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Abstract: Given the relatively recent recognition of Lyme disease (LD) by CDC in 1990 as a nationally
notifiable infectious condition, the rise of reported human cases every year argues for a better
understanding of its geographic scope. The aim of this inquiry was to explore research conducted
on spatiotemporal patterns of Lyme disease in order to identify strategies for implementing vector
and reservoir-targeted interventions. The focus of this review is on the use of GIS-based methods
to study populations of the reservoir hosts, vectors and humans in addition to the spatiotemporal
interactions between these populations. New GIS-based studies are monitoring occurrence at the
macro-level, and helping pinpoint areas of occurrence at the micro-level, where spread within
populations of reservoir hosts, clusters of infected ticks and tick to human transmission may be
better understood.

Keywords: Lyme disease; tick habitat; geographic distribution; risk modeling; spatiotemporal
pattern

1. Introduction

Lyme disease (LD) is the most common tick-borne disease in the temperate zones of the Northern
Hemisphere [1]. The process of its extension beyond its endemic foci is predicted to accelerate with
climate change. Research modeling climate-change scenarios anticipate climate change will result in
geographic distribution of vectors expanding northward as the earth warms, and they specifically
forecast the retraction of vectors from the southern U.S. into the central U.S. and the emergence
and reemergence of LD in various regions of Canada [2]. Climatic variables and climate change
(i.e., warming climate) are likely associated with tick survival and their geographic occurrence [3].
Dispersion of infected ticks by migratory birds could infect wildlife populations in the new frontiers
and could introduce endemic cycles of infection into newly established reproducing populations of
the tick vector [4]. Human behavior is likely to be affected by climate change which will alter the
interaction with vectors and the transmission of diseases they carry to humans. The relationship of
density estimates of vectors to human incidence of LD are strongest in high-prevalence areas and
varies by region due to the distribution of pathogens and their reservoir hosts’ habitat and climate
preferences [5].

The pathogen Borrelia known to cause Lyme disease has at least 37 known species, 12 of which
are Lyme related, and an unknown number of genomic strains [6]. The strains differ in clinical
symptoms as well as geographic distribution [7]. The common causative LD agent in North America,
Borrelia burgdorferi is transmitted from mammal to mammal (small sized, ground dwelling vertebrate
hosts) by ticks of genus Ixodes scapularis and Ixodes pacificus. In Europe and Asia, Borrelia afzelii,
Borrelia garinii and Borrelia valaisiana are the most abundant species [8]. The primary vector species
is Ixodes ricinus in Europe [9], and Ixodes persulcatus in Asia [10]. The pathogen cycles between wild
animal hosts and vectors. Humans are accidental dead-end hosts. Typical symptoms include fever,
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headache, fatigue, and a characteristic skin rash called erythema migrans (EM). This rash occurs
in approximately 70%–80% of infected persons and begins at the site of a tick bite. Some patients
develop additional EM lesions in other areas of the body several days later [11]. If left untreated,
infection can spread to joints, the heart, and the nervous system [12]. Although symptoms have been
observed since the 19th century, systematic surveillance for Lyme disease was first initiated in 1982 by
the U.S. Centers for Disease Control and Prevention [13]. The impact on personal health is noteworthy
and the direct medical cost associated with LD in the United States is estimated at 2.5 billion dollars
annually [14]. The increased incidence of reported Lyme disease likely is due to improved awareness
and recognition of the disease, as well as to an actual increase in incidence and geographic spread.
Currently, there is no vaccine available for human use but several are available for veterinary use [15].

LD could involve the same agent Borrelia burgdorferi but different vectors and hosts in different
regions in the United States. In the northeastern United States, the white–footed mouse is the
primary wildlife reservoir host responsible for infecting ticks (Ixodes scapularis), also known as the
deer tick [16]. Some infections that occur in the northern California and the upper Pacific Northwest
are transmitted by Ixodes pacificus, the western black-legged tick, and the main reservoir host is the
dusky footed wood rat. The main vector species in European countries are Ixodes ricinus. The main
host of Ixodes ricinus is the roe deer; although not a reservoir, it plays an important role of maintenance
and co-feeding for ticks.

