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Abstract: Industrialization and urbanization have caused water pollution and ecosystem 

degradation, especially in urban canals and rivers in China; accordingly, effective water 

quality improvement programs are needed. In this study, the Tianlai River in Jiangsu, China 

was taken as a research site, and a combination of ecological purification technologies 

consisting of biological rope, phytoremediation, and activated carbon were applied in a 

laboratory-scale study to examine degradation coefficients under dynamic water conditions. 

Coefficients were then input into the QUAL2K model to simulate various hypothetical 

scenarios and determine the minimum density of ecological purification combination and 

hydraulic retention time (HRT) to meet Grade V or IV of the China standard for surface 

water. The minimum densities for Grade V and IV were 1.6 times and 2 times the 

experimental density, while the minimum HRTs for Grade V and IV were 2.4 day and 3 day. 

The results of this study should provide a practical and efficient design method for ecological 

purification programs. 

Keywords: ecological purification technology; degradation coefficient; hydraulic retention 

time; QUAL2K model 
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1. Introduction 

In recent years, population growth associated with the rapid advancement of industrialization and 

urbanization has caused water pollution and ecosystem degradation, especially in urban canals and rivers 

in developing countries [1–3]. To solve these environmental problems, managers must select appropriate 

pollution load reduction programs for achieving particular goals, thus design of ecological purification 

programs can be a difficult task for water environmental managers. 

There are a great many purification methods for polluted rivers, such as physical [4,5], chemical [6], 

and ecological [7,8]. Ecological purification technology is a promising approach to treatment of  

low-polluted water because it is inexpensive, has low maintenance requirements, and produces no 

harmful byproducts compared to the other methods [9,10]. Previous studies have shown the removal 

efficiency in stationary case [11] or in the single unit [12]. However, this is far from the circumstances 

of an actual river. Moreover, how to best determine the design parameters and predict the effects of 

purification is another key problem. In most literatures [13,14], estimates were made according to 

laboratory purification parameters, which have some obvious shortcomings such as uncertainty of 

removal effects by different ecological species and instability of the climate and surroundings of the 

actual effluent channel. As a result, quantitative methods are required to evaluate the effects of such 

purification projects. Currently, little attention has been given to the possibility of using water quality 

models to determine design parameters for engineering, to predict water quality [15,16]. The QUAL2K 

model is a flexible and accurate water quality model that has been widely applied in watershed pollutant 

control and water quality management. This model has been applied to medium-sized rivers with small 

width to depth ratios to track the fate and transport of targeted pollutants [17,18]. 

Owing to its large number of polluted tributaries, the water quality of the Yangtze River has decreased 

and it has become increasingly polluted. Accordingly, there is a great need for restoration of such small 

and medium rivers. As a result, the Tianlai River, in Nanjing, Jiangsu Province, is a low pollution river 

which was chosen as a research site. A combination of ecological purification technologies consisting 

of biological rope, phytoremediation, and activated carbon were applied in a laboratory-scale study to 

examine degradation coefficients under dynamic water conditions. Coefficients were then input into the 

QUAL2K model to simulate various hypothetical scenarios and determine the minimum density of 

ecological purification combination and hydraulic retention time (HRT) to meet Grade V or IV of the China 

standard for surface water. The main objectives of this study were to: (1) obtain the removal efficiency 

of each units and evaluate the effects of an ecological purify combination; (2) combine a water quality 

model with the designing of ecological purification programs; and (3) provide a methodological 

approach for the treatment of similar low polluted rivers. 

