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Abstract: Polyacrylamide (PAM) is a water-soluble polymer that is widely used as a 
flocculant in sewage treatment. The accumulation of PAM affects the formation of 
dewatered sludge and potentially produces hazardous monomers. In the present study,  
the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize 
PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. 
The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum 
culture condition (pH 7.2, 39 °C and 100 rpm). The addition of yeast extract and glucose 
improved the bacterial growth and PAM degradation. The degraded PAM samples were 
analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance 
liquid chromatography. The results showed that high-molecular-weight PAM was partly 
cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had 
been converted to carboxyl groups. The biodegradation did not accumulate acrylamide 
monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide 
groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from 
the aliphatic amidase family. 
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1. Introduction 

Polyacrylamide (PAM) is a water-soluble polymer that is usually produced through the polymerization 
of acrylamide with one or more copolymers. The amide groups of PAM form hydrogen bonds in 
aqueous solutions, and high-molecular-weight PAM is an effective flocculant of suspended solids in 
water via charge neutralization and interparticle bridging [1]. Thus, PAM is commonly used as a 
flocculant to improve sedimentation in sewage treatment [2], oil recovery [3], paper manufacturing [4], 
mining, and other fields [5–7]. China is the world’s largest consumer of PAM. Nearly 330,000 t of PAM 
was consumed in 2008, which was approximately 38% of the world's total consumption. Oil recovery 
accounted for 57% of PAM consumption, and sewage treatment accounted for 21% [8]. During the 
sewage treatment process, PAM is mostly consumed during excess sludge dewatering and ultimately 
accumulates in dewatered sludge. Although sludge dewatered with PAM has a low water content,  
the sludge often remains humid and tends to form clumps. This coagulated sludge is difficult to dispense 
and can increase the cost of sludge drying [9]. Various reports have indicated that commercial non-toxic 
PAM can be degraded into hazardous acrylamide monomers under the influence of specific physical and 
chemical factors [10,11]. Given that residual PAM in sludge degrades slowly under natural conditions, 
the improper disposal ways of sludge like landfill and land application may discharge of PAM and 
acrylamide monomer into terrestrial and aquatic ecosystems. It can form hemoglobin adducts and 
induce abnormalities in the daughter cells of animals and plants [12]. According to China’s 12th 
five-year plan, the urban sewage treatment rate exceeded 70% in 2010 and is expected to reach 85% in 
the next five years. As the country gradually increases its efforts to protect the environment,  
PAM consumption in sewage treatment will definitely increase. Therefore, a safe and economical 
transformation of residual PAM should be studied. 

The microbial biodegradation of PAM has long been studied. Previous studies suggested that 
microorganisms are able to degraded and utilized PAM as a nitrogen source in both aerobic and 
anaerobic environments [13,14]. Microorganisms produce a polyacrylamide induced amidase to 
deaminate PAM [15]. Few studies showed that bacteria can utilize or partly utilize PAM as a carbon 
source [16,17]. Several strains that partially use hydrolyzed PAM as the nitrogen and carbon source was 
also discovered [18,19]. It showed that the carbon backbone chain of PAM can be broken down to  
form volatile fatty acids that function as carbon sources under anaerobic conditions [1]. Although 
experimental evidence has achieved some level of success, further research is still necessary.  
The present paper aimed to screen for a PAM-degrading microorganism from dewatered sludge and 
evaluated the effect of available nutrients on bacterial growth and degradation activity. Specific bacterial 
characteristics during degradation were also explored. 

2. Materials and Methods 

2.1. Samples 

Sludge samples were collected from two sewage plants. One is located in northern suburb of Xi’an 
City and the other in Shoushan town, Mei County. The molecular weight of PAM used to dewater the 
excess sludge was approximately 0.5 × 107 Da–1.6 × 107 Da in these sewage plants. Microorganisms 
were isolated from dewatered sludge that had been accumulated and exposed to light for more than  
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20 days. Tweezers were used to break the hardened sludge surface. The moisture part under surface 
was sampled. Samples were kept in sterile wide-mouth bottles at 4 °C. 