In the United States, the proportion of ticks infected with Borrelia burgdorferi varies greatly both
by geographic area and by the stage of the tick in its three-stage life cycle (larva, nymph and adult).
Newly hatched larval ticks take a blood meal during the summer of the first year, during which
they can acquire infection, and after molting into a nymph (immature ticks less than 2 mm), they
take a second blood meal the following year, during which they can transmit infection [17]. Most
humans are infected through the bites of nymphs. Humans acquire the disease mainly during the
months of May and July after contact with the vector during outdoor activities in tick habitat, which
is characterized by close-canopy deciduous and mixed forest [5]. In endemic areas, persons who
have either occupational or recreational exposure to tick-infested woodlands or fields are at increased
risk of LD, while there is also substantial risk on the lawns of suburban homes that border wooded
areas [18]. Adult ticks can also transmit LD bacteria, but they are much larger and may be more likely
to be discovered and removed before they have had time to transmit the bacteria. Adult Ixodes ticks
are most active during the cooler months of the year [19].

In the United States most cases of LD occur in coastal and riparian regions of southern New
England, southeastern New York, New Jersey, eastern Pennsylvania, eastern Maryland, Delaware,
and parts of Minnesota and Wisconsin [5]. The incidence in the ten states with the highest numbers
of cases averaged 302 cases per 100,000 persons between years of 1991 and 2006 [20]. In Canada,
Lyme disease became nationally notifiable in 2009. The number of cases reported in Canada has more
than doubled in four years, from 144 in 2009 to 338 in 2012, which is an increase in incidence from 0.4
to 1.0 cases per 100,000 population. Endemic LD occurs in British Columbia and in the eastern and
central Canadian provinces of Nova Scotia, New Brunswick, Quebec, Ontario and Manitoba where it
is continuing to emerge [21].

In Europe, most cases occur in the Scandinavian countries and in central and eastern Europe,
especially in Germany, Belgium, Austria, Slovenia, and Czech republic between the years of 2009 and
2012 [22]. The highest annual incidence is 80 cases per 100,000 persons or higher reported for Slovenia
(155/100,000), Austria, Southern Sweden, Netherlands and Switzerland. Incidence lower than
20 cases per 100,000 persons have been reported in France and Poland [23]. The lowest incidences
are in UK (0.7/100,000) and Ireland (0.6/100,000). Cases have been reported in over 60 countries
and endemic foci in North America, Europe, and Asia [24]. Figure 1 shows that LD has extended to
many countries around the world beyond the endemic foci. Reported LD activities that were mapped
include diagnosed cases as well as infected ticks, infected animals, and seropositive human samples.
The dark gray shading signifies countries with (at least) some reported LD activity, and the presence
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of activity is known only at the country level. The lighter gray shading represents areas in which
Lyme disease has been reported at the sub-national level in particular regions of some countries. The
lightest gray represents counties with rare or unknown activity.

In 1990, CDC recognized LD as a nationally notifiable disease and developed a national case
definition [25]. A case is confirmed if the person has the skin lesion erythema migrans or if at least one
late manifestation of disease is present and the case is laboratory-confirmed. Laboratory confirmation
is recommended for persons with no known exposure. Exposure is defined as having been in a county
where LD is endemic within 30 days before the onset of erythema migrans [26]. The geographic
standard by which the disease is endemic to a county is determined by at least two confirmed cases
that have been previously acquired, or established populations of a known tick vector that are infected
with Borrelia burgdorferi. This geographic standard could be problematic for some regions where
erythema migrans and other LD symptoms have been observed in patients who live in areas where
there is lack of definitive evidence of transmission to humans, especially in the southeastern United
States [27].Int. J. Environ. Res. Public Health 2015, 12 4 
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Figure 1. Geographic Extension of Lyme Disease (LD) activities. Figure 1 shows that Lyme Disease
(LD) has extended to many countries around the world beyond the endemic foci. Reported LD
activities that were mapped include diagnosed cases as well as infected ticks, infected animals, and
seropositive human samples. The dark gray shading signifies countries with (at least) some reported
LD activity, and the presence of activity is known only at the country level. The lighter gray shading
represents areas in which Lyme disease has been reported at the sub-national level in particular
regions of some countries. The lightest gray represents counties with rare or unknown activity. This
map is compiled from various resources such as published articles reviewed in this paper, Lyme
Disease Association, Inc. [30], and World Health Organization websites [31].

