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Abstract: Human exposure to air pollution in many studies is represented by ambient
concentrations from space-time kriging of observed values. Space-time kriging techniques based
on a limited number of ambient monitors may fail to capture the concentration from local sources.
Further, because people spend more time indoors, using ambient concentration to represent
exposure may cause error. To quantify the associated exposure error, we computed a series of
six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North
Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient
background concentration from space-time ordinary kriging (STOK), ambient on-road concentration
from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK
and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance
model. Using a hybrid-based indoor concentration as the standard, the comparison showed that
outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level
(average bias between ´10% to 95%). For pollutants with significant contribution from on-road
emission (EC and NOx), the on-road based indoor metric performs the best at the population level
(error less than 52%). At the individual level, however, the STOK-based indoor concentration
performs the best (average bias below 30%). For PM2.5, due to the relatively low contribution from
on-road emission (7%), STOK-based indoor metric performs the best at both population (error below
40%) and individual level (error below 25%). The results of the study will help future epidemiology
studies to select appropriate exposure metric and reduce potential bias in exposure characterization.

Keywords: traffic related air pollution; exposure error; air quality model; space-time kriging;
exposure metric; dispersion model

1. Introduction

Accurate exposure estimation for air pollutants is essential for environmental health studies.
In these studies, exposure to air pollutants are often estimated based on ambient concentration
level [1–4]. Ambient concentration collected from fixed-site monitors, for example, provides regional
concentration and can be used to determine inter-city difference [5]. Fixed-site monitors, however, are
often spatially limited and thus are more suitable for pollutants that are distributed homogenously
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across space. For pollutants with local sources such as on-road vehicular emission, the data
from fixed-site monitors can fail to capture the intra-urban variation [6] resulting in exposure
misclassification [7].

A more accurate method for estimating personal exposure is with direct measurement using
personal sampling devices [8,9]. For example, Delfino et al. [10] compared the association between
the reduction in forced expiratory volume in the first second (FEV1) of asthmatic children and
four particulate matter (PM) exposure metrics: personal sampling device, indoor concentration at
home, outdoor concentration at home, and data from central monitor. The results showed that the
reduction in FEV1 is more strongly associated with personal PM exposure or concentration collected
indoor at home than concentration collected at a central monitoring site or outdoor concentration
at home. Although personal sampling devices can best represent total exposure, they are costly
and introduce participant burden for individuals in health studies. For example, a health study
conducted in North Carolina, called the Coronary Artery Disease and Environmental Exposure
(CADEE), investigated the relationship between personal exposure to multiple air pollutants and
adverse health effects. In CADEE, instead of a personal sampling device, the participants wore a
personal global positioning system (GPS) device to track their geographical location. To estimate
individual exposure with their geographical information, an accurate concentration field is required.

One approach that could be used in the CADEE study is the use of model-based exposure
metrics that are less costly and that can cover a wider spatial domain. These exposure metrics can
be obtained from various approaches such as space-time kriging, air quality modeling, and land use
regression. These approaches, when compared to fixed-site monitors, can increase the potential in
predicting intra-urban spatial variability. Space-time kriging technique interpolates observational
data to provide spatiotemporally refined concentrations [11,12]. These estimated concentrations can
then be used to relate to adverse health effects [13–15]. Nevertheless, studies have found that the
accuracy of space-time kriging is affected by the location of the available monitors. When estimated
locations are far away from the monitors, the resultant concentration estimate is less accurate [16].
Further, space-time kriging may fail to locate the concentration hotspot without adequate monitors
for pollutants with local sources, such as on-road vehicular emission that decays to background level
within a few hundred meters from roadways [17]. To capture these pollutants, other approaches such
as land use regression [18,19] or air quality models [20,21] at a fine spatial resolution are needed.

Although ambient concentration is widely used in health studies as an exposure metric, certain
studies have found that indoor concentrations would be a better exposure metric due to time spent
indoors [8–10]. The Windsor, Ontario Exposure Assessment study has shown that children spend on
average more than 67% of their time indoors and receive more than 50% of their PM2.5 exposure
while indoors [22]. Also, previous studies have pointed out that the variation of air exchange
rate (the rate that indoor air is exchanged with outdoor air) can further explain the difference in
ozone mortality coefficient across cities [23] and acute air pollution-related morbidity [24] than using
outdoor air pollutant concentration from central monitoring sites alone. The approaches for modeling
indoor concentration have been developed and evaluated [25–27] primarily for subject-specific
health study [28]. To our knowledge, these approaches have not been used to provide spatial and
temporally refined estimates for predicting personal exposure because house-by-house information
required for predicting air exchange rate (AER) is difficult to obtain in a large domain without
house-by-house survey.

This paper develops model-based exposure metrics during the CADEE study period so they
can be applied for the epidemiologic analysis in the future, taking advantages of the GPS data.
Exposure metrics calculated using the “traditional way” were compared with an alternative method.
We used public accessible data to gather information required to compute hourly AER at Census
block level. These highly resolved AER are than combined with regional background estimates,
on-road emissions, and indoor infiltration to create highly resolved indoor concentration field.
Our modeling approach complements population-level exposure models (e.g., Stochastic Human
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Exposure and Dose Simulation (SHEDS) [29], Air Pollutants Exposure Model (APEX) [30,31]),
which predict distributions reflecting exposure variability for demographic groups (e.g., school-age
children) rather than for specific individuals by using population-level inputs from other studies [29].
We compare these exposure metrics to determine the advantage of providing more details in exposure
characterization and quantify the potential exposure error if using a lower tier of exposure metric.

