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Abstract: During the last decades studies addressing the effects of exposure to Extremely 

Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link 

between those fields emitted by power lines and childhood leukaemia. They have also 

stressed the importance of also including in the assessment the contribution of frequency 

components, namely harmonics, other than the fundamental one. Based on the spectrum of 

supply voltage networks allowed by the European standard for electricity quality assessment, 

in this study the exposure of high-resolution three-dimensional models of foetuses to the 

whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, 

was assessed. The results show that the main contribution in terms of induced electric fields 

to the foetal exposure is given by the fundamental frequency component. The harmonic 

components add some contributions to the overall level of electric fields, however, due to 

the extremely low permitted amplitude of the harmonic components with respect to the 

fundamental, their amplitudes are low. The level of the induced electric field is also much 
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lower than the limits suggested by the guidelines for general public exposure, when the 

amplitude of the incident magnetic field is set at the maximum permitted level. 

Keywords: ELF-EMF; foetus exposure; harmonics; power lines 

 

1. Introduction 

It is well known and widely accepted that exposure to Extremely Low Frequency (ELF) 

electromagnetic fields (EMF) causes well-defined acute biological effects on the nervous system, which 

include in particular nerve stimulation as well as the induction of retinal phospenes [1–4]. Furthermore, 

at the late 1970s, Wertheimer and Leeper [5] indicated a possible association between long-term exposure 

to ELF-EMF and an increased risk of childhood cancer. Since then, many expert-group reports, as well as 

independent epidemiological studies have specifically addressed this issue and in particular the 

relationship between the exposure to ELF-EMF produced by transmission lines and childhood leukaemia 

(see e.g., [6–19]). All this great amount of studies has been mainly based on the investigation of the 

exposure from electricity transmission and distribution networks at 50 Hz (or 60 Hz in some countries; in 

the rest of this Introduction, the term 50 Hz should be read as either 50 or 60 Hz, as a function of the 

country considered). The overall conclusion has been that the exposure to 50 Hz magnetic fields could 

be associated to an increased risk of leukaemia in children. This has brought the International Agency 

for Research on Cancer (IARC) [20] to classify ELF magnetic fields as “possibly carcinogenic to 

humans” in 2002. Since then, many studies have investigated the assessment of the exposure to magnetic 

field at the specific frequency of 50 Hz. 

However, many authors have stressed the possible influence on ELF health effects of frequency 

components other than the fundamental 50 Hz one (see e.g., [21–27]). From that perspective, one should 

consider that the sources generating magnetic fields, in addition to the fundamental sinusoidal 

component at 50 Hz, are emitting additional frequency components, which can be analysed by the  

so-called sinusoidal harmonics, mainly due to non-linear electric loads. They can be defined as 

sinusoidal components of a signal, each of them at a frequency of an integer number of times the 

fundamental frequency. Day after day, this is becoming increasingly important, considering that the 

sources of distortion (i.e., causes of introduction of harmonics) are spreading due to the development of 

new technologies, which use non-linear loads, in common electrical appliances and industrial equipment. 

This spread, besides impairing the quality of the supplied electrical power and producing damage to the 

devices, can increase consistently the amount of delivered power and thus increase the levels of exposure 

in an uncontrolled way [28]. 

So far, the available studies addressing the evaluation of the ELF-EMF exposure assessment at tissue 

level have been focused only on the exposure to 50 Hz magnetic fields of children, adults, women and 

pregnant women (see e.g., the studies of [29–33]). However, no study has addressed the estimation of 

the exposure at tissue level considering the contribution of the harmonics, least of all  

on foetuses.  

The aim of this study was therefore to assess this latter exposure considering the harmonic content of 

a uniform magnetic field at 50 Hz. It will be performed on high-resolution three-dimensional models of 
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pregnant women at 3, 7, 9 months gestational age. The harmonics considered here are based on the 

spectrum of supply voltage networks, as described in the European technical standards for the quality 

assessment of electrical power. 

2. Material and Methods  

2.1. Harmonic Spectrum  

So far, only a few studies have dealt with the estimation of the harmonic components of a uniform 

magnetic field. The scarce available data (see e.g., [34,35]) does not fit the needs of the present study, 

in that they are highly specific in terms of sources and hence they cannot be used to build a realistic 

exposure scenario for a magnetic field composed by a fundamental component at 50 Hz plus harmonics. 

