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Abstract: Fresh herbs such as basil constitute an important food commodity worldwide. 

Basil provides considerable culinary and health benefits, but has also been implicated in 

foodborne illnesses. The naturally occurring bacterial community on basil leaves is currently 

unknown, so the epiphytic bacterial community was investigated using the culture-independent 

techniques denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing 

(NGS). Sample preparation had a major influence on the results from DGGE and NGS: 

Novosphingobium was the dominant genus for three different basil batches obtained by 

maceration of basil leaves, while washing of the leaves yielded lower numbers but more 

variable dominant bacterial genera including Klebsiella, Pantoea, Flavobacterium, 

Sphingobacterium and Pseudomonas. During storage of basil, bacterial growth and shifts in 
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the bacterial community were observed with DGGE and NGS. Spoilage was not associated 

with specific bacterial groups and presumably caused by physiological tissue deterioration 

and visual defects, rather than by bacterial growth. 

Keywords: Novosphingobium; fresh herbs; 16S rRNA; DGGE; next-generation sequencing 
NGS 

 

1. Introduction 

The microbiota of the phyllosphere, i.e., all plant surfaces above the ground, is dominated by bacteria 

over Archaea and fungi, typically reaching bacterial densities of 6 to 7 log cells per cm² leaf [1].  

The conditions on the plant leaves are harsh for bacteria, with large temporal (day–night fluctuation, 

seasonal differences) and spatial variations in solar irradiation and the availability of water and nutrients, 

resulting in local microsites at which conditions are favorable for growth and/or survival [2–5]. 

Indigenous epiphytic bacteria may display various beneficial effects for the plant in terms of promoting 

growth and/or health, e.g., phytohormone production, improvement of the availability and/or uptake of 

nutrients and inhibition of plant pathogens by biosynthesis of antimicrobial compounds and induction 

of systemic resistance [1]. Moreover, the indigenous microbiota influences the survival and persistence 

of human pathogens, for example Erwinia spp. and Pseudomonas spp. inhibited Escherichia coli 

O157:H7 on spinach leaves [6]. On the other hand, positive interactions between pathogens and the 

native microbiota on plants also exist, for example the survival of Salmonella on produce is increased 

by soft rot bacteria such as Erwinia carotovora and Pseudomonas viridiflava [7], probably due to the 

increased availability of nutrients.  

Fresh herbs are an important component in the contemporary cooking and consumption patterns [8]. 

The use of fresh herbs has been reported by 91 % of Belgian and 73 % of Spanish respondents, at least 

monthly or more frequently for 92 % of these consumers [9]. In Norway, 60 % of the consumers ate 

fresh basil, with average portions of approximately one gram [10]. Supermarkets offer a wide choice of 

fresh herbs throughout the year, either as whole plants or as ready-to-use cut leaves in plastic trays. Leafy 

greens in their natural state are susceptible to spoilage by micro-organisms, in particular cut leaves, 

because the intact cell structure provides a protective barrier that is damaged by processing [11].  

The overall microbial quality of foods of leafy greens such as fresh herbs are still often assessed by using 

total mesophilic aerobic plate counts, although it has been acknowledged that this is not a reliable 

indicator to judge neither the sanitary quality nor the sensorial quality of leafy greens [12]. It is of interest 

to have better knowledge about the composition of the natural indigenous microbiota and its changes in 

time during storage to get insight on the dominant spoilage microbiota. Therefore, more knowledge 

about the bacteria which are naturally present on basil leaves (i.e., the epiphytic bacteria) is warranted, 

because characterization and understanding of the bacterial community and ecology during storage of 

basil leaves will facilitate the understanding of which microbial groups should be targeted in assessing 

microbial quality. 

Conventional culture methods detect only a minority (max. 3 %) of the bacteria in environmental 

samples (water, soil, sediment and sludge) [13,14]. Bacterial communities in environmental and food 
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samples have already been extensively investigated by culture-independent techniques such as 

denaturing gradient gel electrophoresis (DGGE) to avoid the culturing bias while studying microbial 

fermentations in food and community dynamics [15–20]. Moreover, DGGE is very useful to rapidly 

check the impact of a culturing step on the diversity of the bacterial community. DGGE patterns reflect 

the total composition and diversity in the sample, but identification of the species behind specific bands 

requires cutting, purifying, cloning and sequencing of the band(s). Instead of this laborious procedure, 

next-generation sequencing (NGS) of the 16S rRNA gene can be applied for taxonomic identification of 

all bacteria present in the sample. NGS is increasingly applied as an alternative molecular technique in 

food and clinical microbiology [21–26]. NGS has the advantages of short analysis time, high specificity 

and high resolution.  

Given the increasing importance of fresh herbs in the contemporary consumption patterns, the 

bacterial community on basil leaves was studied. No studies are currently available about the total 

bacterial community on basil without prior enrichment or cultivation steps which are known to create a 

significant culture bias. Therefore, the total bacterial community on basil leaves and changes of this 

community during storage and spoilage of cut basil leaves at different temperatures (7 °C, 15 °C and  

22 °C) were investigated by culture-independent techniques denaturing gradient gel electrophoresis 

(DGGE) and next-generation sequencing (NGS). Special attention was given to evaluation of the sample 

preparation methods. 

2. Experimental Section  

2.1. Basil  

To capture the existing variability on the Belgian retail market for basil, both basil leaves imported 

from Israel in plastic trays as well as whole basil plants from Belgian organic culture, from which the 

leaves were removed in the laboratory. Figure 1 presents an overview of the different batches of basil 

leaves which were analyzed in this study. 

2.2. Molecular Microbiological Analyses 

2.2.1. Sample Preparation 

Three different sample preparation methods were tested on basil batch I, II and III prior to DNA 

extraction as described below in Section 2.2.2. (Figure 1). Direct extraction of the total microbial DNA 

was done with approx. 300 mg basil leave (directly mixed with 1 mL extraction buffer or 2 mL lysis 

buffer). Maceration of 20 to 30 g of basil leaves (corresponding with all full-grown leaves of a retail 

plant) was done in 200 to 300 mL PPS (a tenfold dilution) for 1 min in a stomacher (L.E.D. Techno) 

laboratory blender. Washing of 20 to 30 g of basil leaves was done in 400 to 600 mL PPS with 1 % 

Tween 80® (Sigma-Aldrich, Diegem, Belgium) (a twentyfold dilution) for 30 min at room temperature 

in a glass Erlenmeyer on a shaker (Yellow Line OS10 shaker, IKA, Staufen, Germany) at 200 rpm. 

Maceration and washing liquids were filtered over a cellulose filter paper (595½ folded filters, 125 mm 

diameter, Whatman, VWR Leuven, Belgium) to remove plant debris and then over two 0.22 µm mixed 
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cellulose ester filters (Millipore, Molsheim, France) to concentrate the bacteria from the large volumes 

(200 to 600 mL) to two small sample (two 0.22 µm filter discs) suitable for DNA extraction. 

 

 

Figure 1. Overview of the five basil batches used and the experimental set-up of this study 

to characterization of the epiphytic bacterial community of basil by molecular techniques 

denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS), 

both targeting the 16S rRNA gene. 

2.2.2. DNA Extraction 

Two protocols for extraction of the total microbial DNA were evaluated, namely the FastPrep®  

(MP Biomedicals, Santa Ana, CA, USA) and the NucliSENS® easyMAG® (BioMérieux, Marcy l'Etoile, 

France) methods. These were applied to the different sample preparations, namely 300 mg leave samples 

and the 0.22 µm filters containing bacteria from the maceration or washing liquid. The FastPrep® 

procedure consisted of addition of 200 mg glass beads (0.10 to 0.11 mm diameter, Sartorius, Goettingen, 

Germany) and 1 mL lysis buffer (containing 100 mM Tris, 100 mM EDTA, 100 mM NaCl,  

1 % polyvinylpyrrolidone, 2 % sodium dodecyl sulphate), followed by mechanical lysis of the samples 

in the FastPrep®-96 Instrument (MP Biomedicals) by two cycles of 40 s at 1600 rpm. Next, the total 

nucleic acids were extracted with phenol:chloroform (Sigma-Aldrich), precipitated with sodium acetate 
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(3 M) and isopropyl alcohol at −20 °C for 2 h and dissolved in 50 µL PCR-grade water (Sigma-Aldrich). 