2. Materials and Methods 

2.1. Research Site 

Tianlai River is 1290 m long, and its average depth and width are 2 m. The river is much longer in 

the longitudinal direction than the lateral and vertical direction, and pollutants in the river are evenly 

mixed in the water column. Tianlai River is a manually controlled river, which has a pumping  

station aside the river. The flow rate of the Tianlai River is controlled at 50 m3/h and the total river  
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volume is approximately 24,912 m3. Concentrations of total nitrogen (TN), nitrate nitrogen (NO3
−-N), 

ammonium nitrogen (NH4
+-N), total phosphorous (TP), and orthophosphate (PO4

3−-P) in the influent are 

6.70 mg/L, 2.90 mg/L, 2.21 mg/L, 1.16 mg/L, and 0.42 mg/L, respectively. This river is on the campus 

of Nanjing University in China. There was little or no point pollution entering the river. 

2.2. Experimental Design 

The experimental site (32.1211° N, 118.9445° E) is located on the lower reaches of the Tianlai River at 

Nanjing University. Eight 96-L (40cm × 40cm × 60cm) colorless Perspex tanks were arranged in two 

parallel rows, one of which was used as an experimental group and another as the blank control (Figure 1). 

In the experimental group, the first tank contained 20 biological ropes that each had a length of 30 cm. 

The ropes were made of polypropylene and vinyl on with a specific surface area of 1.6 m2/m and a density 

of 1.24 kg/m3. The second tank contained 500 g Myriophyllum verticillatum L. telome derived from the 

Tianlai River. The third tank contained 20 Iris wilsonii plants. Plants were placed in an iron wire grid, 

and their roots were allowed to reach approximately 10 cm below the water surface. The last tank contained 

2 kg of fresh activated carbon with a 1.5-mm-diameter column. Water from the Tianlai River was pumped 

into the pretreatment tank every hour using a timing device that was switched on for  

3 min/h. The water in the pretreatment tank was then pumped through the two groups of water tanks at a 

flow rate of 60 mL/min using a constant flow pump. The hydraulic retention time (HRT) in this system was 

4 day, which represents one day for each tank. The outdoor experiment was initiated on  

16 April 2013 and completed on 14 May 2013. Overall, the outdoor experiment consisted of a 10-day 

stationary phase and a 20-day experimental period. 

  

Figure 1. Schematic diagram of the experimental device. 

2.3. Sampling and Analysis 

Water samples were collected from the pretreatment water tank (No. 1), experimental tanks (No. 2, 

3, 4, 5), and the first (No. 6) and fourth tank (No. 7) of the control group. Three samples were collected 

from the upper, middle and lower part of the water column in each tank between 8:00 A.M. and  

10:00 A.M., every day. The samples were then well-mixed and stored at 4 °C until analysis, which was 
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conducted within 48 h. A portion of each sample was filtered through a Whatman GF/C 0.45 μm  

glass-fiber and analyzed for NH4
+-N by the Nessler’s reagent colorimetric method, while TN and  

NO3
−N were measured by ultraviolet (UV) spectrophotometry and nitrite nitrogen (NO2

−-N) by the  

N-ethylenediamine colorimetric method. Unfiltered subsamples were analyzed for TN by alkaline 

potassium per-sulfate digestion-UV spectrophotometry, while PO4
3−-P and TP were measured by 

ammonium molydate spectrophotometry [19]. Water temperature was recorded using a temperature light 

datalogger (UA-002-64, Hobo, Loveland, CO, U.S.), and turbidity was measured with a 2100Q portable 

turbidmeter (Hach, Loveland, Colorado, U.S.). 

2.4. QUAL2K Model 

The QUAL2K model is a one-dimensional, steady state water quality model that runs on Microsoft 

Windows. The model has been well-documented and is freely available from the United States 

Environmental Protection Agency (EPA) [20]. This model can simulate a number of water quality 

parameters, including temperature, pH, carbonaceous biochemical oxygen demand (CBOD represents the 

concentration of COD), sediment oxygen demand (SOD), dissolved oxygen (DO), organic nitrogen (ON), 

ammonium nitrogen (NH4
+-N), nitrate nitrogen (NO3

−-N), organic phosphorus (OP), inorganic 

phosphorus (IP), total nitrogen (TN), total phosphorus (TP), phytoplankton and bottom algae[21].  