A possible solution could be to build a worst-case exposure scenario from the data provided by the 

available regulation addressing the quality of the power distribution. The presence of harmonics in the 

supply voltage signal can highly corrupt the signals delivered to the customer equipment and 

consequently cause damage to them. To prevent this situation, quality standards providing specific limits 

and tolerances that define the minimum requirements of the characteristics of electricity supplied by the 

distribution networks, were developed. In that regard, the European standard EN 50160 [36] “Voltage 

characteristics of electricity supplied by public distribution systems”, indicating the quality voltage 

parameters of electrical energy in public distribution systems, provides a basis for limiting and judgeing 

the severity of the contribution of harmonics, technically referred to as “harmonic distortion”. Its general 

approach is to express the supply characteristics of a distribution network by reference to the nominal 

voltage or declared voltage, as appropriate. Therefore, the maximum allowed amplitude of a voltage 

harmonic component is indicated as a percentage of the amplitude of the fundamental component (i.e., 

at 50 Hz in Europe). To that purpose, the networks are clustered into three classes, as a function of the 

root mean square (rms) value of the supply voltage of the fundamental component: Low Voltage (LV), 

Medium Voltage (MV) and High-Voltage (HV). Quantitatively, EN 50160 [36] limits the amplitude of 

the harmonics to be in a range from 0.5% to 6.0% (5.0% for HV networks) of the amplitude voltage of 

the fundamental component, as a function of the order of the harmonic (up to the twenty-fifth).  

In this study, as worst-case exposure scenario, the amplitude over time of the public transmission and 

distribution networks voltage is set as the time summation of the fundamental component to all the 

harmonic components up to the twenty-fifth, each one set at the maximum percentage of the fundamental 

permitted by the standard. Considering the need to keep the time cost of the computational procedure 

reasonable (see below) and that extremely low amplitude components are expected to minimally 

contribute to the exposure, harmonics mandated to be of maximum amplitude lower than the 3% of the 

fundamental (2.5% for HV) have been neglected in our analysis. Table 1 shows therefore the harmonics 

components considered in our exposure scenario with their corresponding relative amplitudes with 

respect to the fundamental component. 
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Table 1. Harmonic component considered in the magnetic field exposure scenario and their 

amplitude in terms of percentage of the amplitude of the fundamental component, as 

provided by the European standard EN 50160. 

Order h Frequency [Hz] LV&MV Relative Amplitude HV Relative Amplitude 

3 150 5.0% 3.0% 

5 250 6.0% 5.0% 

7 350 5.0% 4.0% 

11 550 3.5% 3.0% 

13 650 3.0% 2.5% 

2.2. Computational Modelling  

Simulations of the exposure to a magnetic field as described in the section above, have been conducted 

with the Magneto Quasi-Static low frequency solver of the simulation platform SEMCAD X v. 14.8.4 

(by SPEAG Schmid & Partner Engineering AG, Zurich, Switzerland) [37], based on the scalar potential 

finite element (SPFE) method. In the low frequency range, where the maximum dimension of the 

computational domain is much smaller than the free space wavelength, the magnetic vector potential A, 

(∇	x	࡭	 = 	 డ࡮ௗ௧ ), and the electric field E are decoupled. Thus, A can be calculated by solving the Biot-

Savart law and E, since the displacement current in the human body can be neglected with respect to the 

conduction current (σ >> jωε where σ and ε are the electrical conductivity and the permittivity of the 

tissues, respectively, and ω is the angular frequency of the field), can be calculated from the scalar 

potential φ by: 

−∇ · σ∇φ = jω∇・(σA) (1)

The exposure of three anatomical models of pregnant women and corresponding foetuses at 3, 7 and 

9 months of Gestational Age (GA), has been simulated here. Those models were obtained from insertion 

of the corresponding models of foetus in the “non-pregnant” woman model “Ella” of the Virtual Family 

[38], partially deformed to account for the change in morphology due to pregnancy stages. A detailed 

description of the development of the pregnant women and foetuses models can be found in [39]. Up to 

77 different tissues have been distinguished in the woman model and up to 15, 17 and 26 different tissues 

can be distinguished in the models of the foetuses at 3, 7 and 9 months GA, respectively. The number of 

tissues differs with GA because of the different stages of maturation of the organs. 

The orientation of the uniform magnetic field B and the foetal position (Figure 1) have been chosen 

based on the results of the study of Liorni and colleagues [33] on the exposure of pregnant women to 50 

Hz magnetic fields. Hence, these field characteristics have been set to the same that induces the highest 

electric field E (expressed as the 99th percentile, E99th) in the bone tissue (identified as the target tissue 

for ELF magnetic field exposure, considering the possible association of that exposure and the increased 

risk of children leukaemia) and in the whole body of foetus, for each GA. In details:  

- Bfront, for the 3 months GA (mGA) foetus; 

- Blat, for the 7 mGA foetus; 

- Bfront, for 9 mGA foetus. 
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where Bfront, Blat, and Btop means front-to-back, lateral (left-to-right) and top-to-bottom exposure, 

respectively. In the case of the 3 mGA foetus, the posture that induces the highest electric field E in the 

bone tissue and in the whole body of foetus corresponds to the foetus with the head up [33]. 