Case definitions change over time and updated to assist clinicians in the accurate diagnosis of
LD. Variation in case definition by country could make it difficult to compare the number of cases in
different countries and regions of the world. LD in Europe and in North America (U.S. and Canada)
are similar in clinical features but differ due to the variety of genospecies that cause the disease in
Europe (Borrelia afzelii, Borrelia garinii and Borrelia spielmanii). Clinical criteria for case definition were
not changed; however, laboratory confirmation is improved to require isolation of the pathogen’s
bacterial culture from a clinical specimen or demonstrate diagnostic levels of IgM or IgG antibodies
to the pathogen [28]. Because of the nonspecific nature of many clinical manifestations, laboratory
(serologic) testing is essential. Epidemiologic findings about the likelihood of exposure to infected
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ticks inform the serologic testing. The results of laboratory tests, along with acceptable specificity and
sensitivity of the tests, provide supportive evidence of infection. A negative test result could rule out
the disease despite obvious symptoms and treatment would be withheld. This could affect reporting
of confirmed cases and result in fluctuations in case counts. Canada, U.S. and European countries
advocate a two-tiered serologic testing including enzyme-linked immunosorbent assay followed by
Western blot which improves the specificity. Serologic testing is sensitive in very early stages of LD
but two-tiered serologic testing is much more sensitive in disseminated LD, where the bacteria that
cause LD have spread throughout the body [28]. Technical problems such as adoption of inadequate
cutoff levels, the presence of cross-reacting antibodies, and false positive reactions caused by some
autoimmune diseases could contribute to false-negative or false positive results [29]. Improvement
of the diagnostic methods such as criteria used for test specificity and sensitivity and interpretation
of the test for lab confirmation are important milestones for clinical diagnosis of LD.

The rise of annual reported human cases of LD argues for a better understanding of its
geographic scope. Targeted surveillance for ticks and the infectious agent is needed to identify
endemic locations as this knowledge is important in case definition, assisting clinical diagnosis and
vaccine deployment. Studying the ecology of the disease [2] is very important because there are
regional variations in the disease cycle. Identifying the individual drivers in different locations
might aid in implementing vector and reservoir targeted interventions as well as prevention and
control recommendations.

To our knowledge, this is the first comprehensive review on spatiotemporal patterns of LD
and the use of geospatial technologies to study interfacing populations of the reservoir hosts,
vectors and humans. While there is extensive literature which details the risk factors for LD and
spatiotemporal factors affecting ticks, the infectious agent, host species, habitat and human exposure,
a comprehensive review of GIS-based studies has not been conducted. This paper collates previous
and current GIS research to define methods currently employed that have been the most effective in
examining the spatial epidemiology of LD. Another goal is to determine additional methods that have
not been employed in GIS-based LD research but have been used to study other tick-borne diseases
that occur in conjunction with LD so as to also provide public health practitioners and policy makers
with the spatial tools for use in vector and reservoir targeted strategies against Lyme disease.