The model is applicable to well-mixed streams and considers dispersion and advection transport to occur 

only along the main flow direction (longitudinal direction). Advection-dispersion, dilution, interaction 

of chemicals and external import are considered in the model equation [22]. Application of the model 

extends to the presence of multiple pollution discharge and withdrawal locations and tributaries flowing 

into the main stream. In this context, degradation parameters of water quality indexes will vary with the 

density and HRT of ecological purification. Relationship curves between water quality, HRT and 

ecological material density were analyzed to determine the minimum density and HRT of the 

combination and ensure that the effluent reached Grade V or IV of the environmental quality standards 

for surface water. 

Data input to the QUAL2K model include geometric data of the river system, hydraulic data, 

parameters, and data of the surroundings. First, the research river was divided into 12 sections, and their 

geometric and hydraulic data were input to the model. Then, headwater quality data such TN, NH4
+-N, 

NO3
−-N, and TP were input. Parameters of the “rates” sheet were changed to calibrate the model and 

construct a QUAL2K model for the river. After validating the constructed model, it could be used for 

water quality simulation. Through altering the degradation parameters of different water indices in each 

section, downstream water quality could be simulated. 

3. Results and Discussion 

3.1. Plant Growth and Biomass Production 

In the biological rope tank, biofilm covered the rope with a thin layer at the beginning of the 

experiment, then turned dark green and became much thicker after 10 day. In the second tank,  

M. verticillatum sprouted and its weight increased by 32 g (6.4%). In the third tank, all plants grew 

steadily without obvious symptoms of toxicity or nutrient deficiency. Throughout the experiment, the 
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20 strains of I. wilsonii grew well in the tank, the average weight increased by 20 g (20%), and the  

leaf length increased by 2.5 cm (8.8%). Almost all I. wilsonii plants grew taller and stronger as their  

weight increased. 

3.2. Removal Rate of nitrogen (N) and phosphorus (P) 

Figure 2 shows the concentration in each tank, including the TN, NH4
+-N, NO3

−-N, TP and PO4
3−-P. 

No significant difference (p < 0.05) was observed among the mean concentrations in each tank during 

the experiment. 

 

Figure 2. Average nitrogen (a) and phosphorus (b) indexes and their standard deviation along tanks. 

The experimental group displayed effective removal of nutrients, but the concentrations of TN and 

TP in the last tank of the control group were higher than those in the first tank. Sims et al. observed the 

same phenomenon and suggested it might be due to accumulation of nutrients [23]. Because the water 

outlet was near the top (Figure 1), suspended particles remained in the bottom of the tank because of 

settling. Increased NO3-N was derived from the effect of hydrolysis and ammonification. The negative 

part of the control group was taken into consideration during calculation of the net removal rate.  

The net removal rate refers to the removal rate of the experimental group less that of a blank (Table 1). 

The results showed that the removal rate of NO3
−-N was higher than that of other water quality indexes in 

every ecological unit, illustrating that the total ecological purification process had satisfactory NO3-N 

removal, reaching 47.8%. With the exception of the NO3
−-N index, the biological rope unit showed the 

best TP removal, reaching 21.2%. M. myriophyllum as a submerged plant unit displayed the best NO3
−-N 

removal, reaching 37.02%, while the I. wilsonii unit showed the best TN removal, reaching 30.3%, and 

the best NH4
+-N removal, reaching 29.22%. The net removal rate of TP was low for the whole system, 

while the PO4
3−-P removal rate was high, indicating that the net removal rate of OP in the system is quite 

low. However, the removal rate of OP in the control tank was high, indicating that OP particles were 

mainly separated from the water column via settling [24]. Conversely, dissolved PO4
3−-P was removed 

through absorption by plants and microbial feeding [25]. The ecological purification technology showed 

stable N and P removal rates under dynamic conditions. The net removal rates of the whole system were 

67.24%, 69.38%, 85.40%, 33.40%, and 47.55% for TN, NO3
−-N, NH4

+-N, TP and PO4
3−-P, respectively. 
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Table 1. Net removal rate of each unit. 