Bfront 

 

 

Blat 

 

 

 

Bfront 

 

3 mGA 7 mGA 9 mGA 

Figure 1. Exposure scenarios representation of the three pregnant woman models at 3, 7 and 

9 months GA according to [33].  

The dielectric properties were set according to the frequency of the harmonic component under 

simulation. For the fundamental component at 50 Hz, the dielectric properties have been set as in [33]. 

Since that approach included properties taken from the Hasgall et al. [40] database, whose validity was 

assured only up to 120 Hz, for the higher harmonic components the dielectric properties have been set 

on the basis of the classical Cole-Cole model [41–44] with the exception of the following tissues: 

- The skin conductivity was set to 0.1 S/m for all frequencies to take into account the higher 

conductivity of deeper granular tissue, i.e., dermis [45]. 

- Placenta and umbilical cord were modelled as blood because of their high perfusion [39]. 

- The conductivity of the amniotic fluid was set to 1.28 S/m, 1.27 S/m and 1.10 S/m at 3, 7 and 9 

months GA, respectively, and taken constant across all frequencies [29,46]. 
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- An average value between grey matter and white matter conductivities was assigned to medulla 

oblongata, pons and midbrain tissues (as in [33]). 

- The lowest conductivity among the ones of the woman’s brain tissues was assigned to the foetal 

brain from a conservative point of view, to obtain higher electrical conductivity contrast with the 

embedding cerebrospinal fluid (CSF) (as in [33]) 

- The foetal bone conductivity was set to 0.35 S/m as in [33] taken as a weighted average of bone 

and blood (to take into consideration the infiltration of bone marrow at a very young age).  

It was also kept constant across all frequencies because of the relative stability of bone and blood 

conductivities values within the maximum harmonic frequency (i.e., 650 Hz).  

- Similarly, fat conductivity was set at 0.12 S/m, estimated as a blend between fat and muscle 

conductivities, according to the suggestion of Peyman et al. [47], related to the higher water 

content and blood presence at very young age.  

2.3. Exposure Assessment  

The exposure assessment was based on the estimation of the electric field induced both in the whole-

body foetus and in each foetal tissue taken separately. In particular, the root mean square (rms) of the 

electric field averaged over cubes of 2 × 2 × 2 mm3 was calculated, as suggested by the ICNIRP exposure 

guidelines [4]. In detail, if 2 × 2 × 2 mm3 of contiguous tissue cannot be found (e.g., in the skin and in 

the retina and in many foetal tissues), the averaging has been performed over a smaller volume that 

includes only the specific tissue under analysis. The analysis was then accomplished by extracting the 

peak, the 99th and the 50th percentile (Epeak, E99th and E50th, respectively) of the E distribution of each 

tissue. The whole body foetus Epeak, E99th and E50th are here considered as the maxima Epeak, E99th and 

E50th found over all the tissues.  

The vector potential A and the magnetic flux density B have been set to obtain a perfectly 

homogeneous magnetic field for all the considered polarizations in all the computational domain. Hence, 

the pregnant women have been exposed to uniform magnetic fields, whose peak amplitudes, for both the 

fundamental and harmonic components, were set to 1 μT. Considering the linearity of the problem, it is 

possible to scale the results to estimate the induced electric fields for any level of magnetic field actually 

used in the scenario under investigation. 

The exposure of a pregnant woman to a magnetic field with a complex time content has been also 

evaluated in terms of its compliance with the current ICNIRP guidelines [4]. However, those guidelines 

refer to this specific condition only including in the Glossary “Pregnant Workers” in the “General 

Public” item, as an example of vulnerable groups or individuals. Neither specific action nor specific 

limits are suggested for these vulnerable individuals, and, least of all, for the foetus. This could be 

interpreted as to move to the assessor the decision of the best actions to be taken to protect these 

susceptible individuals. And hence to implicitly allow the assessor to implement a precise risk 

assessment plan, taking the decision about the conditions to be assessed in specific tissues other than 

those ones considered for the evaluation of the compliance of the woman. For that reason, it was decided 

here to consider the levels of exposure of the foetal tissues in the assessment of the compliance, 

comparing those levels with the ICNIRP guidelines [4] for general public exposure. They are shown in 
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Table 2 as Reference Levels for magnetic flux density B and Basic Restrictions for the induced E99th, at 

each frequency considered in this study.  