Recent Reviews

According to the review of Lyme disease epidemiology by Gerstenblith et al. [32], a myriad
of studies into symptomology, causes, and treatment of LD exist. However, there is only one
review on spatial aspects of LD transmission [33]. Killilea et al. focused on determinants of spatial
variation in human incidence rates, tick densities and tick infection prevalence at multiple spatial
scales [33]. They found that soil type, vegetation type and local host community affect vectors,
hosts, and pathogens and their interactions at finer-scale. At the meso-scale, landscape composition,
configuration and regional host community were found to play important roles. At coarser scales,
macroclimate and biogeography were found to be the determinant factors. They suggested future
research could focus on testing the effect of the same environmental variables at multiple scales.
They found that long term data collection could provide wide coverage of variable biotic and abiotic
conditions and consequently contribute to the progress made in identifying the determinants of
spatial variation in LD risk. They suggested more standardized data collection and analysis methods
given the current limitations of data collection and inconsistent methods of tracking human cases.
The only environmental variable they found consistent with increased LD risk and incidence was the
presence of forests. The percentage of land-cover edge consisting of adjacent forest and herbaceous
land-cover was a significant factor where humans frequently come in contact with infected vectors.
Factors effecting human behaviors that influence contact rates are least well understood and need to
be explored.
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Carver et al. has included a section on LD and other tick-borne diseases in their review of
the ecology and epidemiology of directly transmitted and vector borne diseases [34]. The review
concluded that most studies are short term and use season-specific climatic variables predicting
temporal changes in tick abundance and LD risk [35]. They suggested that with the use of tick
population monitoring programs over sufficient periods, a comparison of the fit of different climatic
models to the data could be better evaluated. The authors emphasized long-term monitoring of the
tick populations that are infected with zoonotic pathogens, and their most efficient reservoir host,
the white-footed mouse. The abundance of mice is highly predictable in association with acorn
production by oaks [36].

Donohoe et al. reviewed the literature concerned with LD and human risk factors [37]. They
concluded that there needs to be more research done on translating science into real world solutions.
In order to better understand the spatial reach of LD and risk maps, the tourism industry should
be involved as a stakeholder and take an active role in disease surveillance by monitoring and
reporting ground conditions at the tourism destinations. More research is needed to be done on
activity-based risk and perceptions of risk and known factors and their influence on individual’s
choice to engage in protective behavior. Research on the impact of LD upon the tourism industry
needs to be considered in terms of an employee health, travel choices and the economic sustainability
of tourism in LD-endemic areas.

Ogden et al. published a review in 2009 on the emergence of Lyme disease in Canada [38].
Their review concluded that Lyme disease is emerging in Canada because the range of I. scapularis is
expanding in the eastern and central provinces. They found that warmer temperatures and dispersion
of the ticks by migratory birds on animal hosts are the main factors for these vector establishments
in Canada. Field studies validate the fact that risk maps for the geographic occurrence of I. scapularis
are useful to identify areas where ticks are becoming established.

2. Methods

A literature search was conducted to identify recent articles discussing LD and the use of
GIS and risk modeling. Several online databases were queried, including Google Scholar, Journal
Storage (JSTOR), Cumulative Index of Nursing and Allied Health Literature (CINAHL), Web of
Science, ScienceDirect, and Public/Publisher Medline (Pubmed). The following key words were used
individually and in combination as inclusion criteria for articles to be considered for this review; LD,
tick abundance, spatial distribution of LD, geographic information systems. Our review covers a
25-year period, inclusive of GIS-based studies published since 1990; 1990 was chosen as the starting
point because the CDC recognized LD as a nationally notifiable disease and developed a national
case definition in 1991. Initial searches yielded approximately 27 results. The abstracts of these
publications were reviewed to confirm applicability. Studies that have used GIS and RS methods in
the exploration of LD epidemiology were selected. After considering additional exclusion criteria
(manuscripts with no GIS use, non-English language, manuscripts not available as full-text), 22
publications remained. Articles were summarized and grouped into six categories: Geographic
distribution of ticks, reservoir hosts and pathogens; trends in surveillance; prevention and human
behavior risk; climate change; population genetic analysis; and host-pathogen relationship. Table 1
presents these studies in detail under each category with GIS methods applied, study region and
date, data, host, vector, pathogens and common risk factors. The articles categorized in Table 1 under
Geographic distribution of ticks, reservoir hosts and pathogens; trends in surveillance; prevention
and human behavior risk were summarized under The Causal Explanation of LD Trends in the
Results section.