Indexes 
Biological Rope 

Unit 
Myriophyllum verticillatum 

Unit 
Iris wilsonii 

Unit 
Activated Carbon 

Unit 

TN 16.07% 28.10% 30.33% 19.55% 
NO3

−-N 28.64% 37.02% 33.78% 25.03% 
NH4

+-N 17.68% 25.12% 29.22% 28.04% 
TP 21.19% 3.96% 6.05% 4.17% 

PO4
3−-P 15.05% 16.51% 14.23% 25.52% 

The results showed that the I. wilsonii and M. verticillatum units had excellent nitrogen removal. This 

was attributed to direct purification by I. wilsonii via absorption and enrichment, which directly removed 

pollutants, as well as indirect purification through the large surface area provided by the roots. The 

mechanisms of N and P removal by plants may include plant uptake, microbial uptake, and volatilization. 

Plant uptake has a direct contribution to nutrient content. This contribution to N and P has been reported 

in the range 25%–47% [26]. Moreover, the entire underwater surface of plants helps maintain an aerobic 

environment in the riverbed through oxygen transfer via roots and rhizome systems, and controls the 

growth of algae by restricting sunlight penetration [27].The biological rope unit showed excellent TP 

removal. The removal of phosphorus from this unit was primarily dependent on physical adsorption and 

deposition. Biological rope has a high filtering capacity for organic particles, while the microorganisms 

attached to the rope can facilitate hydrolysis and transformation. The results clearly demonstrate that 

vegetation and biological contact purification materials should be applied at the same time throughout 

the system, which supports previous findings [28–30]. They used integrations of plants and kinds of 

biological contact purification materials. The removal rates range from 19.5%–30.2% for TN, 22.2%–

34.5% for TP. Some of the differences in removal efficacy between the current study and the others 

mentioned above may be attributable to differences in surface area coverage (5%–95%), differences in 

HRT, and/or study duration. Indeed, plants can contribute to treatment efficiency through plant uptake, the 

creation of an oxidized rhizosphere and adsorption-fixation reactions. Additionally, biological contact 

purification materials exert a removal effect by fixation of inorganic and organic particulates, 

sedimentation and deposition. The main reasons for N and P reduction in Tank 5 are as follows. 

Activated carbon has a large specific surface area compared with other fillers, such as burnt stone, 

vermiculite, and zeolite. The specific surface area of each gram of activated carbon reaches 1000 m2, 

which is why it has strong adsorption capacity. The pollutant interception process includes physical 

filtration, ion exchange, specific and non-specific adsorption, chelation, sedimentation reaction and 

others. Further, such material is important in providing additional media onto which microorganisms 

can attach. 
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3.3. QUAL2K Model Simulation 

3.3.1. Input Data and Model Parameters  

The QUAL2K model can follow the specific circumstances of users to set the parameter values and 

transform the simulation equation to satisfy the user requirements. In this study, the input length of 

Tianlai River is 1290 m long. The river was divided into 12 water segments along the river flow direction 

(Figure 3), and no new calculation cells were divided in each segment. In the headwater of the river, 

average annual flow is 50 m3/h, average annual temperature is 18.7 °C, and pH is 7.2. Water quality 

from upstream and the environmental quality standards for surface water (GB3838-2002) for Grade IV 

and V are listed in Table 2. 

 

Figure 3. Location of the study area and sampling points in the Tianlai River. 

Table 2. Comparison between upstream water quality of the Tianlai River and Grade V, IV 

of the China Standard for Surface Water (mg/L).  

Classification NO3
−-N NH4

+-N TN TP PO4
3−-P DO SS 

Concentration of 
upstream water quality 

2.90 2.21 6.70 1.16 0.42 1.3 30 

IV -- 1.5 1.5 0.3 -- 3 -- 
V -- 2 2 0.4 -- 2 -- 

Note: “--” indicates no value specified in the standard. 