2. Experimental Section

2.1. Study Design

This analysis focused on three Counties (Durham, Orange, and Wake) in NC that contain
two major cities (Durham and Raleigh) and some rural areas (Figure S1), which matched the spatial
domain of the CADEE health study. To avoid the exposure misclassification associated with coarse
modeling resolution [32,33], hourly concentration were modeled at Census block centroids, resulting
in a total of 16,095 concentration receptors. Outdoor and indoor concentrations during the year of
2012 were modeled for PM2.5, elemental carbon (EC), CO, and NOx on an hourly or daily basis.
We computed six exposure metrics including: (1) outdoor STOK: outdoor background concentration
from space-time ordinary kriging (STOK); (2) indoor STOK: STOK-based indoor concentration;
(3) outdoor on-road: outdoor on-road concentration using Research LINE source dispersion model
(R-LINE); (4) indoor on-road: on-road-based indoor concentration; (5) outdoor hybrid: outdoor
hybrid concentration combing outdoor background and on-road concentration; and (6) indoor
hybrid: hybrid-based indoor concentration. The metrics and description is summarized in Table 1.
The details for each metric are described in the sections below. We compared the spatial and temporal
variability between the six exposure metrics and quantified the potential exposure error at both the
population and individual level using the sixth metric as the standard.

Table 1. Exposure metrics included in this study.

Metric Description

Outdoor metrics
Outdoor STOK Background concentration obtained from STOK.
Outdoor on-road Concentration from on-road vehicular emission modeled with R-LINE.
Outdoor hybrid Summation of outdoor STOK and outdoor on-road
Indoor metrics
Indoor STOK Indoor concentration obtained from Equation (1) using outdoor STOK as input
Indoor on-road Same as above using outdoor on-road as input
Indoor hybrid Same as above using outdoor hybrid as input

2.2. Outdoor Background Concentration

We used space-time ordinary kriging (STOK) to estimate background concentration. STOK uses
available monitoring data from U.S. Environmental Protection Agency’s (EPA) Air Quality System
(AQS) to interpolate observational data at Census-block centroids. This technique assumes that
the concentration value at each estimation point is a linear combination of nearby “hard data”
(i.e., the observational data). The linear combination, also known as kriging weight, is determined
by minimizing the estimation variance while satisfying the unbiased constraint. The STOK technique
is implemented with BMElib (Bayesian Maximization Entropy library) [34]. A detailed description
of the STOK algorithm, which was developed and applied for the Near-road Exposures to Urban Air
Pollutants Study (NEXUS) [28] in Detroit, Michigan to obtain regional background concentrations can
be found in Arunachalam et al. [12].

STOK estimates the concentration based on the spatial and temporal covariance between
concentrations obtained from different monitoring sites [35]. To obtain a meaningful covariance,
the distance between each monitor needs to cover a wide spatial range (from near to far). Due to
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the limited amount of available monitors in the three-county region in NC, we included monitors
in surrounding counties and States for STOK estimation. As a result, for CO, NOx, PM2.5, and EC,
there were 48, 33, 103 and 27 available monitors. For EC, since only daily concentration is available,
the background concentration is also estimated for a corresponding daily period. For CO, NOx, and
PM2.5, the estimation is hourly.

2.3. Outdoor on-Road Concentration

We predicted concentration from on-road vehicles using R-LINE [36]. R-LINE is a line
source dispersion model that treats roadways as line sources and deploys new formulations for
horizontal and vertical plume spread to address the under-prediction in maximum concentration
under meteorologically neutral and stable condition [37]. R-LINE requires various inputs including
emission, receptor location, and meteorological data.

For developing emission inputs for R-LINE, we adopted a “bottom-up” approach [21] to develop
the emission from roadways. The roadway information was collected from Federal Highway
Administration’s (FHWA) Freight Analysis Framework version 3 (FAF3) [38], which contains primary
and secondary roadways including data on vehicle speed, vehicle type, and annual average daily
traffic (AADT) for all vehicles (including passenger and commercial vehicles). Because FAF3 does
not provide temporally resolved traffic activity data, temporal allocation factors from EPA’s National
Emission Inventory (NEI) were used to allocate AADT to hourly level. This hourly resolved traffic
volume was then combined with MOtor Vehicle Emission Simulator (MOVES 2010b) emission factor
tables by matching vehicle speed, vehicle type, and road type to calculate emissions. Detailed
description about the datasets used to develop emissions inputs for R-LINE can be found in another
recent study by the authors [39].

The meteorological data were collected from four nearby National Weather Service (NWS)
stations: Raleigh Durham International airport, Rocky Mount-Wilson airport, Chapel Hill Horace
Williams airport, and Burlington-Alamance airport. We used AERMINUTE to process 1-min
wind speed data from these stations, followed by American Meteorological Society/Environmental
Protection Agency Regulatory Model (AERMOD) meteorological processor AERMET (version 14134)
to provide necessary meteorological inputs for the dispersion calculations. The receptors were set
at Census block centroids within the modeling domain. Each centroid was mapped to the four
NWS stations and the site that yielded the shortest distance was chosen to provide meteorological
information. Therefore, there are a total of four receptor groups. For each receptor group, all primary
and secondary roadways within 50 km were included as emission source.

2.4. Outdoor Hybrid Concentration

We combined the outdoor background concentration (from STOK) and outdoor on-road
concentration (from R-LINE) to calculate a spatially and temporally refined concentration field in
the three-County region. The background concentration in this study was defined as the regional
concentration that would be measured if local sources were zeroed out. Therefore, it is not influenced
by local sources but represents a large-scale overall pattern. A similar approach was used in U.S.
EPA’s National Air Toxics Assessments (NATA) [40] where observations from AQS sites were used to
provide background, and wherein, the quality of the collected ambient monitoring data was used to
determine background concentration in three slightly different ways. The method to obtain hybrid
concentrations is similar to another study by the same authors [39]. The local source we considered in
this study was on-road mobile sources, which have great variation in emissions and is influenced by
the meteorology at a local scale. The sum of outdoor background concentration and outdoor on-road
concentration were computed hourly at Census block centroids. Note that, because EC only has daily
background concentration, the hourly resolution feature is from on-road concentration alone.
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2.5. Indoor Concentration and Air Exchange Rate

We used a mass balance differential equation [27] to describe the change in indoor concentration:

dCin
dt

“ Pˆ AERˆ Cout ´ pAER` kdq ˆ Cin (1)

where Cout and Cin are the outdoor concentration and indoor concentration in µg/m3, t is time in
hour (h), P is the dimensionless penetration factor, kd is the deposition rate in h´1. The first term
of the equation (P ˆ AER ˆ Cout) represents the penetration process from outdoor to indoor and
the second term ((AER + kd) ˆ Cin) represents the removal of indoor concentration by AER and
indoor deposition. The penetration factor and deposition rate for each pollutant were set to reported
literature values shown in Table 2. For the three outdoor concentrations (background, on-road,
and hybrid), we used Equation (1) to calculate their corresponding indoor concentration. Because
on-road concentration varies substantially across time, we used the dynamic mass balance model
(Equation (1)) rather than assuming steady state conditions [41].