The NucliSENS® easyMAG® (BioMérieux) generic protocol 2.0.1. was performed according to the 

instructions of the manufacturer, with on-board lysis (2 mL) and final elution in 25 μL.  

2.2.3. PCR Amplification of 16S rRNA Gene 

For DGGE, approx. 200 bp of the 16S rRNA gene containing the hypervariable region V3 was 

amplified using primers 338f-GC and 518R (5’-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGG 

CACGGGGGGACTCCTACGGGAGGCAGCAG-3’and 5’-ATTACCGCGGCTGCTGG-3’) [15] with 

1 µL template in 25 µL reaction volumes containing 0.2 µM of each primer, 0.6 U recombinant Taq 

DNA polymerase (Thermo Scientific, St Leon-Rot, Germany), 1X Taq buffer with 5 mM KCl and  

0.1 mM MgCl2, 200 µM dNTPs (dNTP Mix, Thermo Scientific) and 1.2 µg BSA (Bovine Serum 

Albumin, Roche, Mannheim, Germany) and the following temperature profile: 94 °C for 5 min and 30 

cycles of 95 °C for 1 min, 53 °C for 1 min and 72 °C for 2 min, and finally 10 min at 72 °C.  

For NGS, approx. 500 bp spanning the V1, V2 and V3 region of the 16S rRNA gene was amplified 

with primers 27F and 533R (5'-AGAGTTTGATCCTGGCTCAG-3' and 5'-TTACCGCGGCTGCTG 

GCAC-3') [27,28] with 4 µL template in 100 µL reaction volumes containing 0.2 µM of each primer, 

0.6 U recombinant Taq DNA polymerase (Thermo Scientific), 1× Taq buffer with 5 mM KCl and  

0.1 mM MgCl2, 200 µM dNTPs (dNTP Mix, Thermo Scientific) and 1.2 µg BSA (Bovine Serum 

Albumin, Roche) and the following temperature profile: 94°C for 5 min and 30 cycles of 95 °C for  

1 min, 57 °C for 1 min and 72 °C for 2 min, and finally 10 min at 72 °C. The primers were labeled at the 

5’ with different multiplex identifiers for the different samples to allow multiplexing of samples for NGS. 

2.2.4. Denaturing Gradient Gel Electrophoresis (DGGE)  

The PCR fragments were separated on a 45 to 60 % (100 % denaturant comprised 7 M urea and  

40 % formamide) DGGE gel containing 8 % (w/v) polyacrylamide gels in 1× TAE buffer run for 16 h 

at 60 °C at 38 V using the DCode system (BioRad, Temse, Belgium) [29]. Negative controls (no template 

controls) from the PCR were also run as negative controls for DGGE. Positive controls (markers) were 

at least once per six samples and consisted of an in-house bacterial mixture which yielded a complex 

band pattern spanning the full DGGE gel. After staining with SyberGreen I (Invitrogen, Life 

Technologies, Gent, Belgium), photos of the gels were analyzed using BioNumerics (Applied Maths, 

Sint-Martens-Latem, Belgium). The different lanes were defined, the background was subtracted,  

the intensity of the lanes was normalized and clustering was performed with the Pearson correlation of 

the pairwise similarities and the Ward dendrogram type. No attempt was made at identification based on 

the shorter (approx. 200 bp) DGGE amplicons of the 16S rRNA gene, but instead next-generation 

sequencing (NGS) of 500 bp 16S rRNA gene fragments of the mixed bacterial community on basil 

leaves was performed.  

2.2.5. Next-Generation Sequencing (NGS)  

The PCR fragments were purified with the PureLink® PCR Purification Kit (Life Technologies, Gent, 

Belgium). After measuring the DNA concentration the Qubit® dsDNA HS Assay (Life Technologies), 
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an equimolar mixture was subjected pyrosequencing on the Genome Sequencer (GS) FLX Titanium 454 

System (Roche) at Beckman Coulter Genomics USA (Danvers, MA, USA). Bioinformatic analysis of 

the sequences was performed by Beckman Coulter Genomics France (Grenoble, France). Briefly,  

the sequences were de-multiplexed by sorting and removing of the barcodes. The MIRA v3.2 assembler 

(http://www.chevreux.org/projects_mira.html, available at http://sourceforge.net/projects/mira-assembler 

/files/MIRA/) was used in est-mode to cluster quality checked sequences. The resulting contigs and 

singletons (orphans) were blasted against an in-house curated copy of the Ribosomal Database Project 

(RDP) database v10.29 with only non-redundant sequences of sufficiently detailed and reliable 

phylogenetic annotation. Taxonomic classification and counting of the blast (http://blast.ncbi.nlm. 

nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome) results was performed with Metagenome 

Analyzer (MEGAN4) on the 25 best hits (available at http://ab.inf.uni-tuebingen.de/software/megan4/). 

Dissimilarities in bacterial composition of the different samples was visualized using Principal 

Component Analysis (PCA) by the prcomp function in the R statistical software v3.2.1. All 16S rRNA 

sequence reads from this study are available from the Sequence Read Archive (SRA) under BioProject 

accession number PRJNA288639 on the NCBI website (http://www.ncbi.nlm.nih.gov/sra). 

2.3. Culture-Based Microbiological Analyses 

The cultivable fractions of the bacterial community on basil leaves was assessed after a standard  

non-selective enrichment step of approx. 25 g basil leaves in a tenfold larger volume of buffered peptone 

water (BPW, Oxoid, Erembodegen, Belgium) at 37 °C by taking samples of the BPW enrichment broth 

after various time points (5 h, 28 h, 30 h and 72 h). Which epiphytic basil bacteria are capable of growing 

on non-selective plates of tryptic soy agar (TSA, Oxoid), selective plates violet red bile lactose agar 

(VRBL, Oxoid) for coliforms and selective plates xylose lysine desoxycholate agar (XLD, Oxoid) for 

Salmonella was also assessed. Approx. 25 g basil leaves was tenfold diluted in physiological peptone 

salt (PPS) solution (containing 8.5 g/L NaCl (Fluka, Sigma-Aldrich, Diegem, Belgium) and 1 g/L 

neutralized bacteriological peptone (Oxoid)) and macerated in a stomacher for 1 min. Hundred µL of 

the appropriate tenfold dilution was plated on TSA, VRBL and XLD plates and these plates were 

incubated at 37 °C for 24 h. The microbial mass was washed off the plates with 1.3 mL sterile PPS and 

subjected to DNA extraction and further molecular microbiological analyses (see Section 2.2—

Molecular microbiological analyses).  

2.4. Storage Experiments 

Basil leaves were stored in 30 g portions in plastic bags at 7 °C, 15 °C and 22 °C. At each time point, 

two samples of 30 g basil leaves were analyzed, one of imported basil leaves from Israel (batch V) and 

one of basil leaves removed from Belgian whole plants (batch IV). Basil leaves were packaged in sealed 

bags of 15 cm × 15 cm with high permeability (4600 mL O2 per m² day at 7 °C, Amcor Flexibles, Gent, 

Belgium) with normal atmospheric conditions (i.e., with air as initial headspace). The visual quality of 

basil leaves was assessed by the person (always the same person) performing the microbial analysis at 

each time point by scoring the general appearance, cold damage, decay, clean cutting, bruising, 

yellowing and blackening of the growth points on a scale of 1 to 5. An overall score was then calculated 

from these individual scores on a scale of 1 to 9 for overall visual quality. Scores of 5 or below 
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correspond with spoiled basil samples, while scores of 6 or above are acceptable for consumption.  

The total microbial count was followed by plating on TSA (see section 2.3. classical microbiological 

analyses) and by DGGE and NGS (see sections 2.2. molecular microbiological analyses). For the storage 

experiment, washing was selected as the sample preparation method because it resulted in higher 

diversity in the DGGE pattern and lower amounts of eukaryotic DNA. EasyMAG® extraction was 

selected over FastPrep® as the DNA extraction method because it generally resulted in slightly lower 

DNA yield but with higher purity than FastPrep®. 