3. Results

The most compelling result arising from the published studies on exploring the ecology of Lyme
disease is its still being on the Public health research agenda and fairly intensively studied. Exciting
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things are taking place in terms of proactive vector surveillance, prevention and control programs.
More tick collection studies undertaken in response to the spatial expansion of Lyme disease. More
studies are conducted on patterns of global climate change and their possible impacts on Lyme
disease. Characteristics of these studies are summarized in Table 1.

Most studies attempt to quantify the associations between LD risk variables (e.g., vector,
pathogen, and host abundance and distribution) and environmental variables using the spatial
analysis capabilities of the GIS. Because ticks have limited mobility, their reservoir host range is
an important spatial determinant. Long term field monitoring of the host-seeking ticks in the host
range help define landscape predictors of LD risk. In places where field data are not available,
tick distribution is predicted based on a priori information about tick species ecology. RS/GIS are
powerful tools for enabling the prediction of LD risk. Ticks’ dependence on certain environmental
factors (i.e., climatic factors) are experimentally-verified through a priori approach. Predictive maps
of tick distributions are also produced by ad hoc statistical models (e.g., regression, discriminant
analysis, etc.), based on GIS-based data reflecting the relationship between occurrence and a number
of spatial covariates (i.e., vegetation, climatic, geological, and hydrological, soil types, host population
covariates). Spatial scale of the study matters in facilitating characterization of the landscape in terms
of vector and pathogen prevalence. Field data are usually collected over small areas; it is difficult
to scale up these observations to longer time periods or larger spatial scales. Pepin et al. should be
complemented on conducting a large scale study including 36 eastern states in the United States [5].
Pepin et al. found that the relationship of daily nymphal densities and human incidence was strongest
in high-prevalence areas, and varied by region and state due to the distribution of Borrelia burgdorferi.
They compared model-based predictions of indices with raw density indices. They integrated GPS
based field data into GIS-based density mapping and predictive models. Their study area included
2411 counties in 36 states at 8 km ˆ 8 km spatial scale. The estimated tick density indices explained
the variation of incidence better than the raw data because they account for effects of other factors
such as landscape fragmentations, spatial autocorrelation and weather that play key roles on tick
and pathogen distributions. Their findings verify that modeling risk based on habitat alone without
follow up data on the distribution of human cases and vectors could be misleading. The adequacy
of the environmental indices has to be tested by comparing the geographic distribution of risk areas
with both the distribution of vectors or human cases, and preferably both.

Vector establishment is an important factor for vector surveillance. One stage of the tick found
at one site could indicate recent introduction or poor micro-environment Finding all three stages
of the tick could indicate a population has been established [39]. Assessing potential non-endemic
areas with the necessary combination of environmental factors for established populations is a novel
approach. Guerra et al. applied this approach and studied the distribution of I. scapularis in the upper
Midwest and environmental factors affecting its establishment [40]. They adopted methodologies
from macro-level studies in Europe [22,41–43] and in the United States and Canada [44–46], which
used satellite, climatological and ecologic data to determine the vector tick habitats. Their GIS-based
environmental model was based on the hypothesis that tick abundance is an indicator of the
suitability of environmental conditions for reproduction and survival. Soil order and land cover were
the dominant contributors to tick presence. They constructed risk maps indicating suitable habitats
within areas where I. scapularis is already established.
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Table 1. Summary of studies with common risk factors.

GIS Analysis/Citation Region/Date Host, Vector, Pathogen Data Common Risk Factors

Geographic distribution

GPS based Field data integrated into
GIS, [5]. Zonal Statistics Spatial
Autocorrelation, Predictive modelling
Density mapping

36 Eastern States 2004–2006 Ixodes scapularis

County level Human Case reports to the
CDC as part of the national Notifiable
Disease Surveillance System (NNDSS)
Field-derived tick data.
Monthly vapor pressure, maximum daily
temperature.
Normalized vegetation index (NASA)
Elevation (USGS National land cover
database)

The distribution of B. Burgdorferi genotypes.
The estimated density of infected nymphs