The extent of parameters (Table 3) that the QUAL2K model demanded were determined from a large 

number of studies including documentation for the stream water quality model QUAL2E, the QUAL2K 

user manual and the Environment Protection Agency guidance document[31]. 
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Table 3. Parameters of the QUAL2K model for the Tianlai River. 

Parameter Value Units Symbol Range 

Carbon 40 g·C g·C 30–50 
Nitrogen 7.2 g·N g·N 3–9 

Phosphorus 1 g·P g·P 0.4–2 
Dry weight 100 g·D g·D 100 
Chlorophyll 1 g·A g·A 0.4–2 

ISS settling velocity 1 m/d vi 0–2 

O2 reaeration model Internal -- -- -- 

Slow CBOD:hydrolysis rate 0.3 /d khc 0–2 

Fast CBOD:oxidation rate 0.4 /d kdc 0.02–4.2
Organic N:hydrolysis 0.2 /d khn 0–5 

Organic N:Settling velocity 0.05 m/d von 0–2 

Ammonium:nitrification 0.8 /d kna 0–10 
Nitrate: denitrification 0.1 /d kdn 0–2 

Sed-denitrification transfer coefficient 0.05 m/d vdi 0–1 

Organic P: hydrolysis 0.5 /d khp 0–5 

Organic P: Settling velocity 0.6 m/d vop 0–2 

Inorganic P:settling velocity 0.27 m/d vip 0–2 

Bottom algae:Maximum growth rate 10 mg·A/m2/d or /d Cgb 0–500 

Bottom algae:First-order model carrying capacity 1000 mg·A/m2 ab,max 1000 
Respiration rate 1 /d krb 0.05–0.5

Excretion rate 0.5 /d keb 0–0.5 

Death rate 0.25 /d kdb 0–0.5 

Light constant 50 langleys/d KLb 1–100 

Ammonia preference 25 ug·N/L khnxb 1–100 

The calculation time step was set to 5.6 min to ensure the model was maintained in the steady-state. 

The integration solution was handled with Euler’s method. The geometries and velocities of the river 

were used to determine the hydraulic characteristics. According to the relation formula between the mean 

velocity and flow rate, water depth and flow, the square law was used to determine coefficient for the 

velocity and flow rate, a is 2.45, b is 1.62, and to determine coefficient for water depth and flow 

coefficient, c is 0.79, d is 0.3. The longitudinal dispersion coefficient, DL, can also be obtained by the 

test simulation, tracer method or empirical formula. In this study, the river contains narrow ditches, so 

the Elder empirical formula was used to calculate DL. Based on this calculation, the DL was 41.58. 

Degradation parameters of water quality required for the model were changed according to different 

simulation scenarios. In this study, the degradation coefficient for ON, NH4
+-N, NO3

−-N, OP and IP 

were derived from the ecological purification experiment. Because the degradation process of water 

quality factors follows first-order reaction kinetics, the degradation parameters can thus be obtained. 

Degradation was calculated by [32,33]. This is the basic formula of pollution degradation in water quality 

model: 

C = C0 × e−k·t (1)
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where t represents reaction time, k the degradation coefficient, C the concentration at time t, and C0 the 

initial concentration: 

RR = (C0 − C) × 100%/C0 (2)

where RR represents removal rate. The degradation parameter itself would thus be represented by: 

K = t−1 [ln (1 − RR)−1 × 100%] (3)

Parameter values are presented in Table 4.  

Table 4. Degradation parameters of the indexes in every unit. 