3. Results  

3.1. Culture-Independent Characterisation of the Bacterial Community  

Direct extraction of basil leaves failed to produce sufficient microbial DNA of sufficient purity for 

PCR analysis. Maceration of basil leaves in a stomacher, which constitutes the standard sample 

preparation prior to conventional microbiological analysis by plating or enrichment, showed one 

dominant band on DGGE (Figure 2) and one dominant bacterial genus, Novosphingobium spp., by NGS 

(Table 1) for all three basil batches.  

 

 

Figure 2. Denaturing gradient gel electrophoresis (DGGE) patterns of bacterial communities 

of basil batches I, II and III with different sample preparation methods and with and without 

cultivation steps. 

Washing of basil leaves resulted in DGGE patterns with more bands in addition to the dominant one, 

provided Tween 80® was added. Washing of basil leaves in PPS without Tween 80® resulted in the 

same DGGE pattern (one dominant band at the same location) as maceration of basil leaves in a 

stomacher (results not shown).In accordance, more diverse results for the epiphytic bacteria (decreased 

dominance of Novosphingobium spp. and increased detection of Pseudomonas spp., Enterobacteriaceae, 
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Flavobacterium spp. and Sphingobacterium spp.) were obtained by NGS after washing in comparison 

with maceration in a stomacher (Table 1).  

Table 1. Culture-independent identification of the bacterial communities on basil leaves 

from batch I, II and III by next-generation sequencing (NGS) of the 16S rRNA gene, 

showing bacterial groups and genera which constituted at least 1 % of the total bacteria 

(rescaled to 100 %). 

Sample 
Basil I, 

Stomacher
Basil I, 
Wash 

Basil II, 
Stomacher

Basil II, 
Wash 

Basil III, 
Stomacher 

Basil III, 
Wash 

Total number of reads 36,887 40,630 33,794 Failed 64,772 10,772 
Median length of reads (bp) 473 474 473   473 473 

Not assigned 29 694 51  20 6 
Eukaryota 33,809 22,490 28,242  63,837 10,202 
Bacteria (rescaled to 100% below) 3,050 17,446 5,501   915 564 

Bacteroidetes   1%     1% 74% 
Arcicella      1% 
Chryseobacterium     1% 5% 
Flavobacterium      11% 
Sphingobacterium      56% 

Alphaproteobacteria 87% 5% 83%   71% 17% 
Altererythrobacter      2% 
Novosphingobium 86% 4% 81%  71% 9% 
Sphingobium      1% 
Sphingomonas   1%   2% 

Betaproteobacteria 1% 6%     1%   
Herbaspirillum  4%     

Gammaproteobacteria 10% 88% 16%   26% 5% 
Acinetobacter  4%   18% 5% 
Pseudomonas 1% 40% 4%  5%  
Rheinheimera     1%  

Enterobacteriaceae 8% 43% 11%  2%  
Enterobacter  15% 2%    

Erwinia 1%  2%    

Klebsiella 3% 11% 1%    

Kluyvera  1%     

Pantoea  6% 6%    

Rahnella  4%     

Raoultella 2% 2%     

Unclassified 1% 1%     1% 2% 

 

The influence of the DNA extraction method seemed rather limited, but EasyMAG® extraction 

generally resulted in lower DNA yield but DNA with higher purity (results not shown). Moreover, 

FastPrep® once failed to extract sufficient DNA from multiple washing samples of basil batch II (so no 

results are available for this sample), so from thereon preference was given to the EasyMAG® method. 
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The elution volume of the extracted DNA, i.e., the dilution degree of the template during PCR 

amplification, did not of affect the final DGGE result (results not shown).  

 
(A) 

 
(B) 

Figure 3. Principal component analysis of the NGS data of (A) basil batches I, II and III 

with different sample preparation methods and (B) storage of basil batches IV and V at 

different temperatures. 

 

Filtration over paper filters to remove plant material and filtration of washing and maceration 

solutions over a 0.2 µm filter to up-concentrate bacterial densities prior to DNA extraction showed no 

influence on the DGGE pattern (results not shown), so both filtrations were routinely applied. 

Unfortunately but not unexpectedly, the main constituents of the basil samples were eukaryotic plant 

DNA fragments, ranging from 55 % to 99 % (Table 1). As expected, the type of sample preparation 

(maceration vs. washing) influenced the fraction of eukaryotic DNA, with the more gentle procedure of 
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washing the leaves resulting in a relative increase of microbial DNA of 5.2-fold (basil batch I) and  

3.7-fold (basil batch III).In accordance with DGGE clustering, principal component analysis (PCA) of 

the NGS data showed that the bacterial communities of basil batches I, II and III were very similar 

following the maceration sample preparation method with a stomacher (Figure 3A). After washing, the 

samples showed increased variability with basil III being an outlier. Samples derived by washing and by 

various culture steps from the same basil batch had the tendency to cluster together but were also 

intermixed with those of other batches, so no clear separation could be made with PCA. 

3.2. Culturing of the Bacterial Community  

The dominant band in the DGGE pattern disappeared during enrichment (Figure 2). After 5 h 

enrichment in BPW at 37 °C, the similarity of the bacterial community with those of the original  

non-enriched basil samples was still large enough to cluster with these samples on DGGE. In accordance, 

NGS revealed that Novosphingobium spp. and eukaryotic plant DNA were still present after 5 h 

enrichment of basil II, but both disappeared during further enrichment (Table 2). Interestingly,  

all culture-derived samples from a specific basil batch clustered together during DGGE analysis, 

irrespective of being enriched in liquid medium or plated directly on different solid media (Figure 2). 

Enrichment of basil leaves in BPW at 37 °C resulted predominantly in Bacteroides spp. (42 %) and 

Enterobacteriaceae (34 %) for basil I and Enterobacteriaceae (55 %) and Pseudomonas spp. (37 %) for 

basil II (Table 2). Cultivation of the bacteria present on basil leaves on TSA, VRBL and XLD plates showed 

the growth of mainly Enterobacteriaceae, Acinetobacter spp., Aeromonas spp. and Pseudomonas spp.  

3.3. The Bacterial Community on Basil Leaves throughout Storage and Spoilage 

Changes in the bacterial community on cut and packages basil leaves was followed during 14 days of 

storage at different temperatures: 7 °C, 15 °C and 22 °C. In contrast to most fresh herbs, basil is sensitive 

to chilling injury, which means that storage at low temperatures (≤ 10 °C) causes brown discoloration, 

wilting of the leaves and loss of aroma [30]. The optimal storage temperature for basil is 15 °C,  

but storage at 7 °C and 22 °C was also investigated because many consumers store basil in their domestic 

refrigerator or at room temperature on a kitchen shelf. The total mesophilic count increased significantly 

during storage until very high levels of 8 to 10 log CFU/g were reached (Figure 4). The visual quality 

deteriorated from perfect (score 9) to no longer acceptable for consumption (score 5 or below). Large 

variation was observed between the two different batches in terms of spoilage. Basil IV was already 

spoiled after 7 days storage at 15 °C and 22 °C, but storage at 7 °C was possible for 14 days while 

remaining of acceptable quality for consumption. In contrast, basil leaves from batch V were only spoiled 

after 14 days at 22 °C and remained acceptable for consumption for 14 days at both 7 °C and 15 °C. 
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Table 2. Identification of bacteria from the basil communities I, II and III growing during BPW enrichments at 37 °C and on TSA, XLD and 

VRBL plates by next-generation sequencing (NGS) of the 16S rRNA gene, showing bacterial groups and genera which constituted at least 1 % 

of the total bacteria (rescaled to 100 %). 

Sample 
Basil I, 

BPW 3d 
Basil II, 
BPW 5h

Basil II, 
BPW 28h 

Basil I, 
TSA 

Basil II, 
TSA 

Basil III, 
TSA 

Basil II, 
VRBL 

Basil III, 
VRBL 

Basil II, 
XLD 

Basil III, 
XLD 

Total number of reads 42,703 29,757 36,870 13,533 47,182 39,389 23,565 38,841 40,201 31,964 
Median length of reads (bp) 509 494 500 503 502 496 500 496 499 503 

Not assigned 1,829 1,985 2,294 299 3,839 378 114 712 226 198 
Eukaryota 0 14,201 0 0 0 0 0 0 0 0 
Bacteria (rescaled to 100% below) 40,874 13,572 34,576 13,234 43,343 39,011 23,451 38,129 39,975 31,766 

Actinobacteria       12%             
Arthrobacter    8%       

Kocuria    2%       

Bacteroidetes 55%     4%             
Bacteroides 42%          

Macellibacteroides 3%          

Parabacteroides 11%          

Chryseobacterium    3%       

Clostridia 6%   1%               
Clostridium 5%          

Alphaproteobacteria   5%                 
Novosphingobium  5%         

Betaproteobacteria     6%     3%   2%     
Comamonas   5%   2%  2%   
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Table 2. Cont.  