Risk mapping, [40]
GPS based Field data integrated into
GIS, habitat analysis

Wisconsin, Illinois, Michigan 1996–1998 Ixodes scapularis white-footed
mice, chipmunks

Field-derived tick data.
Vertebrate collection.
Soil samples collection(top soil, leaf litter
thickness, slope, pH, soil texture).
Field-derived Forest Moisture Index Climate
data from NOAA (yearly and seasonal
precipitation).
Bedrock geology USDA Forest Service

Tick presence positively associated with
deciduous, dry to mesic forests, and alfisol
types of soils with loam-sand textures.
Tick absence associated with grasslands,
conifer forests, et/wet mesic forests, acidic
soils of low fertility and a clay soil texture,
Precambrian bedrock

Geostatistics [47]
Spatial autocorrelation Rhode Island Ixodes scapularis State-wide collected human incidence data

A highly significant spatial trend for
decreasing number of ticks and incident
cases of LD with increasing latitude.
Exposure to deer ticks and LD risk occurs
mostly in the peridomestic environment.

Space-time scan statistics [48] Virginia 1998–2011 N/A Census tract level count of LD human cases

Spatial expansion towards south and west
along eastern coast of the U.S.
Areas where education and surveilliance
needs are the highest

GPS based Field data integrated into
GIS, Density mapping, [49] New York Deer, mice, chip munks Growing season temperature, precipitation,

abundance of hosts and acorns
Risk associated with prior year’s abundance
of mice and chipmunks and acorns

Density surface mapping [50]
RS techniques
Supervised Classification

California Mendocino County I.Pacificus Field-dervied data: tree species, deer signs,
NDVI, sunlight, hydologic data

GIS-based environmental data could predict
nymphal density more accurately than
field-derived data

Density surface mapping [51]
Habitat analysis California Mendocino County I.Pacificus Climatic variables, habitat type, deer usage

on tick-related traits

A shift from peak nymphal densities
occuring in oak woodlands in spring to
redwood habitats in summer

Clustering [52]
Habitat analysis Middle Atlantic region of U.S. 1997–1998 I.Scapularis Land cover, distance to water, forest edge,

elevation and soil type
Clustered pattern along coastal plain of the
Chesapeake Bay

Spatial heterogeneity [53–55]
Spatial autocorrelation
Accuracy assessment

Species-habitat relationships.
Species-environment relationships

Spatial autocorrelation improves predictive
spatial models
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Table 1. Cont.

GIS Analysis/Citation Region/Date Host, Vector, Pathogen Data Common Risk Factors

Trends in Surveillance

Proximity Analysis, [56]
Geographicstratification techniques Czech republic 1997–2010 Ixodes ricinus

Human Population Migration and
Demographic changes from Czech statistical
office LD human cases

Population density, high incidence among
50–65 years old people and 10 years old
children.
Socio-economic transformation.
Amount of time people spent outdoors
Peri-residential distribution and home
vicinity

Clustering analysis [22]
Population density analysis Germany 2009–2012 Ixodes ricinus Notified cases of LD Clinical

LD manifestations
Urban areas, Forested areas and public parks.
Free-range livestock husbandry

Clustering analysis [57] Belgium 1994–2004 Ixodes ricinus Deer population density
Land Use, Forest cover

Human incidence, Roe deer population,
Forest cover, Population density, peri-urban
areas

Prevention behaviuor risk

Surveys [58] New York N/A Voluntary, anonymous questionnaire.
Participants having a family member with
LD were more likely to use preventive
behaviors

Cross-sectional [59].
Logistic regression New Jersey 1988 Ixodes scapularis Occupation Outdoor work

Geographic Stratification techniques [60] Missouri Ixodes scapularis Structured interview Park types Human Population density estimates

Climate Change

A Review of expert workshops,
Multivariate analyses and predictions
[61]

Wavelet-based time series analysis [62].
The Normalized difference water index
(NDWI).
Cluster Analysis of high disease risk.
Based on human cases

