRM), coefficient of determination (R2), 

coefficient of efficiency (E) and modified coefficient of efficiency (E′). The values of the five parameters 

indicated a good correlation between the predicted and observed data, which suggested that the model 

possessed an adequate capability to simulate surface runoff. 

Concerning nutrient loading, a parameter sensitivity analysis was first carried out to evaluate the 

sensitivity of the nutrient parameters. Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer 

inorganic were more sensitive to TN output, and Residue mass ratio, Fertilizer rate, Fertilizer inorganic and 

Canopy cover were more sensitive to TP output. The AnnAGNPS model was then calibrated based on 

the sensitivity analysis results. TN simulation produced satisfactory results for both the calibration and 

validation processes, whereas TP loading performance was slightly poor. Though the results were not 

very good, the model was still able to represent a certain portion of variability in the observed data. 

Generally, the study found that the AnnAGNPS model was qualified as a watershed modeling tool. 
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