We used MATLAB’s (version R2013a, MathWorks Inc., Natick, MA, USA) differential equation
solver, ode15s, to solve Equation (1) to obtain indoor concentration. The solver was set to report the
indoor concentration for each hour. For each hour, the indoor concentration from the previous hour
was used as the initial value. The initial indoor concentration for the first hour was assumed to be
zero. This causes only a modest impact on the analysis because the model is stabilized within the
first two to three hours. There were three types of outdoor concentration for Equation (1): STOK,
on-road, and hybrid. For each type of outdoor concentration, Equation (1) was used to obtain the
corresponding indoor concentration.

Table 2. Penetration factor P and deposition rate kd.

Pollutant Penetration Factor Deposition Rate (h´1) Source

CO 1 0 Dionisio et al. [42]
NOx 1 0.5 Weschler et al. [43]
PM2.5 0.84 0.21 Breen et al. [44]

EC 0.98 0.29 Meng et al. [45]

We calculated hourly AER for 10 randomly sampled houses within each Census block, and
then averaged them to represent that Census block. The AER was computed using the mechanistic
Lawrence Berkeley Laboratory (LBL) AER model [46]. The LBL model assumes the building to be a
single and well-mixed compartment [47]. The LBL model calculates the airflow rate as:

Qin f “ Ain f

b

ks |Tin ´ Tout| ` kwU2 (2)

where Qin f is the airflow rate in L/h, Ain f is the effective air leakage area (in cm2), ks is the stack

coefficient in

ˆ

L
s

˙2

`

cm4 ¨ K
˘ , kw is the wind coefficient

ˆ

L
s

˙2

ˆ

cm4 ¨
´m

s

¯2
˙ , Tin and Tout are the indoor and

outdoor temperatures in ˝C, and U is the wind speed in m/s. The AER is calculated as:

AER “
Qin f

V
(3)

where V is the house volume in L.
We followed Breen et al. [46] to determine the input parameters of Equation (2). Breen et al. [46]

compared AER predictions to data from 642 daily AER measurements across 31 detached homes
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during each of four seasons in central North Carolina. For individual model-predicted and measured
AER, the median absolute difference was 43% (0.17 h´1) [44]. ks and kw were set to reported
literature values based on house-specific information including house height and local sheltering
(Tables S1 and S2). Tout and U were obtained from the NWS sites as described in the outdoor on-road
concentration section. Tin was set at 23.6 ˝C, which is the average indoor temperature measured in
this region from Breen et al. (2010) [46].

To determine Ain f , we used a leakage area model, which was previously evaluated in another
study [48] and was found to perform well with fewer input parameters, because information on air
leakage through floors is not available. Ain f is calculated as:

Ain f “
NL
NF

(4)

where NL is the normalized leakage and NF is the normalization factor (cm´2). The NL is
dimensionless and was calculated based on a regression model with construction year and floor area
as predicting variable. The NL is calculated as:

NL “ exp
´

β0 ` β1Ybuilt ` β2 A f loor

¯

(5)

where Ybuilt is construction year and A f loor is the floor area in m2. β0, β1 and β2 are the
regression parameters, which were set at literature reported values for low-income homes (β0 = 11.1,
β1 =´5.37ˆ 10´3, and β2 =´4.18ˆ 10´3 m´2) and conventional homes (β0 = 20.7, β1 =´1.07ˆ 10´2,
and β2 = ´2.20 ˆ 10´3 m´2). As previously reported, the NL model was fit to a national database of
leakage areas for 70,000 homes across 30 states in the Midwest (most-sampled region), West, South,
and Northeast (least-sampled region), which included residences with household incomes below
125% of the poverty guideline [48]. The parameters were estimated by Chan et al. [48] from homes
built between 1895 and 2000, which is similar to the homes in this study that were built between
1700 and 2015. The NF is calculated as:

NF “
1000
A f loor

ˆ

H
2.5

˙0.3
(6)

where H is the building height in meters.
Equations (2)–(6) require inputs including H, A f loor, and Ybuilt. Further, the required parameters

(ks, kw, β0, β1, and β2) need to be determined by additional information including household income,
shelter class, and number of stories. To obtain A f loor and Ybuilt, we relied on the three Counties’
real estate property data. Because the real estate property data also include apartments, for which
the LBL doesn’t apply, we remove buildings with floor area greater than 7000 square feet (possible
multiunit apartments), resulting in approximately 370,000 houses in the modeling domain. H was
calculated based on number of stories, where each story was assumed to be 2.5 m and adding an
additional 0.5 m for roof space. The number of stories is reported in the real estate property data
of Wake County but not for Durham and Orange Counties. For these two Counties, we followed
Chan et al. [48] to set houses with floor area less than 1000 m2 at one story and those greater at
two stories. This uncertainty does not constitute a large source of error in estimating NL, because
NL only varies in proportion to H0.3 [48]. The household income distribution was obtained from
the U.S. Census Bureau’s American Community Survey (ACS) 2013 [49]. Because this dataset only
contains household income distribution at Census block group level, we calculated the fraction of
houses below 125% of poverty line within each Census block group then randomly sample from this
fraction to determine the household income status for a sampled house. The shelter class for each
sampled house was determined based on the house density of each Census block. The house density
for each Census block was calculated and the cutoff values for each shelter class were determined
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from aerial and street-level images in Google map’s satellite view. The cutoff density is summarized
in Table S3.