2.2. Media 

The amount of PAM adds in sludge is about 3 to7 Kg per ton of dry sludge according to different 
sewage treatment plant. Actually, the concentration of residual PAM in dewatered sludge is lower than 
addition dosage. Given that calculation methods of PAM concentration are different in water and 
sludge, we add PAM at the concentration of 1 g·L−1 in experiments. The PAM applied in the 
experiments was supplied by the Tuopu Water Purification Materials Co., Ltd. (Gongyi, China).  
Its molecular weight was approximately 1.7 × 107 Da‒2.2 × 107 Da. Two kinds of culture media were 
used. The polymer medium contained PAM as the only nutrient for the selection of PAM-degrading 
bacteria. The second medium was a nutrient medium for bacterial enrichment. The polymer medium was 
based on mineral salt medium with 0.5 g·L−1 sodium chloride, 0.1 g·L−1 calcium chloride, 0.25 g·L−1 
magnesium sulfate, 0.5 g·L−1 sodium dihydrogen phosphate, 1.0 g·L−1 dipotassium phosphate, and  
1 g·L−1 PAM at pH 7.2‒7.4 [20]. The nutrient medium was based on mineral salt medium supplemented 
with 5.0 g·L−1 yeast extract, 10.0 g·L−1 peptone, and 5.0 g·L−1 sodium chloride at pH 7.2‒7.4 [18].  
All chemical reagents were bought from Sigma-Aldrich Company (St. Louis., MO, USA). Media were 
sterilized at 121 °C for 20 min before use. 

2.3. Isolation of Strains 

Each culture flask contained 10 g of the sludge samples dissolved in 150 mL of the liquid nutrient 
medium. The cultures were incubated aerobically on a shaking platform at 80 rpm–100 rpm and 30 °C 
for 2 days. Subsequently, 10 mL of the initial culture was used to inoculate 150 mL of the liquid polymer 
medium and the cultures were incubated at 30 °C for 5 days. Each enrichment period lasted for 7 days of 
cultivation. At the end of each period, 10 mL of the enrichment culture was seeded into fresh liquid 
polymer medium and incubated for another 7 days. The cultivation process was performed for at least  
four periods. 

After a month of cultivation, the broth cultures were streaked onto nutrient agar plates and incubated 
aerobically at 30 °C. When colonies emerged on the plates, different strains were selected and separately 
inoculated into the polymer medium such that PAM was the sole nutrient source. The strain was 
inoculated in 150 mL of the liquid polymer medium which prior sterilized at 121 °C for 20 min.  
The culture was incubated aerobically at 100 rpm and 30 °C for PAM degradation tests. The cell 
concentration and PAM degradation ability were evaluated during the cultivation. The microbial 
biomass was measured by spread plate method using culture flasks. Growth curve was performed by 
measuring the optical density (OD) at 660 nm and transferred to cfu (colony forming unit) through 
calibration curve. The PAM concentration was measured by the starch-cadmium iodide method [21]. 
The PAM removal efficiency was calculated according to the following formula: R = (Q0 − Q1)/Q0, 
where Q0 and Q1 represent the PAM concentration before and after degradation, respectively. A flask of 
PAM medium without inoculation was set as the blank test to avoid the influence of PAM shearing, 
autoclaving, and self-degradation in the experiment. Strains that showed good performance in their 
PAM removal efficiency were chosen for further study. 
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2.4. Identification of Isolates 

The chosen strain was identified by an automated bacterial identification system and its 16S rDNA 
sequence. Metabolite identification was conducted with the bioMérieux VITEK 2 system, which is an 
automated microbiology system that utilizes a growth-based technology. The colonies in pure culture 
were transferred and suspended in 3.0 mL of 0.45% sterile saline. The turbidity of the bacterial 
suspensions was adjusted with a McFarland nephelometer to fit the card inoculation. The GN card was 
selected as the reagent card. Each reagent card was inoculated with the microbial suspensions using an 
integrated vacuum apparatus. The test took 6 h–10 h [22]. 