Belgium 2000–2010 Ixodes ricinus

Incidence, prevalance, distribution
of infections through various routes (vector,
rodent, water, food, air)

NDWI CORINE land cover map obtained
from European.
Environment Agency MODIS data (Moderate
Resolution Imaging Spectroradiometer)
obtained from Land Processes Distributed
Active
Archive Center

Proposed to build an integrated network for
environmental and epidemiologic data

LD incidence.
Vegetation greenness and moisture.
Local characteristics of vegetative systems.
Multiresolution analysis.
Lagged climatic effects, vegetation and
moisture related events spanning periods of
2 or more years

Wavelet-based time series analysis [63].
The Normalized difference water index
(NDWI).
Spatial autocorrelation
Voronoi polygons.
Cluster Analysis of high disease risk

Belgium 2003–2010 Ixodes ricinus

GDD (growing degree days) values
calculated for each season derived from
hourly temperature data from National
Climatic Data Center and Royal
Meteorological Institute of Belgium

Vegetated areas and frequent weather
anomalies.
GDD (Growing Degree Days) indicator of
heat accumulation.
Seasonal conditions affect the incidence

Global Climate Modelling [64] for two
greenhouse gas emissions Canada 1970–2000 I. Scapularis

Grid point data of projected daily maximum
and Minimum temperatures obtained from
two models:
CGCM2 (Coupled Global Climate Modelling
and Analysis) UK Hadley Center’s HadCM3
model

Annual degree days (DD > 0 ˝C), seasonally
variable temperature conditions.
A2: Increasing heterogeneous population,
fragmented economy, technology change;
B2: Intermediate levels of economic growth
and lower population growth
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Table 1. Cont.

GIS Analysis/Citation Region/Date Host, Vector, Pathogen Data Common Risk Factors

Global Climate Modelling [65] for two
greenhouse gas emissions Canada 2020s, 2050s, 2080s I. Scapularis

Minimum temperatures obtained from two
models: CGCM2 (Coupled Global Climate
Modelling and Analysis)

Annual degree days (DD > 0 ˝C), seasonally
variable temperature conditions.
A2: Range moved northwards by 200 km by
the 2020s and 1000 km by the 2080s;
B2: Projected expansion between 2050s and
2080s

Risk Mapping [1] Simulation Models.
Validation through field studies

Canada 1970–2000 Projected 2020s,
2050s, 2080s I. Scapularis

Field-derived tick and rodent data.
Vertebrate collection.
Human Population data at census-sub
division level obtained from Statistics
Canada.
Index numbers of ticks migrating on
migratory birds.
Percentage cover of forest habitat

Vector populations, ambient temperature,
number of nymphal ticks immigrating on
migratory birds and forest habitat cover.
Predicted temperature conditions and
emission scenarios

Population genetic analysis

GPS and field mapping [66].
Spatial expansion mapping [67] Virginia 2011 I. Scapularis Field derived tick data.

Molecular methods

Population genetic signals of nymphal I.
Scapularis.
Eastern most ticks with demographic
expansion but not spatial expansion.
Central and western tick populations with
spatial expansion

Host-pathogen relationship

Range expansion mapping [68].
Spatial structuring

European strains.
Chinese strains

B. garinni.
B. afzelii

Multilocus sequence analysis.
Historical populations of B. garinni and B.
afzelii

Geographic distances between collection
sites.
Rodent population expansions after the
glacial maximum

Prevalence mapping of antibodies [69].
Clustering

Northeast, Upper Midwest.
West Coast, U.S. B. burgdorferi

County residence of each dog tested by zip
code.
County level population data by U.S. census

Antibodies to Borrelia in dogs by zip code

Finer scale prevalence mapping [70] California B. burgdorferi
CALVEG 2000 (vegetation coverage obtained
from California Forestry and Fire protection).
Precipitation isohyetal polygons

Seropositive and seronegative coyote
locations,
Vegetation cover and rainfall

Vaccine deployment

GPS and field mapping [17].
Nymphal infection prevalance New York B. burgdorferi Field derived tick data