Sample 
Basil I, 

BPW 3d 
Basil II, 
BPW 5h

Basil II, 
BPW 28h 

Basil I, 
TSA 

Basil II, 
TSA 

Basil III, 
TSA 

Basil II, 
VRBL 

Basil III, 
VRBL 

Basil II, 
XLD 

Basil III, 
XLD 

Gammaproteobacteria 38% 95% 93% 83% 100% 97% 100% 98% 100% 100% 
Aeromonas      38%  31%  36% 
Alishewanella      6%     

Shewanella        1%  1% 
Rheinheimera      13%     

Acinetobacter 4%  1% 45%  17%  6%   

Pseudomonas  1% 37% 14% 16% 13% 6% 23% 1% 55% 
Stenotrophomonas    1%   1%    

Enterobacteriaceae 34% 94% 55% 23% 84% 10% 92% 36% 99% 7% 
Aranicola        2%   

Cedecea   2%        

Citrobacter 17%  1%    1%  2%  
Enterobacter 8% 10% 15% 5% 5% 1% 11% 16% 11% 3% 
Erwinia  10% 5% 6% 13%  28%  28%  
Klebsiella 3% 1% 7% 4%   5% 7% 6%  
Kluyvera  1% 1% 1% 1%  4%  6%  
Pantoea 2% 70% 21% 3% 61% 1% 41% 7% 45% 1% 
Pectobacterium     3% 7%     

Raoultella 1%     2%             
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Figure 4. Changes in the total bacterial density on basil leaves from batch IV (A) and batch 

V (B) stored in bags at 7 °C, 15 °C and 22 °C for 14 days, determined by plating on TSA 

and assessment of the overall visual quality of basil leaves from batch IV (C) and batch V 

(D). Perfect quality corresponds with a score of 9, while the limit of acceptability for 

consumption lies at score 5 (indicated by the horizontal line), so all scores equal to or below 

5 correspond with spoiled basil samples. 

DGGE patterns of basil samples clustered into one heavily spoiled group of basil IV and a group of 

non-spoiled or at the limit of spoilage with score 5 (Figure 5). The latter was in turn divided into a group 

of basil IV samples and basil V, with the only exception of two basil IV samples (stored 14 days at 7 °C 

and 7 days at 15 °C), which were more similar to the other basil batch. Spoilage is thus associated with 

numerical increases and compositional changes in the bacterial community detectable by DGGE. 

However, the colonies from the total plate counts were also subjected to DGGE analysis, but no 

meaningful clustering was observed (data not shown).  
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Figure 5. Denaturing gradient gel electrophoresis (DGGE) patterns of bacterial communities 

on basil leaves from batch IV and batch V stored at 7 °C, 15 °C and 22 °C for 14 days. 

NGS sequencing showed that storage of basil leaves from both basil batches IV and V at  

non-refrigerator temperatures (15 °C and 22 °C) resulted in an increase of Bacteriodetes (mainly 

Chryseobacterium, Flavobacterium, Pedobacter and Sphingobacterium species) from <1 % of the 

population to between 14% and 20% (Table 3). Pseudomonas spp. were always present on cut and 

packed basil leaves, but prolonged storage (14 days) at room temperatures (15 °C and 22 °C) decreased 

their proportion, while it increased at refrigeration temperature (7 °C). Enterobacteriaceae proportions 

remained stable or increased during storage. In particular Enterobacter and Rahnella species grew out 

during storage of basil IV and Enterobacter and Pantoea species on basil V. The observed shifts in the 

bacterial community were variable, more in relation to the storage temperature and to the composition 

of the initial bacterial community than to spoilage. Despite strong bacterial outgrowth during storage, 

communities of basil batches V were very similar by PCA (Figure 3B). Basil IV showed higher 

variability in the composition of the bacterial community and increased spoilage rates. 
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Table 3. Identification of bacteria from the basil communities IV and V before, after 4 days and after 14 days of storage at 7 °C, 15 °C and  

22 °C by next-generation sequencing (NGS) of the 16S rRNA gene, showing bacterial groups and genera which constituted at least 1 % of the 

total bacteria (rescaled to 100 %). 

Sample 
Basil IV 

Day0 
Basil IV 
7d 4°C 

Basil IV 
7d 14°C

Basil IV 
15d 4°C

Basil IV 
15d 14°C

Basil IV 
22d 4°C

Basil IV 
22d 14°C 

Basil V 
Day0 

Basil V 
7d 4°C 

Basil V 
7d 14°C

Basil V 
15d 4°C

Basil V 
15d 14°C

Basil V 
22d 4°C 

Basil V 
22d 14°C 

Total number of reads 36.746 35.279 63.993 11.892 24.615 49.852 49.347 60.524 57.824 83.574 37.559 51.080 70.829 64.761 
Median length of reads (bp) 438 456 404 437 405 464 393 417 459 402 437 457 453 393 
Not assigned 56 40 354 109 788 32 700 94 90 928 181 151 208 3.815 
Eukaryota 35.626 34.556 26.747 9.870 51 49.363 222 46.475 53.834 1.735 27.767 48.859 56.755 9.132 
Bacteria (rescaled to 100 % below) 1.065 682 36.892 1.913 23.776 457 48.425 13.954 3.900 80.911 9.611 2.070 13.867 51.815 
Actinobacteria   14% 1% 1%   14%           1%     

Microbacterium      2%      1%   
Arthrobacter  10%  1%  8%         

Bacteroidetes   4% 2% 17% 29% 18% 14%         16%   19% 
Chryseobacterium  2%   1%  11%     3%  1% 
Flavobacterium   2% 17% 25%  1%     3%   
Pedobacter     2% 18% 2%        
Sphingobacterium            9%  18% 

Bacilli           2% 1%               
Bacillus      2%         

Clostridia             3%               
Clostridium       2%        

Alphaproteobacteria 5% 20%   8% 11% 21% 8% 2% 8%   2% 23% 4% 8% 
Methylobacterium      9%     1%    
Agrobacterium     1%  1%     8%  1% 
Rhizobium    2% 2%  1%     2%  2% 
Novosphingobium 5% 19%  4% 6% 8% 3% 2% 7%  1% 11% 3% 3% 
Sphingomonas    1% 1%  1%     1%  1% 
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Table 3. Cont. 

Sample 
Basil IV 

Day0 
Basil IV 
7d 4°C 

Basil IV 
7d 14°C

Basil IV 
15d 4°C

Basil IV 
15d 14°C

Basil IV 
22d 4°C

Basil IV 
22d 14°C 

Basil V 
Day0 

Basil V 
7d 4°C 

Basil V 
7d 14°C

Basil V 
15d 4°C

Basil V 
15d 14°C

Basil V 
22d 4°C 

Basil V 
22d 14°C 

Betaproteobacteria 28% 15% 2% 9% 15% 36% 20%         6%   28% 
Achromobacter       3%     1%  1% 
Burkholderia    2%   1%     1%   
Acidovorax 5%              
Comamonas 1% 1%             
Delftia       1%       8% 
Variovorax      2%         
Duganella 1%    3%          
Herbaspirillum  5%   2%  6%        
Herminiimonas       1%        
Janthinobacterium 17%  1% 2%        2%   
Oxalicibacterium     1%  2%       5% 
Methylobacillus              12% 
Methylophilus    2% 4% 32% 4%        
Zoogloea     2%          

Gammaproteobacteria 66% 44% 94% 64% 44% 7% 54% 97% 91% 100% 97% 54% 95% 45% 
Pseudoalteromonas  3%        1%     
Acinetobacter  4%             
Pseudomonas 56% 30% 71% 42% 10% 3% 22% 96% 85% 95% 95% 44% 89% 24% 
Luteibacter    1% 6%  1%        
Stenotrophomonas 1%    22% 2% 17%     4%  12% 
Xanthomonas     1%  2%       1% 

Enterobacteriaceae 8% 7% 22% 21% 5%  10% 1% 6% 3% 2% 5% 5% 8% 
Buchnera  2%             
Enterobacter   3% 3% 2%  7%      1% 6% 
Erwinia 3%              
Ewingella   4% 11%           
Pantoea 4%    1%   1% 5% 2% 1% 5% 3% 1% 
Rahnella  4% 10% 5% 1%  1%        
Serratia   5% 1%           

Unclassified   2%                         
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4. Discussion  

This study is the first to investigate the total bacterial community on fresh basil leaves without prior 

cultivation steps and identified Novosphingobium spp. as the dominant bacterial genus on basil leaves. 