The 16S rDNA analysis was conducted after automated identification to further confirm the  
results. The total DNA of the bacterial isolate was extracted with a TaKaRa bacteria genomic  
DNA extraction kit. The universal primers 8F (5ʹ-AGAGTTTGATCCTGGCTCAG-3ʹ) and 1492R  
(5ʹ-TACG-GTTACCTTGTTACGACTT-3ʹ) were applied for PCR amplification [23]. The 20 μL PCR 
mixture contained 2 μL of the PCR buffer (20 mM MgCl2), 0.2 mM of each dNTP, 0.2 μL of Taq DNA 
polymerase, 0.5 μL of each primer (10 µmol·μL−1), and 1 μL of the DNA template. All the reagents in 
the PCR system were supplied by Sangon Co., Ltd. (Shanghai, China). Amplification was performed 
with the initial denaturation at 94 °C for 5 min, followed by 30 cycles of 94 °C for 30 s, 55 °C for 60 s, 
and 72 °C for 70 s, and a final extension at 72 °C for 10 min. The PCR products (approximately 1500 bp) 
were purified and detected by agarose gel electrophoresis. Purified amplicons were inserted into the 
pMD18-T vector (TaKaRa Biotechnology, Dalian, China) and used to transform Escherichia coli 
DH5α. The 16S rDNA recombinant plasmid was extracted and sequenced by the Beijing Sunbiotech 
Co., Ltd. (Beijing, China). The sequence was submitted and analyzed with the BLAST tools (National 
Center for Biotechnology Information databases) to identify the bacterial isolate. 

2.5. Determination of PAM Degradation 

The samples were taken from cultures, which were incubated in the liquid polymer media at 30 °C 
under shaking (100 rpm) for 7 days. Uninoculated media were set as control. The changes of PAM 
molecular weights (MW) after degradation were determined by gel-filtration chromatography (GFC). 
Samples were analyzed with an LC-10A apparatus (Shimadzu, Kyoto, Japan) equipped with an 
Ultrahydrogel Column 1000 (12 µm, 300 mm × 7.8 mm) and an RID-10A differential detector. Samples 
were filtered by filterable membranes (pore size, 0.45 µm) prior to analysis. The GFC was run with the 
0.1 M sodium nitrate solution at a flow rate of 0.5 mL/min. 

Fourier transform infrared (FT-IR) spectroscopy was applied to analyze the side chain functional 
groups changes in the medium before and after degradation. Samples were extracted by placing each 
into a separating funnel with 5% petroleum ether (volume fraction). Polymers in the lower layer were 
filtered by membranes (pore size, 0.45 µm) and purified with methanol. After drying at 60 °C,  
the purified polymer samples were dispersed into KBr pellets. The samples were analyzed with an 
Equinox 55 FT-IR spectrometer (Bruker, Ettlingen, Germany) at a scanning range of  
4000 cm−1–500 cm−1. 

Samples after biodegradation were monitored by HPLC to verify if the acrylamide monomer had 
accumulated. Samples were filtered by filterable membranes (pore size, 0.45 µm) prior to HPLC 
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analysis. Samples were analyzed with a Delta 600 apparatus (Waters, Milford, MA, USA) that was 
equipped with a Spherisorb ODS-1 column (150 mm × 4.6 mm, 5 μm). A methanol-water (55:45) 
mixture was used as the mobile phase. The flow rate was 0.5 mL·min−1, and the injection volume was  
20 μL. The detection wavelength was 210 nm, at which PAM and acrylamide monomer have maximum 
absorption [24]. 