Table 2. Reference levels for magnetic flux density Brms (2nd column) and Basic Restrictions 

for induced Electric field E99th strength over the central nervous system CNS (brain and 

spinal cord) (3rd column) and over all the other tissues (4th column), as a function of the 

frequency (1st column), according to the ICNIRP Guidelines [4]. All values are rms. 

Frequency (Hz) 
Reference Level Basic Restrictions 

B (μT) ECNS (mV/m) Eothertissues (mV/m) 

50 200 20 400 

150 200 60 400 

250 200 100 400 

350 200 140 400 

550 145 220 400 

650 123 260 400 

To that purpose, and according to the guidelines for exposure to multiple frequency, the worst-case 

scenario has been obtained by setting the non-perturbed magnetic flux density B at the reference levels 

for each frequency considered. That means that: 

෍ ோ,௝ܤ௝ܤ = 1଺ହ଴ ு௭
௝ ୀ ହ଴ ு௭  (2)

where Bj (μT) is the magnetic flux density at the frequency j, and BR,j (μT) is the reference level of  

the magnetic flux density at the same frequency j. Considering that the relationship between the 

amplitude of B50Hz and the one of the other harmonics is based on the relative percentage as shown in 

Table 1, the maximum permitted amplitude of B50Hz can be easily computed by Equation (2). The 

expanded equation becomes: ܤହ଴200 + ଵହ଴200ܤ + ଶହ଴200ܤ + ଷହ଴200ܤ + ହହ଴145ܤ + ଺ହ଴123ܤ = 1 (3)

where Bj is calculated taking into account the relative percentage of the harmonics content with respect 

to the fundamental (i.e., 50 Hz) as allowed by the EN 50160 (Table 1). This is true at a first 

approximation if we assume the proportionality between voltage and magnetic field amplitude, which is 

equivalent to assume the load constant, thus neglecting the impedance frequency-dependence.  

Table 3 shows the results in terms of magnitude of each harmonic component for both the power 

supply networks considered. On a practical note, the results of the exposure assessment achieved with 

the amplitude of B set to 1 μT for all considered frequency component, have been scaled according to 

Table 3 and compared with the ICNIRP guidelines [4] (Table 2). 
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Table 3. Magnitude of the maxima magnetic flux density harmonic components applied in this study. 

Bj  LV&MV Bj [μT] HV Bj [μT] 

B50 159.1 166.4 

B150 8.0 5.0 

B250 9.5 8.3 

B350 8.0 6.7 

B550 5.6 5.0 

B650 4.8 4.2 

To estimate the difference from the induced electric field and the basic restrictions, one should scale 

the results in terms of E99th found for peak Bpeak = 1 μT (Brms = 0.71) according to Table 3 and then by 

implementing the following equation: 

݊݋݅ݐܿܽݎܨ	ݔܽܯ % = ෍ ௅,௝଺ହ଴ܧ௝ܧ ு௭
௝ ୀ ହ଴ ு௭  (4)

where Ej (mV/m) is the internal electric field strength induced at frequency j, and EL,j is the induced 

electric field strength restriction at frequency J. (as reported in Table 2). The expanded equations (for 

CNS tissues and for all other tissues) become as follows: 

[CNS] ݔܽܯ	݊݋݅ݐܿܽݎܨ % = ହ଴20ܧ + ଵହ଴60ܧ + ଶହ଴100ܧ + ଷହ଴140ܧ + ହହ଴220ܧ + ଺ହ଴260ܧ  (5)

[Other tissues] ݔܽܯ	݊݋݅ݐܿܽݎܨ % = ହ଴400ܧ + ଵହ଴400ܧ + ଶହ଴400ܧ + ଷହ଴400ܧ + ହହ଴400ܧ + ଺ହ଴400ܧ  (6)

In other words, those fractions indicate how far the results of this study are from the guidelines limits. 

3. Results 

Tables 4 and 5 summarize the induced Epeak, E99th and E50th fields in the whole-body foetus at 3, 7 and 

9 months GA, for each frequency component, normalized to Bpeak,50Hz = 1 μT and scaled according to 

the relative amplitudes as provided by the EN 50160 standard (Table 1) for the two power supply 

networks considered. These results specifically provide a picture of the maximum levels of the foetal 

exposure to electricity transmission and distribution networks per μT of uniform magnetic field at  

50 Hz. Therefore, once known the levels of magnetic field to which a foetus is exposed, by a simple 

scaling procedure, they can be used to assess the maxima realistic levels of exposure to electricity 

transmission and distribution networks.  