Title Unit 
Model Parameter (day−1) 

NO3
−-N NH4

+-N ON OP IP 

Biological rope 0.34  0.19  0.3 0.06 0.16  

Myriophyllum verticillatum 0.46  0.29  0.3 0.04 0.18  

Iris wilsonii 0.41  0.35  0.16 0.21 0.15  

Activated carbon 0.29  0.33  0.28 0.04 0.29  

3.3.2. Model Calibration 

The QUAL2K model were calibrated by the observed data of the field experiment. Through trial and 

error, some input parameters in the model such as hydrolysis and sedimentation rates for the organic 

nitrogen and phosphorus, nitrification rate of NH4
+-N and denitrification rate of NO3

−-N were adjusted 

to be in a reasonable range and calibrated repeatedly until the simulation relative error for each parameter 

was within 10% (Figure 4 and Table 5).  

Table 5. Comparison of simulated and observed data (mg/L). 

Sample outlet 
NH4

+-N NO3
−-N TN 

Sim. Obs. Sim. Obs. Sim. Obs. 
Point 1 2.150 2.150 2.854 2.854 6.594 7.033 

Point 2 2.232 2.278 1.800 1.650 4.411 4.428 

Point 3 1.926 1.790 1.232 1.121 3.368 3.490 

Point 4 1.288 1.401 1.101 0.992 2.546 2.820 

Sample outlet 
IP OP TP 

Sim. Obs. Sim. Obs. Sim. Obs. 
Point 1 0.742 0.742 0.419 0.419 1.161 1.161 

Point 2 0.647 0.570 0.315 0.347 0.962 0.857 

Point 3 0.593 0.580 0.289 0.259 0.882 0.829 

Point4 0.542 0.589 0.224 0.244 0.766 0.733 

Note: Sim. and Obs. represent simulated and observed data, respectively. 
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Figure 4. Water quality calibration results for the Tianlai River. (a). N indexes; (b). P indexes. 

3.3.3. Application of the Model 

Comparison of the water quality of the Tianlai River and the environmental quality standards for 

surface water (GB3838-2002) indicated that the TN in the river was much higher than that required in 

the Grade V standard, the TP concentration was almost two times higher than the standard, and the NH4
+-

N concentration was slightly higher. Accordingly, the Tianlai River is a typical polluted river [2]. 

Therefore, effective purification technology in removing TN, TP and NH4
+-N need to be investigated. 

There are two schemes which can improve the downstream water quality: A. by adding ecological 

purification combination; B. by prolonging HRT through utilization of natural water purification 

mechanism. The function of the QUAL2K model is to calculate the minimum density of ecological 

material or HRT required by the standard.  

A. Simulation of water quality after adding ecological purification combination at different density 

The model simulated the water quality of the Tianlai River under the natural purification mechanism 

(Figure 5). As shown in Figure 5, the TN in the effluent decreased from 6.59 mg/L to 2.55 mg/L, while the 

NH4
+-N decreased from 2.15 mg/L to 1.29 mg/L and the TP decreased from 1.16 mg/L to 0.77 mg/L. 

According to the surface water environmental quality standard (GB3838-2002), the NH4
+-N, TN and TP 

concentrations of Grade V water are 2.0 mg/L, 2.0 mg/L and 0.4 mg/L, respectively. Therefore, effluent 

quality of the river cannot meet the standard if there is no further treatment. 

Many experiments have shown that the nutrient removal rate was positively correlated with  

plant density and biomass in constructed wetlands [34,35]. A simulated experiment was conducted by  

White et al. [35] to compare the growth of four aquatic plants and their removal of total nitrogen and 

total phosphorus from eutrophication water under different plant densities. Wang et al. [34] investigated 

the purification efficiency of planting mixed species on eutrophic lake water with high, moderate and 

low input density. Both studies revealed that the removal rate improved with increasing density until the 

density became too high. As a result, we can assume that the removal rate is proportional to the ecological 

material density when the density is in a reasonable range. The density of each unit was set to 0.5, 0.7, 

1.2, 1.5, 1.7 and 2.0 times the experimental cases, and the relationship curves between the effluent quality 

and ecological material density were simulated (Figure 6). In the experiment, 20 biological ropes that 

each had a length of 30 cm, 20 I. wilsonii plants, 500 g M. verticillatum and 2 kg of activated carbon 
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were used to treat 96 L of polluted water, meaning that 62.5 m biological rope, 208 I. wilsonii plants,  

5.3 kg M. verticillatum and 20.8 kg of activated carbon was needed in 1 m3 of polluted water. Two times that 

of the experiment means 125 m biological rope, 416 I. wilsonii plants, 10.6 kg M. verticillatum and 41.6 kg 

of activated carbon was needed in 1 m3 polluted water. 