2.6. Extracellular Enzyme in PAM Degradation 

The activated strain was seeded in the 150 mL liquid polymer medium. Samples were taken from the 
culture every 12 h. Each sample was centrifuged at 4000 rpm (1700× g) for 30 min to collect the 
extracellular matrix. The supernatant was subsequently filtered through a cellulose acetate membrane 
(pore size, 0.2 µm). Proteins in supernatant were extracted by the ammonium sulfate precipitation 
method [25]. Ammonium sulfate was added to the supernatant to a final concentration of 70%.  
The extract was then centrifuged at 10,000 rpm (11,000× g) for 30 min at 4 °C. The obtained precipitate 
was dissolved with PBS and then dialyzed against double-distilled water at 4 °C overnight. The protein 
concentration was determined by the Bradford method [26]. The standard solution of 1 mg·mL−1 bovine 
serum albumin was prepared to set the standard absorbance curve. Crude proteins were separated by the 
running supernatant on 8% SDS-PAGE at a constant voltage of 80 V with the mini-PROTEAN 
electrophoresis system (Bio-Rad, Hercules, CA, USA). After the proteins were separated, the gel was 
stained with Coomassie Brilliant Blue R-250. The stained proteins were transferred onto a PVDF 
membrane by a semi-dry transfer apparatus containing the transfer buffer (48 mM Tris, 39 mM glycine, 
0.2% SDS, and 20% methanol, with water to a 1 L volume); a constant current of 0.8 mA·cm−2 was 
applied for 90 min to facilitate the transfer [27]. The blotted bands on the PVDF membrane were cut and 
subjected to N-terminal sequencing by the Shanghai GeneCore BioTechnologies Co., Ltd.  
(Shanghai, China). 

3. Results and Discussion 

3.1. Bacteria Isolation and Identification 

Seven strains that could grow on the polymer medium were isolated from the sludge samples during 
the preliminary screening. The selected strain HI47 exhibited the highest removal efficiency such that it 
degraded 31.1% PAM after 7 d of cultivation in despite of PAM self-degradation (Figure 1).  
The VITEK 2 results (Table A1) showed with high confidence levels that the HI47 strain corresponded 
to Pseudomonas putida with 90% probability. The 16S rDNA of the bacteria was amplified and 
sequenced. The BLAST search results indicated that the isolate was consistently 99% similar to  
P. putida. The construction of a phylogenetic tree using the neighbor-joining method (Figure 2) 
demonstrated a close relationship between the HI47 (KJ820740) isolate and P. putida in support of  
the VITEK 2 results. 
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Figure 1. Time course of growth curve and PAM removal efficiency of P. putida HI47. 

 

Figure 2. The phylogenetic tree of Pseudomonas strain homologues to the HI47.  
The phylogenetic tree was constructed by the neighbor-joining method with MEGA 5.0. 
Bootstrap value is set to 1000. Species names are followed by the accession numbers of 
their 16S rRNA gene sequences. 

P. putida has been exploited for environmental bioremediation and biodegradation in several  
studies [28–30]. This species has been applied in xenobiotics [31,32] and polymer degradation [33]. 
However, its role in PAM degradation has not been reported. Thus, to our knowledge, this paper is the 
first to describe the degradation of PAM by P. putida. 

The effect of temperature and pH on PAM degradation was explored. As shown in Figure 3, the PAM 
removal efficiency was improved with increasing incubation temperature. This efficiency reached its 
maximum at 46.5% when the strain was cultured at 39 °C. Although the PAM removal efficiency started 
to decrease at temperatures more than 40 °C, the bacteria growth remained unaffected. The biomass 
continued to grow even when temperatures exceeded 45 °C. In addition, the optimum pH of PAM 
degradation was approximately 7.2. High levels of degradation could be maintained over 40% when the 

 



Int. J. Environ. Res. Public Health 2015, 12 4220 
 
pH was between 6.4 and 8.0. The optimum pH for bacterial growth ranged from 7.2 to 7.6. Therefore, 
the optimum conditions of PAM degradation and bacterial growth were not entirely consistent.  
The isolated strain was more sensitive to the hydrogen ion concentration, whereas PAM degradation was 
restricted by the reaction temperature. The results indicated that the extracellular enzyme was involved 
in degradation. 