The values reported were found in the fat (Epeak and E99th) and bladder (E50th), skin (Epeak and E99th) 

and liver (E50th at 50 Hz) and brain (E50th at harmonic frequencies) and skin (Epeak and E99th) and spinal 

cord (E50th at all frequencies) for 3, 7, 9 months GA foetuses. 
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Table 4. Whole-body foetus induced electric field Epeak, E99th and E50th at 3, 7 and 9 months 

GA, for each frequency, per μT of Bpeak,50Hz, calculated according to the percentage provided 

by the standard EN 50160 in case of LV or MV electricity distribution networks exposure. 

LV&MV 3 mGA 7 mGA 9 mGA 

Frequency 

(Hz) 

Epeak 

(μV/m/

μT) 

E99th 

(μV/m/ 

μT) 

E50th 

(μV/m/

μT) 

Epeak 

(μV/m/

μT) 

E99th 

(μV/m/

μT) 

E50th 

(μV/m/

μT) 

Epeak 

(μV/m/ 

μT) 

E99th 

(μV/m/ 

μT) 

E50th 

(μV/m/

μT) 

50 19.3 14.2 9.0 40.6 27.6 10.8 56.9 38.6 16.5 

150 2.3 1.4 1.0 5.5 3.6 1.6 7.4 4.7 2.2 

250 4.6 2.7 2.0 10.7 7.0 3.1 14.7 9.4 4.5 

350 5.3 3.1 2.3 12.4 8.2 3.6 17.2 10.9 5.2 

550 5.8 3.4 2.5 13.6 8.9 3.9 18.9 12.0 5.7 

650 5.9 3.4 2.6 13.8 9.0 4.0 19.2 12.2 5.8 

Table 5. Whole-body foetus induced electric field Epeak, E99th and E50th at 3, 7 and 9 months 

GA, for each frequency, per μT of Bpeak,50Hz, calculated according to the percentage provided 

by the standard EN 50160 in case of HV electricity transmission networks exposure. 

HV 3 mGA 7 mGA 9 mGA 

Frequency 

(Hz) 

Epeak 

(μV/m/

μT) 

E99th 

(μV/m/ 

μT) 

E50th 

(μV/m/

μT) 

Epeak 

(μV/m/

μT) 

E99th 

(μV/m/

μT) 

E50th 

(μV/m/

μT) 

Epeak 

(μV/m/ 

μT) 

E99th 

(μV/m/ 

μT) 

E50th 

(μV/m/

μT) 

50 19.3 14.2 9.0 40.6 27.6 10.8 56.9 38.6 16.5 

150 1.4 0.8 0.6 3.3 2.2 0.9 4.4 2.8 1.3 

250 3.8 2.2 1.7 8.9 5.9 2.6 12.3 7.8 3.7 

350 4.3 2.5 1.9 9.9 6.5 2.9 13.8 8.7 4.2 

550 5.0 2.9 2.2 11.7 7.6 3.4 16.2 10.3 4.9 

650 4.9 2.9 2.1 11.5 7.5 3.3 16.0 10.1 4.8 

Figures 2–7 show the calculated Epeak, E99th and E50th, for all harmonics considered in this study, over 

all tissues of the 3, 7 and 9 months GA foetuses, respectively, considering the exposure to Bpeak,50Hz = 1 

μT for both the power supply networks considered. The maxima for each frequency coincide with the 

whole-body foetus values shown in Table 4.  

The levels of the induced electric fields in the foetus were also compared with the exposure limits for 

general public exposure [4]. To that purpose, the maxima E99th found among the CNS tissues over the 

head (i.e., brain and eye according to the ICNIRP guidelines 2010 [4]) and among all the other tissues 

for each frequency have been scaled according to the values shown in Table 3, that identifies the worst-

case exposure scenario. Figure 8 shows these data as a function of the frequency of the component under 

consideration and considering the standards for both the Low and Medium Voltage (LV & MV) and the 

High Voltage (HV) networks, respectively. 
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50 Hz 150 Hz 

250 Hz 350 Hz 

550 Hz 650 Hz 

Figure 2. E (μV/m) per μT of 50 Hz Bpeak induced in foetal tissues at 3 mGA for all the 

harmonic frequencies considering the standard EN 50160 for the LV&MV power supply 

networks. The bars indicate the E50th
 (blue), the E99th (red) percentiles and the Epeak (black) 

of each distribution.  
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50 Hz 150 Hz 