2.6. Data Analysis

For each exposure metric, we computed the normalized difference and normalized absolute
difference to represent individual exposure difference using hybrid-based indoor concentration as
standard. The normalized difference was defined as:

ND “
Cx ´ Cs

Cs
ˆ 100% (7)

where ND is normalized difference, CX is the lower tiered exposure metrics, and Cs is the standard
exposure metric (hybrid-based indoor concentration). Normalized absolute difference (NAD) was
defined as:

NAD “
|Cx ´ Cs|

Cs
ˆ 100% (8)

We calculated both ND and NAD since ND indicates the direction of bias (i.e., overestimation
or underestimation), whereas NAD indicates the magnitude of deviation. To compare the temporal
and spatial variability of different exposure metrics across pollutants, we computed the coefficient of
variation (CV), which was defined as:

CV “
σ

µ
(9)

where σ is the standard deviation of concentration and µ is the mean concentration [7]. CV is a
dimensionless indicator that normalized the variation from the effect of concentration magnitude
for different pollutant. The higher the CV, the higher the degree of variability is in concentration.
The temporal CV was defined as the CV calculated across hours, with one temporal CV for each
Census block (n = 16,095) for each pollutant and each metric. The spatial CV was defined as the CV
calculated across Census blocks, with one spatial CV for each hour (n = 8784) for each pollutant and
each metric.

3. Results

To assess the impact from the additional parameters (on-road component and indoor infiltration)
on STOK, we present our data considering one parameter at a time in each of the first
three sub-sections below. In Sections 3.2 and 3.3 we summarize the potential exposure error
at population and individual level. Given the multiple models and pollutants discussed below,
we have underscored the phrases: outdoor STOK, outdoor on-road, outdoor hybrid, indoor STOK,
indoor on-road and indoor hybrid, and italicized the statistical indicators (spatial CV, temporal CV,
ND, and NAD) and the pollutant names (CO, NOx, PM2.5 and EC) throughout this section, for ease
of readability.

3.1. The Effect of on-Road Component

Figure 1 shows the outdoor STOK and outdoor hybrid concentration maps for CO (Figure 1a,c)
and NOx (Figure 1b,d) at Census block centroids for four different metrics. We presented morning
traffic peak hour (07:00) because the on-road contribution is the greatest. At 07:00, concentration
from roadways is clearly seen with outdoor hybrid (Figure 1c,d) but not outdoor STOK (Figure 1a,b).
Note the color scale is different among the four figures to properly display the data. STOK cannot
capture the near road concentrations because there is a limited amount of available monitors in this
region. Further, the location of monitors is crucial for STOK to estimate the concentration. CO has
a “kriging island” (i.e., a concentration hotspot surrounding a monitor, Figure 1a) but not for NOx

(Figure 1b).
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Figure 1. Outdoor concentration of CO and NOx at Census block centroids at 07:00.
(a) CO outdoor space-time ordinary kriging (STOK); (b) NOx outdoor STOK; (c) CO outdoor hybrid;
(d) NOx outdoor hybrid. The color bar represents concentration in µg/m3. (Note that the color scale
is different for the four figures to emphasize the concentration ranges that vary by pollutant).

Figure 2 shows the hourly concentration boxplot for the four pollutants under different exposure
metrics. For outdoor CO and PM2.5, the major contributor to the outdoor hybrid is the outdoor STOK.
For CO (Figure 2a), the average outdoor STOK (340.45 µg/m3) is 6.23 times higher than the average
outdoor on-road (54.67 µg/m3). For PM2.5 (Figure 2b), the average outdoor STOK (8.69 µg/m3) is
14.02 times higher than the average outdoor on-road (0.62 µg/m3). For these two pollutants, because
the outdoor STOK dominates the hybrid concentration, the outdoor hybrid is less different from the
outdoor STOK concentration.

For NOx and EC, both outdoor STOK and outdoor on-road contribute significantly to the
outdoor hybrid. For NOx (Figure 2c), although the average outdoor STOK (19.24 µg/m3) is
32% higher than the outdoor on-road (14.63 µg/m3), the upper 95% bound of outdoor on-road
(55.6 µg/m3) is 10% higher than the outdoor STOK (50.33 µg/m3). For EC (Figure 2d), the average
outdoor STOK (0.55 µg/m3) is 52% higher than the outdoor on-road (0.36 µg/m3) but the upper
95% bound of outdoor on-road (1.35 µg/m3) is 57% higher than the outdoor STOK (0.86 µg/m3).
As a result, for these two pollutants, the average outdoor hybrid is 65% and 72% higher than the
average outdoor STOK for NOx and EC.

As shown in Figure 1 and the wider range for the outdoor hybrid compared to outdoor STOK in
Figure 2 (dark boxes), adding the outdoor on-road introduces different spatial variability for different
pollutants. Figure 3 left panel quantifies the spatial component of this variability using spatial CV.
For all pollutants, the outdoor on-road shows a great spatial variability (average spatial CV ~2).
As a result, for the pollutants that have large contribution from outdoor on-road concentration (38%
for NOx and 46% for EC), the outdoor hybrid would yield much higher spatial variation (average
spatial CV = 0.87 for NOx and 0.71 for EC) than outdoor STOK (average spatial CV = 0.065 for NOx

(Figure 3b) and 0.014 for EC (Figure 3d)). It is worth noticing that although CO and PM2.5 in this
region is dominated by background concentration, adding outdoor on-road can still increase the
spatial variability (average spatial CV from 0.06 for outdoor STOK to 0.26 for outdoor hybrid for
CO and 0.07 for outdoor STOK to 0.17 for outdoor hybrid for PM2.5), indicating the importance of
the on-road emission for the near-road environment even when the contribution is relatively small
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(14% for CO and 7% for PM2.5). Corroborating illustrations are shown in the authors’ peer-reviewed
paper [39] where the hybrid contribution for PM2.5 drops by 20% within 150 meters from roadways.