 

Figure 3. Effect of temperature (a) and pH (b) on PAM removal efficiency and viable  
cell biomass. 

Previous studies showed that bacteria hydrolyze the PAM-substituted amides to release ammonia as 
the nitrogen source [34]. Several research groups have observed that additional carbon sources can 
promote bacterial growth and PAM degradation [18,19]. To investigate the effect of nutrient 
availability, we supplemented the polymer medium with 200 mg·L−1 exogenous nutrients and 
determined the resulting biomass and PAM concentration. As shown in Figure 4, inorganic nitrogen, 
liquid paraffin and sucrose merely contribute to the PAM degradation and biomass as compared with  
the control (medium without additional nutrients). According to Duncan’s multiple range test, PAM 
removal efficiency of groups added glucose, yeast extract and peptone were significantly different at  
p = 0.05. Yeast extract significantly promoted cell growth to 1.63 × 108 cfu·mL−1. It also increased  
PAM degradation to 47.2% in 5 days. The efficiency of PAM degradation was further improved to 
56.8% when glucose was present in the culture medium. However, less biomass was obtained with 
glucose than when yeast extract was added to the culture medium. This trend may be explained by the 
fact that glucose can only be used as a carbon source. The PAM degradation rate in different period 
showed that yeast extract was metabolized prior to PAM as source of organic carbon and nitrogen in 
bacterial growth. The initiation of PAM degradation in the culture especially after 72 h may be attributed 
to the depletion of yeast extract to sustain the number of viable cells. In the case of glucose, cell growth 
was restricted by the limited availability of a nitrogen source. The isolated strain was stimulated to 
degrade PAM to acquire the required nitrogen for growth. This result was not discussed in  
previous studies. 
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Figure 4. Effect of exogenous nutrients on PAM removal efficiency and viable cell 
biomass in 5 days of cultivation. 

3.2. Determination of PAM Degradation 

The MW (molecular weight) distributions of PAM before and after cultivation were investigated by 
GFC to study whether the cleavage of PAM backbone chain exists in the process of PAM utilized as sole 
nutrient. As shown in Figure 5, the peak with retention time of 17.72 min appeared in uninoculated 
control. In the sample after biodegradation, two peaks with retention times of 22.91 min and 27.06 min 
were found. The transfer of peaks show higher-molecular-weight polymer was cleaved into small 
molecular oligomer derivatives, which are more suitable for microbial consumption. It indicates the 
breaking of carbon–carbon bonds is associated with biodegradation of PAM. 

The samples incubated after 7 days were analyzed by infrared spectroscopy to investigate functional 
groups. The changes of functional groups were determined by comparing the absorption peaks before 
and after degradation. Line A in Figure 6 is the absorbance spectra for the undegraded PAM control, and 
Line B is the absorbance spectra of PAM after degradation. Line A possesses the typical characteristics 
of PAM. The absorbance peaks at 3378 and 3257 cm−1 represent amidogen. The absorbance peaks at 
1663, 1619, and 1026 cm−1 correspond to the C=O stretching vibration, N–H bending vibration, and  
C–N bond, respectively. The peak at 3378 cm−1 was replaced by a broad absorption peak in Line B, 
which indicated that the amidogen level had decreased. The peak at 1159 cm−1 is the C–O stretching 
vibration. The peak at 1663 cm−1 in Line A disappeared and became a weak peak at 1590 cm−1 in Line B, 
which indicated that the amide group was converted into a carboxyl group. The observed spectra 
indicated that part of the amide groups in the samples were hydrolyzed and converted into carboxyl 
groups after bacterial degradation. These results are consistent with previous results reported by  
Wen et al. [19]. 
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Figure 5. GPC analysis of PAM before and after biodegradation. (A) Chromatography of 
uninoculated control; (B) chromatography of PAM after 7 days biodegradation. 