Novosphingobium spp. have mostly been isolated from soil [31] and various aquatic environments, 

including winery wastewater [32], pulp and paper factory wastewater [33], lake water [34] and a sewage 

pond [35]. Some species of Novosphingobium can grow at the standard incubation temperatures 30 °C 

and 37 °C [33], but most others have a more psychrotrophic nature and do not grow at temperatures  

≥30 °C [36]. The most prominent characteristics of Novosphingobium spp. are the production of 

exopolysaccharides (EPS) [31], the reduction of nitrate [35,36], the fixation of nitrogen [33], the 

degradation of lignin and cellulose [37,38], and the metabolism of aromatic compounds [34,36]. The 

ability to fix nitrogen is a beneficial characteristic, which significantly promotes the plant’s growth [39]. 

Degradation of aromatic compounds is highly interesting for bioremediation applications [36]. 

Moreover, basil contains several antimicrobial aromatic compounds such as estragole (12%) and methyl 

cinnamate (7%), which inhibit or kill a wide range of bacteria [40]. Resistance to and utilization of these 

essential oils would provide an obvious advantage to Novosphingobium spp. to colonize basil leaves and 

maintain itself as a dominant member of the epiphytic bacterial community. A similar phenomenon has 

been observed for pathogenic bacteria. Salmonella Senftenberg from a foodborne outbreak with packed 

fresh basil [41] showed increased tolerance towards the antimicrobial compounds linalool, estragole and 

eugenol in basil oil, which also led to increased survival and persistence on basil [42]. The metabolic 

properties of Novosphingobium spp. isolated from basil thus constitute an interesting topic for further 

research to confirm or disprove this hypothesis.  

Dominant bacteria other than Novosphingobium spp. belonged primarily to Gammaproteobacteria, 

i.e., Acinetobacter, Pseudomonas and Enterobacteriaceae (mainly Enterobacter, Erwinia, Klebsiella, 

Pantoea) and Bacteriodetes (mainly Flavobacterium and Sphingobacterium species). An overview of 

the characteristics of these dominant bacterial genera is given in Table 4. Most genera comprise species 

which are naturally occurring on plant leaves, or in the environment (soil, water) from which they can 

be transferred to leaves [1]. Most of the genera contain species which are opportunistic pathogens for 

humans. This means that occasionally infections occur, but typically in vulnerable persons with wounds 

or underlying illness. Such infections often taken place in a hospital setting (i.e., nosocomial infections) 

and typically occur through wounds or medical devices such as catheters, not through ingestion of these 

bacteria with food. As such, consumption of fresh herbs does not present a health risk from the naturally 

occurring bacteria. The bacterial community naturally present on basil leaves may function as a barrier 

against long-term contamination with human pathogens from soil, as demonstrated by a study in which 

basil seedlings were contaminated with Listeria monocytogenes from soil but which were no longer 

contaminated as mature plants at harvest [43]. Nevertheless, herbs may become contaminated, e.g. via 

contaminated irrigation water, with foodborne pathogens such as Salmonella and pathogenic E. coli 

which may cause gastrointestinal disease, as illustrated by outbreaks with fresh basil or fresh basil pesto 

in 2006 [44], 2007 [45] and 2011 [46]. 
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Table 4. Characteristics of the dominant bacterial genera detected on basil leaves [47].  

Genus 
Gram 

Staining

Respiratory 

Metabolism 
Motility 

Temperature 

Range Growth 
Habitat Pathogenicity 

Flavobacterium 
Gram 

negative 
Aerobic 

Nonmotile or 

motile by 

gliding 

−7 to 45 °C 
Soil, freshwater, marine and 

saline environments 

Some species, such as F. columnare, F. psychrophilum and F. 

branchiophilum, are pathogenic for freshwater fish. Some 

strains of F. johnsoniae are plant pathogens causing soft rot in 

various plants. 

Sphingobacterium
Gram 

negative 
Aerobic Sliding motility  2 to 45 °C Soil and composted manure Some species are opportunistic pathogens for humans.  

Acinetobacter 
Gram 

negative 
Aerobic 

Twitching 

motility by 

fimbriae 

 20 to 37 °C 
Soil, water, sewage and 

plants 

Although considered normally nonpathogenic, they may cause 

nosocomial infections such as bacteremia, secondary 

meningitis, pneumonia, and urinary tract infections in humans. 

Pseudomonas 
Gram 

negative 
Aerobic 

Motile by one or 

several polar 

flagella and 

fimbriae 

 4 to 45 °C  
Plants (rhizospheres and 

leave surfaces) and soil 

Some species are pathogenic for humans, animals, or plants. 

Plant pathogenic species such as P. syringae may cause 

tumorous outgrowth, rot, blight or chlorosis, and necrosis in 

plants due to secretion of substances (such as toxins, plant 

hormones and enzymes) which alter the normal metabolism of 

plant cells. Others are opportunistic pathogens for animals and 

humans, such as P. aeruginosa. 

Citrobacter 
Gram 

negative 

Facultatively 

anaerobic 

Usually motile 

by peritrichous 

flagella 

 5 to >37 °C  

Intestinal tract of humans 

and some animals, soil, 

water, sewage, plants and 

food (vegetables, dairy, fish)

Some species are opportunistic pathogens for humans.  
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Table 4. Cont. 

Genus 
Gram 

Staining

Respiratory 

Metabolism 
Motility 

Temperature 

Range Growth 
Habitat Pathogenicity 

Enterobacter 
Gram 

negative 

Facultatively 

anaerobic 

Motile by 

peritrichous 

flagella 

 4 to 44 °C  

Plants (rhizophere and 

leaves) and the intestinal 

tract of humans and animals 

Some species are plant pathogens, such as E. nimipressuralis 

(wetwood in elm trees), E. cancerogenus (canker disease of 

Populus species) and E. pyrinus (brown leaf spot disease in 

pears). 

Erwinia 
Gram 

negative 

Facultatively 

anaerobic 

Motile by 

peritrichous 

flagella 

 0 to 40 °C  Plants 

Plant pathogens which cause mainly blights and wilts. Infection 

through natural openings and wounds, followed by spread 

through the vascular tissue. 

Klebsiella 
Gram 

negative 

Facultatively 

anaerobic 

Nonmotile 

(except K. 

mobilis) 

 5 to 45 °C  

Intestinal tract of humans 

and animals, soil, water, 

sewage and plants 

Opportunistic and nosocomial human pathogens, e.g. K. 

pneumoniae, causing pneumonia, urinary tract infections, 

bacteremia and sepsis. 

Kluyvera 
Gram 

negative 

Facultatively 

anaerobic 
Motile   4 to 40 °C 

Intestinal tract of humans 

and animals, soil, sewage 

and food (milk, dairy and 

other food products of 

animal origin) 

Opportunistic human pathogen. 

Pantoea 
Gram 

negative 

Facultatively 

anaerobic 

Most strains are 

motile by 

peritrichous 

flagella 

 4 to 41 °C  
Plants, seeds, fruits, soil and 

water 

Some strains are opportunistic pathogens for plants, humans 

and animals.  