Temporal CV is summarized in Figure 3 right panel. The outdoor on-road shows a great temporal
variation (average temporal CV ~1.5, (Figure 3, dark boxes for outdoor on-road)). This high temporal
variation is from the bottom up approach used in the R-LINE modeling where the temporal pattern
of on-road emission is captured. For CO and PM2.5 (Figure 3e,g), the outdoor hybrid yields similar
average temporal CV to outdoor STOK because for these two pollutants, outdoor STOK dominates
the total concentration. Therefore, although outdoor on-road shows large temporal variation,
the variation is lost after outdoor on-road and outdoor STOK are combined for CO and PM2.5.
For NOx (Figure 3f), although 38% of the outdoor hybrid is from the outdoor on-road, because the
outdoor on-road only affects Census blocks within a few hundred meters from roadways, the overall
temporal CV for outdoor hybrid is less different from the outdoor STOK. For EC, because the
outdoor on-road contributes 46% to the outdoor hybrid, the average temporal CV increases by 72%
from 0.33 for outdoor STOK to 0.57 for outdoor hybrid (Figure 3h).

For the temporal CV, only the Census blocks near roadways would be affected by
outdoor on-road. Examples for NOx are shown in Figure 4 with a Census block that is 14.1 m
from a roadway (left panel) and a Census block that is 9.6 km from a roadway (right panel) and
comparing concentrations at each of the two locations for a day At the near-road Census block
(Figure 4a), outdoor on-road contributes, on average, 89% to outdoor hybrid. The contribution from
outdoor on-road is the greatest (over 90%) during morning (07:00 to 09:00) and afternoon (17:00 to
19:00) traffic peak hours and the temporal CV increases by 40% (from 0.42 for outdoor STOK to 0.59
for outdoor hybrid). On the other hand, at a remote Census block (Figure 4b), the outdoor on-road
for NOx contributes, on average, only 18% to the outdoor hybrid. As a result, the temporal CV
only increases slightly by 7% from 0.44 for outdoor STOK to 0.47 for outdoor hybrid. All the other
pollutants show a similar pattern as NOx (Figure S2).
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As shown in Figure 1 and the wider range for the outdoor hybrid compared to outdoor STOK in 

Figure 2 (dark boxes), adding the outdoor on-road introduces different spatial variability for different 
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Figure 2. Hourly pollutant concentration for each Census block in Durham, Orange, and Wake
Counties, North Carolina (NC) in 2012. (a) CO; (b) PM2.5; (c) NOx; and (d) EC. Bottom and top of
box represents 25th and 75th percentiles, the line in the middle of the box is the median, the ends of
the whisker are the 5th and 95th percentiles, and the dot on the whisker is the mean.
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Figure 3. Spatial CV for each hour (left panel); and Temporal CV for each Census block (right panel)
for CO (a,e); NOx (b,f); PM2.5 (c,g); and EC (d,h). Bottom and top of box represents 25th and 75th
percentiles, the line in the middle of the box is the median, the ends of the whisker are the 5th and
95th percentiles, and the dot on the whisker is the mean.
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Figure 4. Time series plot on January 3rd for NOx at (a) a near-road Census block (14.1 m from
roadway); and (b) a remote Census block (9.6 km from roadway).
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The effect of on-road component on indoor metrics shows similar pattern to that of outdoor
metrics (White-colored boxes from Figure 3e,h). We present the difference between outdoor and
indoor metrics in the next section.

3.2. The Effect of Indoor Infiltration

Figure 5 shows the indoor concentration for CO and NOx. At 07:00, the spatial pattern for indoor
metrics is similar to the outdoor metrics (Figure 1) except for indoor STOK NOx (Figure 5c). The extra
spatial variation for indoor STOK NOx shows a similar spatial pattern to AER (Figure S3). However,
this pattern is not seen for CO (Figure 5a). On average, compared to the outdoor concentration, the
indoor concentration is 66% lower for NOx, 46% lower for PM2.5, and 43% lower for EC (Figure 2b–d).
CO on the other hand, shows a slightly higher (5.9%) indoor concentration than outdoor concentration
(Figure 2a). This is because of the relatively high penetration factor (1) and low indoor deposition rate
(0 h´1) for CO, resulting in the accumulation for indoor concentration. However, in general, CO is
not affected by the indoor infiltration. Figure 6 shows the concentration ratio at 07:00 between indoor
and outdoor hybrid concentration.
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For PM2.5 and EC (Figure 6b,d), the ratio is ~0.7 and for NOx (Figure 6c), the ratio is ~0.5.  

The difference is because of the higher indoor deposition for NOx (0.5 h−1) compared to PM2.5 (0.21 h−1) 

and EC (0.29 h−1). The high ratio area overlaps with the area with high AER. High AER is seen mostly 

in urban area. As these areas usually have higher density of roadways, the residents have the potential 

to be exposed to higher air pollutant concentrations in the indoor environment. 

Figure 5. Indoor concentration of CO and NOx at 07:00 with (a) CO indoor STOK; (b) NOx

indoor STOK; (c) CO indoor hybrid; (d) NOx indoor hybrid. The color bar represents concentration in
µg/m3 (Note that the color scale is different for the four figures to emphasize the concentration ranges
that vary by pollutant).

For PM2.5 and EC (Figure 6b,d), the ratio is ~0.7 and for NOx (Figure 6c), the ratio is ~0.5. The
difference is because of the higher indoor deposition for NOx (0.5 h´1) compared to PM2.5 (0.21 h´1)
and EC (0.29 h´1). The high ratio area overlaps with the area with high AER. High AER is seen
mostly in urban area. As these areas usually have higher density of roadways, the residents have the
potential to be exposed to higher air pollutant concentrations in the indoor environment.
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Figure 6. Indoor-outdoor concentration ratio using mean hybrid concentration at 07:00. (a) CO;
(b) PM2.5; (c) NOx; and (d) EC.