 

Figure 6. Cont. 
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Figure 6. FT-IR analysis of PAM before and after biodegradation. Line A is the spectrum 
of uninoculated control; line B is the spectrum of PAM after 7 days biodegradation. 

The PAM samples before and after biodegradation were analyzed to determine whether the 
acrylamide monomer exists after biodegradation. The HPLC profiles of PAM before and after 
biodegradation are shown in Figure 7. Three peaks appear in the liquid chromatogram of the 
uninoculated control sample, with respective retention times of 2.03, 2.30, and 4.47 min (Figure 7a). 
PAM had acrylamide monomer residues in the sample because of self-degradation. The peak 
corresponding to a pure acrylamide sample was observed after 4 min (Figure 7b). After 7 days of 
biodegradation, only two peaks with retention times of 2.18 and 2.90 min (Figure 7c) remained in the 
PAM sample. The area of main peak was reduced, and the peak of acrylamide disappeared. These results 
show that PAM biodegradation did not cause the accumulation of acrylamide monomers. However,  
an analysis of the degradation product was not performed in our experiments. Furthermore, other 
metabolites appeared during degradation; these products need further exploration in future studies. 

 

Figure 7. Cont. 
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Figure 7. HPLC analysis of PAM samples and acrylamide monomer. (a) undegraded PAM 
sample; (b) pure acrylamide monomer; (c) PAM sample after biodegradation. 

3.3. Determination of the Extracellular Enzyme 

Previous studies noted that a PAM-specific amidase is produced during cell growth when PAM is 
supplied as the substrate. The activity of intracellular amidase is low and relatively constant, whereas the 
specific extracellular enzyme activity is significantly increased during the period of logarithmic cell 
growth [15]. High-molecular-weight polymers cannot be transferred through the cell membrane. Thus, 
enzymes are secreted to the extracellular space to degrade PAM into small molecules. We extracted the 
extracellular proteins present in the cultures containing PAM. The extracellular proteins were collected 
and separated via SDS-PAGE. As shown in Figure 8, a protein band between 35 and 45 kDa  
appeared after 24 h, which suggested that this band was a PAM-induced enzyme. The N-terminal 
sequencing analysis showed that the first 20 N-terminal amino acids of the identified protein were 
VGVAVVNYKM-PRLHTAAEVL. The BLAST search results identified the sequence to be the part of 
the aliphatic amidase (cd07565). It belongs to the nitrilase superfamily (cl11424), which contains 
hydrolases that break carbon–nitrogen bonds. This result indicates that the induced enzyme 
corresponded to the aliphatic amidase family, which exists in different species, such as Helicobacter, 
Rhodococcus, and Enterobacter [12,35,36]. Aliphatic amidase catalyzes the hydrolysis of middle- or 
short-chain aliphatic amides and converts them to their organic acids. Several studies suggested that 
aliphatic amidase can degrade acrylamide. Syed et al. [37] purified amidase from the acrylamide-degrading 
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Burkholderia sp. DR.Y27 strain, which can degrade a series of short-chain aliphatic amides, including 
acrylamide, acetamide, and propionamide. Skouloubris et al. [38] identified an aliphatic amidase in 
Helicobacter pylori that has propionamide, acrylamide, and acetamide as its ideal substrates. The HPLC 
analysis results verified that acrylamide did not significantly accumulate after PAM biodegradation and 
indicated that the specific extracellular amidase had degraded acrylamide. This trend is consistent with 
the results of Kay-Shoemake et al. [15], wherein the PAM-specific amidase was capable of hydrolyzing 
other short-chain aliphatic amides. 

 

Figure 8. SDS-PAGE analysis of extracellular proteins. Lane 1: middle mw protein marker; 
Lane 2–5: extract of extracellular proteins from bacteria incubated in polymer medium for 
36 h, 24 h, 12 h and 0 h. 