 

Figure 5. Simulation results of the water quality of Tianlai River under present conditions  

Simulation of water quality with ecological material at different densities. 

 

Figure 6. Relationship between effluent concentration and ecological material density.  

The dotted lines indicate Grade V and IV NH4
+-N (2 mg/L, 1.5 mg/L), TN (2 mg/L, 1.5 mg/L) 

and TP (0.4 mg/L, 0.3 mg/L) levels. 

As shown in Figure 6, the effluent concentration decreased with increasing ecological material 

density. Ecological material density had the greatest influence on the TN concentration of the effluent, 

and less influence on the NH4
+-N concentration, while the TP index was not sensitive. Therefore, to 

enable the effluent concentration to meet Grade V of the standard, the ecological material density must be 
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1.6 times that of the experimental conditions, while it must be two times the experimental conditions to 

generate effluent that meets Grade IV of the standard. 

B. Simulation of water quality at different hydraulic retention time 

The flow rate of the Tianlai River is controlled at 50 m3/h and the total river volume is approximately 

24,912 m3. Thus, the HRT is 20.85 day and the averaged HRT in each water segment is about 1.73 day. 

Accordingly, the HRT in the QUAL2K model was set to 0.5 day, 1 day, 1.5 day,  

2 day, 2.5 day, and 3 day and the concentrations of TN, NH4
+-N and TP were simulated. The results 

showed that the HRT had a great influence on water quality. The relationship curve between effluent 

water quality and HRT is presented in Figure 7. 

 

Figure 7. Relationship between effluent concentration and HRT. The dotted lines indicate Grade 

V and IV NH4
+-N (2 mg/L, 1.5 mg/L), TN (2 mg/L, 1.5 mg/L) and TP (0.4 mg/L, 0.3 mg/L). 

Because TP is the limiting index, the total effluent can only meet the water quality standard if the TP 

agrees with the water quality requirements. The results indicated that the HRT should not be less than 

2.4 day to enable the effluent concentration to reach Grade V of the standard, which corresponds to a 

flow rate of not more than 36.04 m3/h. To generate effluent that meets class IV of the standard, the HRT 

should be no less than 3 day, which corresponds to a flow rate of 28.83 m3/h. 

4. Conclusions 

In this study, the rationality of using the QUAL2K model to assess ecological purification technology 

applied to a polluted river (the Tianlai River) was investigated. A system designed for ecological 

purification was investigated and the unit degradation parameters were measured under dynamic 

conditions. The QUAL2K model for the Tianlai River was then established and validated. The conclusions 

can be summarized as follows:  

(1) The ecological purification technology showed stable N and P removal rates under dynamic 

conditions. Net removal rates of the entire system were 67.24%, 69.38%, 85.40%, 33.40%, and 47.54% 

for TN, NO3
−-N, NH4

+-N, TP and PO4
3−-P, respectively. 
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(2)Changing the ecological material density of the combination in the QUAL2K model indicated that, 

to generate effluent that meets Grade V of the Chinese standard for surface water, the ecological material 

density should be 1.6 times that of the experiment, while it should be 2 times that of the experiment to 

meet Grade IV of the standard. 

(3) Modifying the water retention time in the QUAL2K model revealed that the HRT should not be 

less than 2.4 day to enable the effluent concentration to reach Grade V of the standard, which corresponds 

to a flow rate of no more than 36.04 m3/h. To generate effluent that meets Grade IV of the standard, the 

HRT should be no less than 3 d, which corresponds to a flow rate of 28.83 m3/h. 
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