250 Hz 350 Hz 

550 Hz 650 Hz 

Figure 3. E (μV/m) per μT of 50 Hz Bpeak induced in foetal tissues at 3 mGA for all the 

harmonic frequencies considering the standard EN 50160 for the HV power supply 

networks. The bars indicate the E50th
 (blue), the E99th (red) percentiles and the Epeak (black) 

of each distribution.  
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50 Hz 150 Hz 
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550 Hz 650 Hz 

Figure 4. E (μV/m) per μT of 50 Hz Bpeak induced in foetal tissues at 7 mGA for all the 

harmonic frequencies considering the standard EN 50160 for the LV&MV power supply 

networks. The bars indicate the E50th
 (blue), the E99th (red) percentiles and the Epeak (black) 

of each distribution.  
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550 Hz 650 Hz 

Figure 5. E (μV/m) per μT of 50 Hz Bpeak induced in foetal tissues at 7 mGA for all the 

harmonic frequencies considering the standard EN 50160 for the HV power supply 

networks. The bars indicate the E50th
 (blue), the E99th (red) percentiles and the Epeak (black) 

of each distribution.  
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550 Hz 650 Hz 

Figure 6. E (μV/m) per μT of 50 Hz Bpeak induced in foetal tissues at 9 mGA for all the 

harmonic frequencies considering the standard EN 50160 for the LV&MV power supply 

networks. The bars indicate the E50th
 (blue), the E99th (red) percentiles and the Epeak (black) 

of each distribution.  
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Figure 7. E (μV/m) per μT of 50 Hz Bpeak induced in foetal tissues at 9 mGA for all the 

harmonic frequencies considering the standard EN 50160 for the HV power supply 

networks. The bars indicate the E50th
 (blue), the E99th (red) percentiles and the Epeak (black) 

of each distribution. 
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Figure 8. E99th (mV/m) induced over CNS tissues (left) and all other tissues (right) at 

different GA as a function of the frequency of the component under investigation for the 

worst-case exposure (see the text for details). The green and grey bars indicate the two 

classes of networks identified by the EN 50160 standard, i.e., Low and Medium Voltage (LV 

& MV) and the High Voltage (HV) networks, respectively. 

The peak of the electric field is always at the fundamental frequency of 50 Hz and increases 

progressively with the stage of pregnancy. In particular, it ranges from 0.94 and 3.92 mV/m over CNS 

tissues of the head and from 3.35 to 9.1 mV/m over all other tissues, passing from 3 mGA to 9 mGA, 

respectively. The maximum E99th over the CNS tissues, for all frequencies and across all the GAs were 

found in the brain at all the GA (16.7 μV/m/μT; 50 Hz, 9 mGA). The maximum induced E99th over  

all other tissues were found over fat (14.2 μV/ m/μT; 650 Hz), skin (27.6 μV/m/μT; 50 Hz) and skin 

(38.6 μV/m/μT; 50 Hz) for 3 mGA, 7 mGA and 9 mGA, respectively. As expected, the electric field 

levels at the fundamental components due to the HV electricity transmission networks are higher than 
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those ones due to the LV&MV electricity distribution networks, whereas an opposite behaviour has been 

found for the harmonic components. The comparison with the exposure standards was also analysed in 

terms of maximum fraction of the Basic Restrictions proposed by the ICNIRP guidelines [4], relative to 

both CNS tissues of the head and all the other tissues of the body, as described above. The results are 

summarized in Figure 9. 

 

Figure 9. Maximum fraction of the ICNIRP Basic Restrictions for general public on the E99th 

for the CNS and all other tissues, exposed to a magnetic field at the reference level using the 

standard EN 50160 (B levels shown in Table 4), at different GA.  

As one can see from this figure, all foetuses are exposed to levels far below the Basic Restrictions [4] 

for both CNS tissues of the head and all other tissues and for both the classes of voltage characteristics 

of the networks. The highest value is the one related to the CNS tissues, where a maximum of about 23.5 

% (at 9 months GA) of the Basic Restrictions for both the classes of networks considered has been found. 

Lower values have been found in the other tissues, with a maximum fraction of only the 5%.  

4. Discussion and Conclusions  

The main outcome of this study is to provide a full picture of the EMF exposure of three realistic 

models of foetus at different gestational ages to electricity transmission and distribution networks.  

In particular, the source of EMF is here modelled taking into account the maxima spectral harmonic 

characteristics of the networks as provided by the quality standard EN 50160. It is important to note that 

the exposure scenario modelled in this study is worse than the one due to a realistic power supply 

network. Indeed, the few data available in literature ([34,48,49]) suggest that typically the prevailing 

harmonic is the fifth, with percentages ranging from 0.5 to 4.5% of the fundamental component. 