According to the results of degradation analysis, we verified that the HI47 strain utilized PAM in 
aerobic conditions. However, PAM could not be completely degraded in our experiments. Even when 
we supplemented the polymer medium with sufficient glucose during continuous cultivation, the PAM 
removal efficiency did not exceed 85%. Other factors like chemical substances, thermal and mechanical 
effects might influence PAM degradation rate. Intermolecular cross-linking and bridging of polymer 
also affects its degradation. However, we did not find any extracellular enzymes relate to the breaking of 
carbon–carbon bonds in the experiment. Perhaps the cleavage is associated with constitutive enzymes  
or proteins. Further studies need to be conducted to explore the mechanism of breaking of PAM 
backbone chain. 

4. Conclusions 

In this work, A PAM-degrading bacterial strain P. putida HI47 was isolated from dewatered sludge. 
The bacterial isolates grew well on medium with PAM as the sole source of nutrients at pH 7.2–7.6 and 
36 °C–42 °C. The presence of glucose improved bacterial growth and the rate of degradation. According 
to the GFC, FT-IR, HPLC, SDS-PAGE, and N-terminal sequencing analyses, we found PAM was partly 
cleaved into small molecular oligomer derivatives and the part of amide groups were converted into 
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carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family. PAM 
biodegradation did not accumulate acrylamide monomers. The results indicated that the HI47 strain is a 
potential candidate for safe PAM degradation. However, in present work we mainly focus on 
characterization of the strain and ignore its actual performance in dewatered sludge. It still remains to be 
investigated whether the performance of HI47 in sludge is the same as it in laboratory experiment. 
Future works are needed to explore the PAM degradation effect of strain in sludge application. 
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Appendix 

Table A1. Biochemical characteristics of strain HI47 identified by using GN card in  
VITEK 2 Compact. 

Test Representation Result 
APPA Ala-Phe-Pro-ARYLAMIDASE − 
ADO ADONITOL − 
Test Representation Result 
PyrA L-Pyrrolydonyl-ARYLAMIDASE − 
lARL L-ARABITOL − 
dCEL D-CELLOBIOSE − 
BGAL β-GALACTOSIDASE − 
H2S H2S PRODUCTION − 

BNAG β-ACETYL-GLUCOSAMINIDASE − 
AGLTp Glutamyl arylamidase pNA + 
dGLU D-GLUCOSE + 
GGT γ-GLUTAMYL-TRANSFERASE + 
OFF FERMENTATION/GLUCOSE − 

BGLU β-GLUCOSIDASE − 
dMAL D-MALTOSE − 
dMAN D-MANNITOL + 
dMNE D-MANNOSE + 
BXYL β-XYLOSIDASE − 
BAlap β-Alanine arylamidase pNA + 
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Table A1. Cont. 

Test Representation Result 
ProA L-Proline ARYLAMIDASE + 
LIP LIPASE − 
PLE PALATINOSE − 
TyrA Tyrosine ARYLAMIDASE + 
URE UREASE + 
dSOR D-SORBITOL − 
SAC SACCHAROSE/SUCROSE − 

dTAG D-TAGATOSE − 
dTRE D-TRHALOSE − 
CIT CITRATE (SODIUM) + 

MNT MALONATE + 
5KG 5-KETO-D-GLUCONATE − 

lLATk L-LACTATE alkalinisation + 
AGLU α-GLUCOSIDASE − 
SUCT SUCCINATE alkalinisation + 
NAGA BETA-N-NCETYL-GALACTOSAMINIDASE − 
AGAL ALPHA-GALACTOSIDASE − 
PHOS PHOSPHATASE − 
GlyA Glycine ARYLAMIDASE − 
ODC ORNITHINE DECARBOXYLASE − 
LDC LYSINE DECARBOXYLASE − 
lHISa L-HISTIDINE assimilation − 
 CMT COUMARATE + 
BGUR β-GLUCORONIDASE − 
O129R O/129 RESISTANCE (comp.vibrio) + 
GGAA Glu-Gyl-Arg-ARYLAMIDASE + 
lMLTa L-MALATE assimilation + 
ELLM ELLMAN − 
lLATa L-LACTATE assimilation − 
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