Rahnella 
Gram 

negative 

Facultatively 

anaerobic 

Motile by 

peritrichous 

flagella 

1 to ≥37 °C  

Fresh water, soil, plant 

rhizosphere, intestinal tract 

of snails 

Opportunistic human pathogens causing wound infections, 

bacteremias, acute gastroenteritis and septicemia. 
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Standard microbiological analyses are performed at high incubation temperatures, typically 37 °C, 

because these analyses are aimed at retrieving medically important bacteria. In contrast, many 

environmental bacteria, including the Novosphingobium spp. in our study, cannot grow (fast enough) 

during such cultivation steps and thus disappear from the bacterial community. In accordance, a previous 

study reported mainly Enterobacter species on basil leaves by NGS sequencing, but after an overnight 

enrichment step in brain heart infusion (BHI) broth at 37 °C [48]. The natural occurrence of 

Enterobacteriaceae, and more specifically the thermotolerant “faecal” coliforms such as Enterobacter 

spp., Klebsiella spp. and Citrobacter spp., on basil leaves precludes the use of these bacterial groups to 

assess the microbiological quality and safety of vegetable food products including fresh herbs,  

since these are not unequivocally linked to faecal contamination and thus the presence of human 

pathogens [49].  

Spoilage of packed cut basil leaves was associated with bacterial growth exceeding 7 log CFU/g 

during storage at 15 °C and 22 °C, but not consistently. Sensorial quality of basil leaves was primarily 

impacted by physiological tissue deterioration and visual defects such as discoloration, dehydration and 

curling. Thus, spoilage of basil leaves could not be attributed to the growth of specific bacterial genera. 

In contrast, the increase in bacterial numbers and diversity was more likely the consequence rather than 

the cause of spoilage due to the increased release of nutrients during the physiological degeneration of 

the basil leaves. 

This study is another example of the well-known fact of how conventional culture-based techniques 

provide a biased and fractional view of the bacteria present, missing or severely underestimating the 

dominant bacteria initially present. The culturing bias can be avoided by application of molecular 

methods, but it is important to realize that all steps in the DGGE and NGS protocols also involve choices 

which are potentially associated with other biases.  

Sample preparation may exert a major influence on how many and which bacteria are sampled and 

analysed. In the present study, washing of basil leaves in a solution with addition of a detergent (Tween 

80®) yielded numerically less bacteria (approximately tenfold lower counts) but a higher diversity of 

species than maceration. Tween 80® enhanced the removal of bacterial biofilms and the disaggregation 

of bacterial cell clumps, as previously confirmed for Salmonella enterica on cilantro leaves [50].  

The lower relative frequencies of Novosphingobium spp. after washing in comparison with maceration 

are most likely the result of a stronger than average attachment to the basil leaves, presumably in  

biofilms [32,50,51]. The choice of DNA extraction method may affect the outcome due to different lysis 

efficiencies for different bacterial species and for cells and spores [52–54], although the effect was 

limited in this study and others (e.g., [55]). It may be challenging to argue which specific sample 

preparation method will lead to the “true” and correct results. Nevertheless, acknowledgement and 

further investigation of these differences remains important, because sometimes (as here in the present 

study) the results may be very different and may lead to different conclusions.  

Without a prior culturing step, large amounts of eukaryotic basil DNA were co-purified and  

co-amplified, so the coverage of bacterial sequences decreased strongly from on average 42,370 reads 

per sample (minimum 10,772 and maximum 83,574) to on average 21,887 reads per sample (minimum 

457 and maximum 80,911). As a result, sub-dominant bacterial members may not have been detected in 

the macerated and washed basil samples. Nevertheless, this study showed the importance of 

Novosphingobium spp. as a universal and numerically abundant epiphytic bacterium on basil. The 
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problem of amplification of eukaryotic DNA could be avoided by use of specific primers [56], but careful 

design is then required to ensure amplification of the 16S rRNA variations of all different bacterial 

phylogenetic groups [57]. Alternative to 16S rRNA gene sequence itself, the rRNA internal transcribed 

spacer (ITS) region may be used for sequencing [58]. PCR amplification bias occurs due to the choice 

of conserved regions for the primers. Mismatches or other exceptional variations in the primer sequences 

present in one or more lineages in the targeted 16S rRNA gene region may create a bias against 

taxonomical groups by preferential amplification of perfectly matched sequences [59]. This effect may 

be augmented by the addition of multiplex identifiers and/or sequencing adapters to the primers. The 

region and the length of the 16S rRNA gene fragment determines the taxonomic precision which can be 

obtained [60–62]. Unfortunately, there is no hypervariable region of the 16S rRNA gene which offers 

good taxonomic coverage for all bacterial genera, but the V1/V2 and the V2/V3 regions have been the 

region of choice to distinguish most bacterial species to the genus level [60,61], so in this study a 

fragment containing the V1, V2 and V3 region was selected for NGS and the V3 region was used for DGGE.  

Different technologies and platforms for NGS exist, all with their own specific benefits  

and drawbacks [62]. In this study, the preference was given to 454 pyrosequencing due to the low error 

rate [63] and the longer fragments (i.e., the V1/V2/V3 region of approx. 500 bp) which could be 

sequenced to enhance the reliability of identification and taxonomic classification [64]. On the other 

hand, the coverage was lower, especially due to the amplification of plant chloroplast DNA, which 

precludes the detection of more rare community members and limits the conclusions of this study to the 

dominant bacteria. An important limitation of this study is that only biological replicates have been 

analysed, this precludes statistical diversity and similarity analyses which could be performed on 

technical replicates of each biological sample. Specifically for NGS, bioinformatics analysis may be 

another major source of variability, since the same raw data may yield different results due to different 

clustering, alignment and annotation methods and the use of different databases with reference  

species [61], although often the same biological conclusion can be drawn [65]. It is very important to 

use an extensive database with quality checked 16S rRNA genes to ensure the accuracy of taxonomic 

identification, such as for example curated copies of the Ribosomal Database Project (RDP) [66], 

GreenGenes [67] and SILVA [68]. 

5. Conclusions 

Novosphingobium spp. was the dominant bacterial genus identified after maceration of basil leaves, 

while diverse Gammaproteobacteria were found after washing of leaves, demonstrating the large impact 

of sample preparation methods on the results of culture-independent analyses such as DGGE and NGS. 

Flavobacterium spp., Sphingobacterium spp., Acinetobacter spp., Pseudomonas spp., Enterobacter spp., 

Erwinia spp., Klebsiella spp. and Pantoea spp. were frequently retrieved from basil leaves. These genera 

are often associated with plants and/or their natural environment (soil and water). Although some species 

are opportunistic human pathogens, consumption of naturally occurring bacteria on basil leaves presents 

no risk of gastrointestinal illness.  
  



Int. J. Environ. Res. Public Health 2015, 12 10192 

 

 

Acknowledgments 

The research leading to these results was supported by the European Community’s Seventh 

Framework Program (FP7) project Veg-i-Trade under grant agreement no. 244994.  

Author Contributions 

Siele Ceuppens, Stefanie Delbeke, Nico Boon and Mieke Uyttendaele conceived and designed the 

experiments; Siele Ceuppens and Jolien Boussemaere performed the experiments; Siele Ceuppens and 

Dieter De Coninck analyzed the data; Siele Ceuppens and Mieke Uyttendaele wrote the paper. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References  

1. Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and 

functions of the bacterial microbiota of plants. Ann. Rev. Plant. Biol. 2013, 64, 807–838. 

2. Leveau, J.H.J.; Lindow, S.E. Appetite of an epiphyte: Quantitative monitoring of bacterial sugar 

consumption in the phyllosphere. Proc. Natl. Acad. Sci. USA 2001, 98, 3446–3453. 

3. Axtell, C.A.; Beattie, G.A. Construction and characterization of a proU-gfp transcriptional fusion 

that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 2002, 68,  

4604–4612. 

4. DeAngelis, K.M.; Ji, P.S.; Firestone, M.K.; Lindow, S.E. Two novel bacterial biosensors for 

detection of nitrate availability in the rhizosphere. Appl. Environ. Microbiol. 2005, 71, 8537–8547. 

5. Jacobs, J.L.; Carroll, T.L.; Sundin, G.W. The role of pigmentation, ultraviolet radiation tolerance, 

and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb. Ecol. 

2005, 49, 104–113. 