The spatial CV for indoor STOK is higher than outdoor STOK (Figure 3 left panel). Because
outdoor STOK is homogenously distributed across space, pollutants with higher indoor deposition
rate (i.e., NOx, PM2.5, and EC) have a higher average spatial CV in indoor STOK than in outdoor STOK.
Compared to the outdoor STOK, the average spatial CV of the indoor STOK is 3.6 fold higher for
NOx, 2.2 fold higher for PM2.5, and 12.9 fold higher for EC. As shown in Figure 5b with the example
for NOx, this increase in spatial variability is from the spatial variation of AER. Indoor on-road’s
spatial CV is not much different from outdoor on-road. For NOx, PM2.5, and EC, compared with
the mean spatial CV of the outdoor on-road, the average spatial CV of indoor on-road changes
less than 2%. Because the spatial variation for outdoor on-road is large (spatial CV ~2), the extra
spatial variation from AER is “covered” and the indoor on-road demonstrated similar spatial CV
to outdoor on-road. For the outdoor hybrid, the effect of infiltration on spatial CV depends on
the spatial variability of outdoor hybrid. For NOx and EC, because the major contributor for
outdoor hybrid is outdoor on-road, the spatial CV of outdoor hybrid is high (~0.8). Therefore, the
indoor hybrid shows only a slightly higher (10%) spatial CV than the outdoor hybrid for NOx and EC.
For PM2.5, because outdoor STOK dominates the outdoor hybrid, the spatial CV of outdoor hybrid is
low (~0.17) the indoor infiltration produces the indoor hybrid that has higher spatial CV (40%) than
the outdoor hybrid.

Temporal CV in general, does not change much for STOK and hybrid between outdoor and indoor
metrics (Figure 3 right panel). For the on-road, due to the accumulation effect mentioned previously,
the temporal variation is smoothed out, resulting in a lower temporal variation in indoor metrics than
outdoor metrics.

3.3. The Overall Effect on Exposure Error

Because people spend more time indoors and STOK cannot capture the impact from a local
source, we used the indoor hybrid as a standard to compare to other metrics. To quantify the potential
population exposure error using the other metrics, we created contingency tables [33] for each
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pollutant that compares quintiles of the population exposure for the annual average concentration
(Tables 3–6). These tables’ diagonal values represent the percentage of Census blocks of a metric that
agrees with the indoor hybrid. With a perfect agreement with indoor hybrid, the diagonal values
would be 100% and the non-diagonal values would be 0. For example, Table 3 shows the contingency
table for CO. Assuming the indoor hybrid is closer to the actual exposure, the top left entry represents
that of the population in the lowest quintile (~3200 Census blocks exposed to 347.4 to 362.1 µg/m3

of CO), the outdoor hybrid metric correctly classified 91%. For CO with the outdoor hybrid, 9%
of the Census blocks were grouped to the second lowest group. The high diagonal values for CO
for the outdoor hybrid metric (>81%) indicate a good agreement between it and the indoor hybrid.
It is worth noting that the outdoor STOK metric does not agree well with the indoor hybrid (8% to
34% agreement).

Table 3. Contingency table for CO showing agreement between exposure quintiles. The values
represent percentage of Census blocks in each quintile. Concentration ranges are shown in
parentheses. Boxed percentages along diagonals would be 100% for a perfect match.

Percentile
Concentration

(µg/m3)

Indoor Hybrid
0–20 20–40 40–60 60–80 80–100

(347.4, 362.1) (362.1, 372.0) (372.0, 385.4) (385.4, 411.6) (411.6, 2242.2)

Outdoor
hybrid

0%–20% (330.2, 345.9) 91 10 0 0 0
20%–40% (345.9, 353.9) 9 81 11 0 0
40%–60% (353.9, 365.7) 0 9 85 6 0
60%–80% (365.7, 388.0) 0 0 4 92 3
80%–100% (388.0, 2024.4) 0 0 0 2 97

Indoor
on-road

0%–20% (6.7, 25.2) 79 21 0 0 0
20%–40% (25.2, 35.4) 15 64 21 0 0
40%–60% (35.4, 49.2) 6 13 70 11 0
60%–80% (49.2, 76.6) 0 2 9 83 6
80%–100% (76.6, 1903.4) 0 0 0 6 94

Outdoor
on-road

0%–20% (5.8, 21.3) 78 23 0 0 0
20%–40% (21.3, 30.0) 16 61 24 0 0
40%–60% (30.0, 42.2) 6 14 66 13 0
60%–80% (42.2, 66.5) 0 2 10 82 6
80%–100% (66.5, 1694.4) 0 0 0 5 94

Indoor
STOK

0%–20% (317.2, 336.1) 25 16 12 22 25
20%–40% (336.1, 339.3) 10 18 18 23 30
40%–60% (339.3, 341.3) 12 27 30 17 14
60%–80% (341.3, 343.7) 6 16 26 29 23
80%–100% (343.7, 347.7) 47 22 14 9 8

Outdoor
STOK

0%–20% (322.3, 337.6) 24 16 12 22 27
20%–40% (337.6, 340.7) 12 18 18 24 28
40%–60% (340.7, 342.2) 8 27 34 17 15
60%–80% (342.2, 343.7) 8 17 23 29 22
80%–100% (343.7, 347.7) 48 23 13 8 8

For NOx and EC (Tables 4 and 6), the outdoor hybrid does not perform well (the agreement is
between 33% and 49% for the lower four groups) except for the highest quintile (73% for NOx and
76% for EC). All the other outdoor metrics for NOx and EC perform poorly (Tables 4–6). The best
agreement for NOx and EC is with the indoor on-road (agreement between 45% and 90%). At the
lowest quintile, indoor STOK performs well (68% for NOx and 69 for EC).

For PM2.5 (Table 5), indoor STOK performs the best (agreement between 59% and 90%). All other
metrics perform poorly. For all pollutants in general, all outdoor metrics perform relatively poorer
than indoor metrics. Outdoor STOK, in specific, performs very poorly (agreement ranges from 8%
to 34% considering all pollutants). Since space-time kriging is often used in environmental health
studies to quantify air pollutant exposures [13–15], this part of analysis shows that there is a great
potential for this metric to misclassify exposures for all four pollutants studied.
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Table 4. Contingency table for NOx showing agreement between exposure quintiles. The values
represent percentage of Census blocks in each quintile. Concentration ranges are shown in
parentheses. Boxed percentages along diagonals would be 100% for a perfect match.