Moreover, the third and the seventh harmonics generally remain below 3% (see Table 1 for comparison 

with the percentage used in this study) and the Total Harmonic Distortion (THD—defined as the ratio 

of the root mean-square of the harmonic content to the root-mean square value of the fundamental 
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quantity, expressed as a percent of the fundamental) below the 5%. On the contrary, in this study the 

THD resulted of the 10% and 8% for LV & MV and HV networks (using with the percentages of Table 1).  

The first evidence coming from the analysis of the exposure to the full harmonic spectrum of the 

electricity transmission and distribution networks derives from the extremely low relative amplitude 

between the main component at 50 Hz and its harmonics (here ranging from 2.5% to 6.0%). Indeed, the 

induced electric fields due to the harmonic components are far lower than those ones induced by the main 

frequency at 50 Hz. As an example, in the foetal bone (one of the tissues considered of interest in leukaemia 

studies) and considering a source at the limit of the quality standard EN 50160 [36] (Figures 2–7), the 

relative percentages of 99th and the 50th of the induced electric field at the harmonic frequencies with 

respect to the fundamental are summarized in Table 6. 

Table 6. Relative percentage of the E99th and E50th in the foetal bone at the harmonic 

frequencies with respect to the same quantities calculated at 50 Hz, for 3, 7 and 9 months 

GA, and for both the supply networks, when the harmonic content at the source was set 

according to the percentage provided by the standard EN 50160. 

Ebone, f /Ebone, 50 
3 mGA 7 mGA 9 mGA 

LV & MV HV LV & MV HV LV & MV HV 

f (Hz) 
99th

(%) 

50th 

(%) 

99th 
(%) 

50th 

(%) 

99th
(%) 

50th 

(%) 

99th 

(%) 

50th 

(%) 

99th
(%) 

50th 
(%) 

99th 
(%) 

50th 
(%) 

150 10.6 11.6 6.4 7.0 16.0 13.0 9.6 7.8 15.1 14.6 10.2 11.0 

250 20.8 23.4 17.4 19.5 31.3 25.7 26.1 21.4 29.9 29.1 28.2 30.5 

350 24.1 27.4 19.3 21.9 36.2 29.8 29.0 23.9 34.8 34.0 31.4 34.1 

550 26.4 30.2 22.6 25.9 39.5 32.7 33.9 28.0 38.2 37.3 36.9 40.2 

650 26.7 30.6 22.2 25.5 40.0 33.1 33.3 27.6 38.7 37.8 36.4 39.6 

Again, this strong reduction of induced fields with frequencies can be also seen when the 

characteristics of the sources are set also considering the limit of the exposure levels (ICNIRP reference 

levels [4]) as shown in Figure 8, where, across the gestational ages of the foetus, the electric field shows 

a reduction of about the 55% (comparing the 50 Hz exposure with the 650 Hz) when the CNS tissues 

are considered, and of about the 70% (76% for 3mGA), when the other tissues are considered. These 

results are confirmed both when the LV&MV and HV electricity transmission and distribution networks 

are examined, even though this latter shows in all cases lower levels of induced E. This is due to the 

higher restrictions posed on HV power lines by the regulation of the quality of the electricity, as reviewed 

in Table 1. 

As expected, the induced E increases with the gestational age. In more details, the average relative 

increase computed along the frequency of the E field in terms of Epeak, E99th and E50th, has been found of 

2.3, 2.5 and 1.5, respectively passing from 3 to 7 months GA, and about 3.2, 3.4 and 2.2, respectively, 

passing from 3 to 9 months GA (Figures 2–7).  

As to the tissue dosimetry, the most exposed tissues (i.e., tissue with the highest Epeak, E99th), as expected, 

are also the most superficial ones for all GA and the frequencies considered (see in Figures 2–4, skin, fat, 

SAT, when segmented, and muscle). On the contrary, the most exposed tissues on average (i.e., with the 

highest E50th) strongly depend on the combination of foetal position and size and magnetic field 

polarization. At 3 months GA they are bladder, spinal cord, kidney and spleen, at 7 months GA brain, 
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liver, skin and SAT, at 9 moths GA again brain, skin, SAT, lung and spinal cord. At 7 mGA,  

the maximum E50th change position depending on frequency, passing from the liver (at 50 Hz) to the 

brain (at harmonic frequency); this is due the impact of the different choice of dielectric properties values 

(see Material an Methods section above) of these two tissues, which then affect mildly the whole electric 

field distribution. As for the whole-body electric fields, the levels of Epeak, E99th and E50th show an 

increasing trend with the stage of pregnancy. Looking specifically at the bone tissue, the increase with 

foetal growth is even more conspicuous, suggesting that the foetuses close to the birth are exposed to 

larger induced electric fields. In particular, on average, along frequencies, it is equal to about 3.4,  

3.2 and 4.0 for Epeak, E99th and E50th, respectively passing from 3 to 7 months GA, and about 4.6, 3.4 and 

5.7 for Epeak, E99th and E50th, respectively, moving from 3 to 9 months GA.  