6. Lopez-Velasco, G.; Tydings, H.A.; Boyer, R.R.; Falkinham, J.O.; Ponder, M.A. Characterization 

of interactions between Escherichia coli O157:H7 with epiphytic bacteria in vitro and on spinach 

leaf surfaces. Int. J. Food Microbiol. 2012, 153, 351–357. 

7. Wells, J.M.; Butterfield, J.E. Salmonella contamination associated with bacterial soft rot of fresh 

fruits and vegetables in the marketplace. Plant. Dis. 1997, 81, 867–872. 

8. Allen, K.J.; Kovacevic, J.; Cancarevic, A.; Wood, J.; Xu, J.Q.; Gill, B.; Allen, J.K.; Mesak, L.R. 

Microbiological survey of imported produce available at retail across Canada. Int. J. Food 

Microbiol. 2013, 162, 135–142. 

9. Jacxsens, L.; Ibanez, I.C.; Gomez-Lopez, V.M.; Fernandes, J.A.; Allende, A.; Uyttendaele, M.; 

Huybrechts, I. Belgian and spanish consumption data and consumer handling practices for fresh 

fruits and vegetables useful for further microbiological and chemical exposure assessment. J. Food 

Prot. 2015, 78, 784–795. 

10. Carlsen, M.H.; Blomhoff, R.; Andersen, L.F. Intakes of culinary herbs and spices from a food 

frequency questionnaire evaluated against 28-days estimated records. Nutr. J. 2011, 10, 

doi:10.1186/1475-2891-10-50. 



Int. J. Environ. Res. Public Health 2015, 12 10193 

 

 

11. International Commission on Microbiological Specifications for Foods (ICMSF). Chapter 5. 

Vegetables and Vegetable Products, Introduction. In Microorganisms in Foods 6: Microbial 

Ecology of Food Commodities, 2nd ed.; Chapman & Hall: New York, NY, USA, 2005;  

pp. 277–325. 

12. Lahou, E.; Jacxsens, L.; Van Landeghem, F.; Uyttendaele, M. Microbiological sampling plan based 

on risk classification to verify supplier selection and production of served meals in food service 

operation. Food Microbiol. 2014, 41, 60–75. 

13. Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. 

Mol. Biol. Rev. 2004, 68, 669–685. 

14. Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of 

individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. 

15. Muyzer, G.; Dewaal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by 

denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes 

coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. 

16. Ercolini, D. PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food.  

J. Microbiol. Meth. 2004, 56, 297–314. 

17. Mertz, A.W.; Koo, O.K.; O'Bryan, C.A.; Morawicki, R.; Sirsat, S.A.; Neal, J.A.; Crandall, P.G.; 

Ricke, S.C. Microbial ecology of meat slicers as determined by denaturing gradient gel 

electrophoresis. Food Control. 2014, 42, 242–247. 

18. Chen, H.B.; Liu, Z.Y.; Wang, M.Y.; Chen, S.J.; Chen, T.W. Characterisation of the spoilage 

bacterial microbiota in oyster gills during storage at different temperatures. J. Sci. Food Agric. 2013, 

93, 3748–3754. 

19. Alfonzo, A.; Ventimiglia, G.; Corona, O.; Di Gerlando, R.; Gaglio, R.; Francesca, N.; Moschetti, G.; 

Settanni, L. Diversity and technological potential of lactic acid bacteria of wheat flours. Food 

Microbiol. 2013, 36, 343–354. 

20. Pereira, G.V.D.; Magalhaes-Guedes, K.T.; Schwan, R.F. Rdna-based dgge analysis and electron 

microscopic observation of cocoa beans to monitor microbial diversity and distribution during the 

fermentation process. Food Res. Int. 2013, 53, 482–486. 

21. Johansen, P.; Vindelov, J.; Arneborg, N.; Brockmann, E. Development of quantitative PCR and 

metagenomics-based approaches for strain quantification of a defined mixed-strain starter culture. 

Syst. Appl. Microbiol. 2014, 37, 186–193. 

22. Solieri, L.; Dakal, T.C.; Giudici, P. Next-generation sequencing and its potential impact on food 

microbial genomics. Ann. Microbiol. 2013, 63, 21–37. 

23. Diaz-Sanchez, S.; Hanning, I.; Pendleton, S.; D'Souza, D. Next-generation sequencing: The future 

of molecular genetics in poultry production and food safety. Poultry Sci. 2013, 92, 562–572. 

24. Park, J.Y.; Lee, S.Y.; An, C.M.; Kang, J.H.; Kim, J.H.; Chai, J.C.; Chen, J.; Kang, J.S.; Ahn, J.J.; 

Lee, Y.S.; et al. Comparative study between next generation sequencing technique and 

identification of microarray for species identification within blended food products. Biochip. J. 

2012, 6, 354–361. 

25. Naccache, S.N.; Federman, S.; Veeraraghavan, N.; Zaharia, M.; Lee, D.; Samayoa, E.; Bouquet, J.; 

Greninger, A.L.; Luk, K.C.; Enge, B.; et al. A cloud-compatible bioinformatics pipeline for 



Int. J. Environ. Res. Public Health 2015, 12 10194 

 

 

ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome 

Res. 2014, 24, 1180–1192. 

26. Padmanabhan, R.; Mishra, A.K.; Raoult, D.; Fournier, P.E. Genomics and metagenomics in medical 

microbiology. J. Microbiol. Meth. 2013, 95, 415–424. 

27. Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16s ribosomal DNA amplification for 

phylogenetic study. J. Bacteriol. 1991, 173, 697–703. 

28. Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, 

Stackebrandt, E., Goodfellow, M., Ed.; John Wiley and Sons: New York, NY, USA, 1991;  

pp. 115–175. 

29. Boon, N.; Top, E.M.; Verstraete, W.; Siciliano, S.D. Bioaugmentation as a tool to protect the 

structure and function of an activated-sludge microbial community against a 3-chloroaniline shock 

load. Appl. Environ. Microbiol. 2003, 69, 1511–1520. 

30. Cantwell, H.I.; Reid, M.S. Postharvest physiology and handling of fresh culinary herbs. J. Herbs 

Spices Med. Plants, 1993, 1, 93-125.  

31. Kampfer, P.; Young, C.C.; Busse, H.J.; Lin, S.Y.; Rekha, P.D.; Arun, A.B.; Chen, W.M.;  

Shen, F.T.; Wu, Y.H. Novosphingobium soli sp. nov., isolated from soil. Int. J. Syst. Evol. Micr. 

2011, 61, 259–263. 

32. Matsuyama, H.; Kamesaki, T.; Sasaki, R.; Minami, H.; Yumoto, I. Production of two types of 

exopolysaccharide by Novosphingobium rosa. J. Biosci. Bioeng. 2003, 95, 152–156. 

33. Addison, S.L.; Foote, S.M.; Reid, N.M.; Lloyd-Jones, G. Novosphingobium nitrogenifigens sp nov., 

a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper 

wastewater. Int. J. Syst. Evol. Micr. 2007, 57, 2467–2471. 

34. Liu, Z.P.; Wang, B.J.; Liu, Y.H.; Liu, S.J. Novosphingobium taihuense sp nov., a novel aromatic-

compound-degrading bacterium isolated from Taihu lake, China. Int. J. Syst. Evol. Micr. 2005, 55, 

1229–1232. 

35. Kampfer, P.; Witzenberger, R.; Denner, E.B.M.; Busse, H.J.; Neef, A. Novosphingobium hassiacum 

sp nov., a new species isolated from an aerated sewage pond. Syst. Appl. Microbiol. 2002, 25,  

37–45. 

36. Tiirola, M.A.; Busse, H.J.; Kampfer, P.; Mannisto, M.K. Novosphingobium lentum sp nov.,  

a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int. J. Syst. Evol. 

Micr. 2005, 55, 583–588. 

37. Aylward, F.O.; McDonald, B.R.; Adams, S.M.; Valenzuela, A.; Schmidt, R.A.; Goodwin, L.A.; 

Woyke, T.; Currie, C.R.; Suen, G.; Poulsen, M. Comparison of 26 sphingomonad genomes reveals 

diverse environmental adaptations and biodegradative capabilities. Appl. Environ. Microb. 2013, 

79, 3724–3733. 