Percentile
Concentration

(µg/m3)

Indoor Hybrid
0–20 20–40 40–60 60–80 80–100

(3.4, 9.3) (9.3, 11.1) (11.1, 13.5) (13.5, 17.7) (17.7, 307.9)

Outdoor
hybrid

0%–20% (18.4, 23.3) 49 31 17 3 0
20%–40% (23.3, 25.4) 32 34 25 10 0
40%–60% (25.4, 28.6) 13 26 33 26 1
60%–80% (28.6, 35.1) 4 8 20 41 26

80%–100% (35.1, 594.7) 1 1 4 20 73

Indoor
on-road

0%–20% (0.5, 2.6) 69 26 5 0 0
20%–40% (2.6, 3.7) 28 49 22 2 0
40%–60% (3.7, 5.3) 3 24 55 18 0
60%–80% (5.3, 8.9) 0 1 18 70 10

80%–100% (8.9, 299.0) 0 0 0 10 90

Outdoor
on-road

0%–20% (1.7, 6.1) 49 32 17 3 0
20%–40% (6.1, 8.3) 33 33 26 9 0
40%–60% (8.3, 11.4) 13 26 33 26 1
60%–80% (11.4, 18.0) 4 8 20 42 25

80%–100% (18.0, 577.4) 1 1 4 20 73

Indoor
STOK

0%–20% (2.4, 6.5) 68 18 6 4 4
20%–40% (6.5, 7.3) 22 40 20 11 8
40%–60% (7.3, 8.2) 9 26 31 21 13
60%–80% (8.2, 9.3) 2 13 30 31 24

80%–100% (9.3, 14.4) 0 2 13 33 52

Outdoor
STOK

0%–20% (18.9, 19.0) 22 23 24 18 14
20%–40% (19.0, 19.3) 13 16 19 22 30
40%–60% (19.3, 19.3) 16 15 16 20 31
60%–80% (19.3, 19.4) 18 21 21 26 14

80%–100% (19.4, 20.2) 31 25 21 14 10

Table 5. Contingency table for PM2.5 showing agreement between exposure quintiles. The values
represent percentage of Census blocks in each quintile. Concentration ranges are shown in
parentheses. Boxed percentages along diagonals would be 100% for a perfect match.

Percentile
Concentration

(µg/m3)

Indoor Hybrid
0–20 20–40 40–60 60–80 80–100

(1.72, 4.03) (4.03, 4.45) (4.45, 4.83) (4.83, 5.28) (5.28, 21.21)

Outdoor
hybrid

0%–20% (7.91, 8.43) 27 24 22 19 8
20%–40% (8.43, 8.79) 27 21 20 19 13
40%–60% (8.79, 8.90) 26 27 23 15 10
60%–80% (8.90, 9.17) 15 19 22 24 20

80%–100% (9.17, 34.29) 6 8 13 23 50

Indoor
on-road

0%–20% (0.03, 0.15) 42 26 20 10 2
20%–40% (0.15, 0.21) 34 30 19 13 5
40%–60% (0.21, 0.29) 16 27 28 22 8
60%–80% (0.29, 0.47) 7 13 24 31 26

80%–100% (0.47, 16.33) 2 4 11 23 60

Outdoor
on-road

0%–20% (0.07, 0.26) 28 26 24 17 6
20%–40% (0.26, 0.34) 33 27 20 15 6
40%–60% (0.34, 0.47) 22 25 23 20 9
60%–80% (0.47, 0.74) 12 14 20 25 29

80%–100% (0.74, 26.00) 5 8 13 23 51

Indoor
STOK

0%–20% (1.67, 3.85) 90 8 1 1 1
20%–40% (3.85, 4.21) 11 73 11 3 2
40%–60% (4.21, 4.53) 0 19 62 14 5
60%–80% (4.53, 4.89) 0 0 25 59 16

80%–100% (4.89, 6.55) 0 0 0 24 76

Outdoor
STOK

0%–20% (8.46, 8.61) 15 16 18 23 27
20%–40% (8.61, 8.69) 32 27 22 12 7
40%–60% (8.69, 8.72) 15 15 17 22 31
60%–80% (8.72, 8.76) 18 19 20 23 20

80%–100% (8.76, 9.14) 20 23 23 20 14
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Table 6. Contingency table for EC showing agreement between exposure quintiles. The values
represent percentage of Census blocks in each quintile. Concentration ranges are shown in
parentheses. Boxed percentages along diagonals would be 100% for a perfect match.

Percentile
Concentration

(µg/m3)

Indoor Hybrid
0–20 20–40 40–60 60–80 80–100

(0.15, 0.37) (0.37, 0.43) (0.43, 0.50) (0.50, 0.62) (0.62, 12.74)

Outdoor
hybrid

0%–20% (0.65, 0.74) 49 32 17 2 0
20%–40% (0.74, 0.79) 32 35 27 7 0
40%–60% (0.79, 0.86) 14 25 34 26 1
60%–80% (0.86, 1.01) 4 7 19 46 23
80%–100% (1.01, 19.61) 1 1 3 18 76

Indoor
on-road

0%–20% (0.02, 0.09) 65 28 7 0 0
20%–40% (0.09, 0.12) 30 45 23 2 0
40%–60% (0.12, 0.17) 5 25 52 18 0
60%–80% (0.17, 0.28) 0 2 18 69 11
80%–100% (0.28, 12.38) 0 0 0 11 89

Outdoor
on-road

0%–20% (0.04, 0.15) 48 32 18 2 0
20%–40% (0.15, 0.20) 33 34 26 8 0
40%–60% (0.20, 0.28) 14 25 33 26 1
60%–80% (0.28, 0.43) 5 7 19 45 23
80%–100% (0.43, 19.00) 1 1 3 18 76

Indoor
STOK

0%–20% (0.11, 0.27) 69 17 6 4 4
20%–40% (0.27, 0.30) 22 41 18 11 9
40%–60% (0.30, 0.33) 8 26 30 20 15
60%–80% (0.33, 0.36) 1 13 31 29 25
80%–100% (0.36, 0.49) 0 2 15 36 47

Outdoor
STOK

0%–20% (0.55, 0.55) 13 20 22 22 23
20%–40% (0.55, 0.55) 10 15 17 22 36
40%–60% (0.55, 0.55) 31 26 24 13 6
60%–80% (0.55, 0.56) 14 16 20 26 23
80%–100% (0.56, 0.56) 31 23 18 16 12