In parallel to these considerations, an example on how these data can be concretely used in the 

comparison with the Basic Restrictions of the ICNIRP guidelines [4] was also given. The maximum 

fraction of 23.5% obtained considering together the fundamental component and the harmonics is similar 

with the one of the previous study [33] (maximum fraction of 23.6%), which only addressed the foetus 

exposure to 50 Hz homogenous magnetic fields. This similarity is quite expected considering that the 

larger contribution to the magnetic field is due to the 50 Hz frequency component and the contribution 

to the maximum fraction of the harmonic components is counterbalanced by the progressive reduction 

of the limits of the CNS Basic Restrictions with frequency, which implies that higher-order harmonic 

components are less weighted. Furthermore, in the interpretation of the maximum fraction (suggested 

by ICNIRP 2010 [4]), the phase relationship is not considered. This considerably overestimates the 

exposure, as shown by Leitgeb studies [50,51]. Those works found that many electric appliances 

emissions, characterized by complex frequency spectra of ELF magnetic field, exceeded ICNIRP 

reference levels up to almost two orders of magnitude. In these cases, and if the results here obtained 

will be used and therefore scaled to higher levels than the ICNIRP references, the existing ICNIRP 

spectral assessment rules are unnecessarily conservative and could lead to non-compliances. In those 

situations, alternative approaches should be adopted. The first alternative option to the spectral method 

would be to weight the external magnetic field and the induced electric field with a filter function which 

takes into account the fixed coherent phases angles of the field among harmonic frequencies, as 

suggested by [4] and [52]. Another approach, as suggested by [50], is to apply a nonlinear biology-based 

assessment rule, derived taking into account the nonlinearity of cellular membranes behaviour, which 

weights the higher (>3rd) harmonics not proportionally to frequency but with more appropriate contributions. 

Finally yet importantly, the results of this study, as for any result obtained from computational 

assessment studies, are affected by a variable degree of uncertainty. Liorni and colleagues [33] discussed 

the uncertainty budget related to the estimation of the induced E in pregnant women exposed at 50 Hz. 

They found a maximum expanded uncertainty of 2.03 dB in foetal SAT for Epeak and 0.3 dB in foetal 

skin for E99th. Considering the linearity of E with frequency (up to 650 Hz) discussed above, the results 

of Liorni and colleagues apply also in this study.  

Besides that, the major source of uncertainty linked to the results of this study is the representativeness 

of the pregnant woman models and the tissue parameters of the whole population included in the process 

of risk assessment. 
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To this purpose, the accuracy of the fetal anatomy was already discussed by [53] where some 

physiological and anatomical reference data of fetuses at different gestational ages were compared with 

the same data of the models used.  

As to the dielectric properties, the main source of uncertainty is given by the intrinsic variability due 

to the tissue inhomogeneity and to the large difference in tissues structure and composition. The 

measurement of the dielectric properties of foetal tissues here used, have been performed by Gabriel and 

colleagues [54], who observed a variability ranging from 3 to 15%, with a peak of 25% for skin and skull 

tissues. Moreover they also stated that, in view of the large measurements performed per tissues, the 

total standard uncertainty is significantly lower than those percentages. 

Other considerations and uncertainty assessment relative to the pregnant woman models are discussed 

in [33,39,53,55]. Even if these studies examined the uncertainty in the results of localized sources, the 

conclusions held also for the whole body exposure, since the uncertainty is certainly lower; this is due 

to the minor impact of dielectric properties and source and foetal position variability to the total budget 

uncertainty, as discussed in [39]. 

In conclusion, this study showed that in the exposure to the magnetic fields generated by electricity 

transmission and distribution networks, the harmonic components add some contributions to the overall 

level of the electric field induced in foetal tissues. However, although these contributions increase with 

frequency and cannot be neglected, their amplitude is low, due to the extremely low permitted amplitude 

of the harmonic components with respect to the fundamental one, even in the worst-case scenario here 

considered. The levels of the electric field in the foetus tissues are also extremely lower than the limits 

suggested by the ICNIRP 2010 guidelines [4] for general public exposure, when the amplitude of the 

incident magnetic field is set at the maximum permitted level by the guidelines themselves. 
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