38. Chen, Y.H.; Chai, L.Y.; Zhu, Y.H.; Yang, Z.H.; Zheng, Y.; Zhang, H. Biodegradation of kraft lignin 

by a bacterial strain Comamonas sp b-9 isolated from eroded bamboo slips. J. Appl. Microbiol. 

2012, 112, 900–906. 

39. Islam, M.R.; Sultana, T.; Joe, M.M.; Yim, W.; Cho, J.C.; Sa, T. Nitrogen-fixing bacteria with 

multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic 

Microb. 2013, 53, 1004–1015. 



Int. J. Environ. Res. Public Health 2015, 12 10195 

 

 

40. Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil—an essential oil 

from Ocimum basilicum L.—against multidrug resistant clinical isolates of the genera 

Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. 

Meth. 2003, 54, 105–110. 

41. Pezzoli, L.; Elson, R.; Little, C.L.; Yip, H.; Fisher, I.; Yishai, R.; Anis, E.; Valinsky, L.;  

Biggerstaff, M.; Patel, N.; et al. Packed with salmonella - investigation of an international outbreak 

of Salmonella Senftenberg infection linked to contamination of prepacked basil in 2007. Foodborne 

Pathog. Dis. 2008, 5, 661–668. 

42. Kisluk, G.; Kalily, E.; Yaron, S. Resistance to essential oils affects survival of Salmonella enterica 

serovars in growing and harvested basil. Environ. Microbiol. 2013, 15, 2787–2798. 

43. Settanni, L.; Miceli, A.; Francesca, N.; Moschetti, G. Investigation of the hygienic safety of 

aromatic plants cultivated in soil contaminated with Listeria monocytogenes. Food Control. 2012, 

26, 213–219. 

44. Guzman-Herrador, B.R.; Nilsen, E.; Cudjoe, K.S.; Jensvoll, L.; Kvamme, J.M.; Aanstad, A.L.; 

Lindstedt, B.A.; Nygard, K.; Severinsen, G.; Werner-Johansen, O.; Wester, A.L.; Wiklund, M.; 

Vold, L. A Shigella sonnei outbreak traced to imported basil—the importance of good typing tools 

and produce traceability systems, Norway, 2011. Eurosurveillance 2013, 18, 15–21. 

45. Pezzoli, L.; Elson, R.; Little, C.L.; Yip, H.; Fisher, I.; Yishai, R.; Anis, E.; Valinsky, L.;  

Biggerstaff, M.; Patel, N.; et al. Packed with Salmonella—Investigation of an international outbreak 

of Salmonella Senftenberg infection linked to contamination of prepacked basil in 2007. Foodborne 

Pathog. Dis. 2008, 5, 661–668. 

46. Pakalniskiene, J.; Falkenhorst, G.; Lisby, M.; Madsen, S.B.; Olsen, K.E.P.; Nielsen, E.M.;  

Mygh, A.; Boel, J.; Molbak, K. A foodborne outbreak of enterotoxigenic E. coli and Salmonella 

Anatum infection after a high-school dinner in Denmark, November 2006. Epidemiol Infect. 2009, 

137, 396–401. 

47. Bergey’s Manual of Systematic Bacteriology. Volume 2, The Proteobacteria. Editor-in-chief 

George M. Garrity, Springer-Verlag US, 2005.  

48. Wetzel, K.; Lee, J.; Lee, C.S.; Binkley, M. Comparison of microbial diversity of edible flowers and 

basil grown with organic versus conventional methods. Can. J. Microbiol. 2010, 56, 943–951. 

49. Leclerc, H.; Mossel, D.A.A.; Edberg, S.C.; Struijk, C.B. Advances in the bacteriology of the 

coliform group: Their suitability as markers of microbial water safety. Ann. Rev. Microbiol. 2001, 

55, 201–234. 

50. Brandl, M.T.; Huynh, S. Effect of the surfactant tween 80 on the detachment and dispersal of 

Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed 

by image analysis. Appl. Environ. Microbiol. 2014, 80, 6. 

51. Morris, C.E.; Monier, J.M. The ecological significance of biofilm formation by plant-associated 

bacteria. Ann. Rev. Phytopathol. 2003, 41, 429–453. 

52. Guo, F.; Zhang, T. Biases during DNA extraction of activated sludge samples revealed by high 

throughput sequencing. Appl. Microbiol. Biotechnol. 2013, 97, 4607–4616. 

53. Ceuppens, S.; Boon, N.; Rajkovic, A.; Heyndrickx, M.; van de Wiele, T.; Uyttendaele, M. 

Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal 

environment. J. Microbiol. Meth. 2010, 83, 202–210. 



Int. J. Environ. Res. Public Health 2015, 12 10196 

 

 

54. Maropola, M.K.A.; Ramond, J.B.; Trindade, M. Impact of metagenomic DNA extraction 

procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (l. Moench).  

J. Microbiol. Meth. 2015, 112, 104–117. 

55. Peng, X.; Yu, K.Q.; Deng, G.H.; Jiang, Y.X.; Wang, Y.; Zhang, G.X.; Zhou, H.W. Comparison of 

direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina 

sequencing of 16S rRNA tags. J. Microbiol. Meth. 2013, 95, 455–462. 

56. Chelius, M.K.; Triplett, E.W. The diversity of Archaea and Bacteria in association with the roots of 

Zea Mays L. Microbial Ecol. 2001, 41, 252–263. 

57. Dorn-In, S.; Bassitta, R.; Schwaiger, K.; Bauer, J.; Holzel, C.S. Specific amplification of bacterial 

DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J. Microbiol. 

Meth. 2015, 113, 50–56. 

58. Ruegger, P.M.; Clark, R.T.; Weger, J.R.; Braun, J.; Borneman, J. Improved resolution of bacteria 

by high throughput sequence analysis of the rRNA internal transcribed spacer. J. Microbiol. Meth. 

2014, 105, 82–87. 

59. Engelbrektson, A.; Kunin, V.; Wrighton, K.C.; Zvenigorodsky, N.; Chen, F.; Ochman, H.; 

Hugenholtz, P. Experimental factors affecting PCR-based estimates of microbial species richness 

and evenness. ISME J. 2010, 4, 642–647. 

60. Chakravorty, S.; Helb, D.; Burday, M.; Connell, N.; Alland, D. A detailed analysis of 16S ribosomal 

RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Meth. 2007, 69,  

330–339. 

61. Guo, F.; Ju, F.; Cai, L.; Zhang, T. Taxonomic precision of different hypervariable regions of 16S 

rRNA gene and annotation methods for functional bacterial groups in biological wastewater 

treatment. PLoS ONE 2013, 8, e76185. 

62. Claesson, M.J.; Wang, Q.O.; O'Sullivan, O.; Greene-Diniz, R.; Cole, J.R.; Ross, R.P.;  

O’Toole, P.W. Comparison of two next-generation sequencing technologies for resolving highly 

complex microbiota composition using tandem variable 16S rRNA gene regions. Nucl. Acids Res. 

2010, doi:10.1093/nar/gkq873. 

63. Mosher, J.J.; Bernberg, E.L.; Shevchenko, O.; Kan, J.; Kaplan, L.A. Efficacy of a 3rd generation 

high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. 

J. Microbiol. Meth. 2013, 95, 175–181. 

64. Ercolini, D. High-throughput sequencing and metagenomics: Moving forward in the  

culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 2013, 79,  

3148–3155. 

65. Pylro, V.S.; Roesch, L.F.W.; Morais, D.K.; Clark, I.M.; Hirsch, P.R.; Totola, M.R. Data analysis 

for 16s microbial profiling from different benchtop sequencing platforms. J. Microbiol. Meth. 2014, 

107, 30–37. 

66. Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; 

McGarrell, D.M.; Marsh, T.; Garrity, G.M.; et al. The ribosomal database project: Improved 

alignments and new tools for rRNA analysis. Nucl. Acids Res. 2009, 37, D141–D145. 

67. McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.;  

Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved GreenGenes taxonomy with explicit ranks 

for ecological and evolutionary analyses of Bacteria and Archaea. ISME J. 2012, 6, 610–618. 



Int. J. Environ. Res. Public Health 2015, 12 10197 

 

 

68. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. 

The Silva ribosomal RNA gene database project: Improved data processing and web-based tools. 

Nucl. Acids Res. 2013, 41, D590–D596. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