Besides the population exposure error, it is also important to quantify the exposure error at an
individual level. We quantify this with ND (Figure 7 left panel) and NAD (Figure 7 right panel).
For all pollutants except for CO, all outdoor metrics (dark boxes) perform poorly. For example, the
average ND and NAD is 175% with the outdoor hybrid for NOx. Further, all outdoor metrics have
shown wider 90% range (Figure 7 whiskers); so for some Census block, ND and NAD can be up to
375% for NOx. From the population exposure error in the previous paragraph, one would expect that
the indoor on-road would perform better for NOx and EC. However, for these two pollutants, ND and
NAD indicate that indoor STOK yields lower error (average ND ~´25% and NAD ~25%) compared
to indoor on-road (average ND ~´75% and NAD ~75%). The disagreement between population and
individual exposure error is because although the indoor on-road can capture the locations of the
hotspot, the concentration is still too low to represent the true exposure. For CO, the best performance
is with outdoor hybrid metric (average ND ~0% and NAD ~10%). Because the penetration factor for
CO is 1 and the indoor deposition rate is 0, the indoor and outdoor concentration differ less from
each other, although NAD can still be up to 30% (Figure 7). For PM2.5, agreeing with the population
exposure, the indoor STOK concentration gives the lowest error (average ND ~0% and NAD ~5%).
This is because of the relatively lower contribution from the on-road source for PM2.5. However,
it is worth noting that the error can sometimes be large (up to 25%), indicating on-road source still
plays an important role for the near-road population exposure.
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Figure 7. Hourly normalized difference (ND, left panels) and hourly normalized absolute difference
(NAD, right panels) for each Census block for CO (a,e); NOx (b,f); PM2.5 (c,g); and EC (d,h). Bottom
and top of box represents 25th and 75th percentiles, the line in the middle of the box is the median,
the ends of the whisker are the 5th and 95th percentiles, and the dot on the whisker is the mean.

4. Discussion and Limitations

To prevent bias due to spatial variation [50], many health studies characterized exposure
using space-time kriging [13–15]. Space-time kriging technique, when lacking adequate number of
monitors, may fail to capture a concentration hotspot in microenvironments such as locations found
near roadways. Further, using ambient concentrations to represent exposure can introduce exposure
error because people spend more time indoors [8–10]. These findings motivated this study to quantify
the associated potential exposure error to reduce the possible bias in future epidemiological analysis
for the CADEE study.
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From our analysis, the suitability of an exposure metric to represent a pollutant depends on
the pollutant’s three major characteristics: (1) Penetration factor; (2) Deposition rate; and (3) Key
source contributor. CO, selected as a “control group” because of its high penetration factor and low
deposition rate, is less affected by the indoor infiltration mechanism and thus AER. AER affects all
other pollutants’ block-to-block variability although may not be significant when the input outdoor
metric’s spatial variability is large. Nevertheless, this small change in spatial variation (~10%)
can cause error in population exposure. This is evident in the first “experiment group” where
for pollutants with slightly lower penetration factor and higher deposition rate (such as NOx and
EC), the outdoor hybrid, as an input for computing indoor hybrid, produces 20% and 15% more
error (Tables 4 and 6) than indoor on-road. For the second “experiment group” where pollutant is
dominated by background (i.e., PM2.5), the indoor STOK (Table 5) yields less error for population
exposure. It is worth noting that all outdoor metrics cause high exposure error at the population
level. This highlights the importance of AER for pollutants with lower penetration factor and higher
deposition rate.

At an individual level, CO and PM2.5 agree with the results in population exposure error and can
be best described by outdoor hybrid and indoor STOK, respectively. For CO, because the infiltration
causes little effect on concentration, the concentration has to be characterized by both background
and on-road component. For PM2.5, although indoor STOK causes little error, that error can still be
up to 25%, indicating the importance of on-road emission. This was not seen in another study where
concentration was modeled at zip code [7], indicating the necessity to model the concentration at
fine spatial resolution. For NOx and EC, although STOK-based indoor metric gives relatively less
error than other metrics, the error is still high (up to 75%) because on-road emission contributes
a large portion (38% and 46%) to the total concentration. In terms of individual exposure error,
both background and on-road component should be considered.

There are several limitations in this work. First, this study does not consider window opening
since data were unavailable. A previous study evaluated the LBL model and another model (LBLX),
which extends the LBL model to include natural ventilation from window opening. Based on AER
measurements from homes in central North Carolina across four seasons, the LBL and LBLX models
had similar uncertainties for days with open windows. Therefore, we do not expect a substantial
effect from not including window opening in our study [41]. Secondly, this work does not consider
indoor pollutant sources, which could lead to under-prediction for total exposure. Thirdly, since the
local source considered in this study focused only on on-road emission, future research should also
include other sources such as power plants and other industrial sources in the study area.

5. Conclusions

We have provided a comprehensive comparison of multiple tiered exposure metrics and
quantified potential exposure error at both population and individual level at 16,095 Census blocks
of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012.
These metrics include ambient background concentration from space-time ordinary kriging (STOK),
ambient on-road concentration from the Research LINE source dispersion model (R-LINE), hybrid
concentration combining STOK and R-LINE, and their associated indoor concentrations from an
indoor infiltration mass balance model. We achieved this comprehensive comparison—the main
novelty of this study—by combining the different models to obtain spatiotemporally refined outdoor
and indoor concentrations. With the examples for the four pollutants, we identified the key factors
that can cause the exposure error. Using hybrid-based indoor concentration as the standard, the
comparison showed that outdoor STOK metrics yielded large error at both population (67% to
93%) and individual level (average bias between ´10% to 95%). For pollutants with significant
contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the
best at the population level (error less than 52%). At the individual level, however, the STOK-based
indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively
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low contribution from on-road emission (7%), STOK-based indoor metric performs the best at both
population (error below 40%) and individual level (error below 25%). Finally, the AER calculation in
this study, to our knowledge, is the first one using actual house information instead of on-site survey,
and at such a refined spatial resolution. This unique approach, along with the comprehensive results
from this study provides an opportunity for future researchers to conduct large-scale health studies
by selecting appropriate exposure metrics and reduce potential bias in exposure characterization.
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