Significant decreases in tick infection
prevalence were observed within 3 years of
vaccine deployment.
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Nicholson and Mather even furthered this approach and examined the association among LD
in humans and the degree (engorgement) of nymphal blacklegged tick, Ixodes scapularis. They
demonstrated that exposure to deer ticks and LD risk occurs mostly in the peri-domestic environment
in Rhode Island [47]. They found a highly significant spatial trend for decreasing number of ticks
and incident cases of LD with increasing latitude. They incorporated geostatistics (e.g., Kriging), to
model spatial autocorrelation of tick densities. These findings were combined to create a model that
predicted LD transmission risk.

Most of these studies look at the spatial expansion of LD human cases to determine the areas
where vector surveillance is most needed. There is no standardized approach that considers where
and when vector surveillance should be done. Li et al. applied space and space–time scan statistics
to reveal the spatial and spatio-temporal clusters of LD [48]. They used finer scale census tract level
count data of LD human cases in Virginia from 1998 to 2011. Their findings confirmed a spatial
expansion towards the south and west in states along the eastern coast of the United States. They
concluded that these are the areas where education and surveillance needs are highest.

Temporal dynamics of reservoir host’s food and shelter conditions play a key role in tick
distribution. Ostfeld et al. researched the times of highest entomological risk for LD. They found
the strongest predictors of the risk for LD was based upon the abundance of mice and chipmunks
in the previous year, and the abundance of acorns from the previous 2 years. They concluded that
prior abundance of key hosts for the immature stages of the tick vector and existence of critical food
resources for those hosts determine the inter-annual variation in entomological risk of exposure to
LD [49]. They tested the significance of ambient growing-season temperature, precipitation, two
indices of deer (Odocoileus virginianus) abundance, and densities of white-footed mice (Peromyscus
leucopus), eastern chipmunks (Tamias striatus), and acorns (Quercus spp.), in predicting LD risk. Their
data were derived from 13 years of evaluation of several field plots within eastern deciduous forests
of New York State in the epicenter of U.S. LD.

For vector surveillance, recent studies have applied integration approaches that combine spatial
modeling using GIS and Remote Sensing with follow-up field-derived data models. RS enables
identification of tick habitats from multispectral images. The increasing supply of RS data have led to
wider applications of habitat modeling, and predictive mapping. Remotely sensed measurements
from satellites can provide large scale data with good spatial and temporal resolution, but they
require validation on the ground. Supervised and unsupervised classification of tick habitats is more
about the structural characteristics of vegetation (distribution of vegetation biomass horizontally and
vertically) rather than ground-based characterization (e.g., canopy cover, etc.). Studies first model
the host/vector behavior in relation to environmental and climatic conditions and project/predict
potential tick distributions under current climatic conditions. Then, the accuracy of GIS/RS-based
modeling are validated with field–derived data models [49–51]. Eisen et al. mapped the high-risk
areas of human exposure to LD by creating a continuous nymphal density surface for the entirety
of Mendocino County in northwestern California in 2004 through habitat classification and GIS/RS
models [50]. The resultant surface showed that 11.9% of the county was classified as habitat posing at
least moderate risk of human exposure to nymphs (>6.4 nymphs per 100 m2). They found high-risk
clusters in the central interior and most heavily populated region of the county, whereas low-risk
areas were in close proximity to coastal population centers. They used a supervised classification
model (uses a priori knowledge of the land-cover classes), based on multi-seasonal Landsat TM 5
images, to identify the key habitat of I. pacificus nymphs. They determined the density of nymphs in
62 woodland-leaf areas located throughout Mendocino County and explained the variation in
nymphal density based on field-derived data and observations (e.g., tree species present, deer signs,
or using GIS-based environmental data). Using July NDVI (a remotely sensed vegetation index
of plant “greenness”), November greenness, a coastal influence category, May solar insolation,
November hours of sunlight, and dominant hydrologic grouping as input variables, they could
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predict nymphal density 22% more accurately at 16 validation sites (r2 = 0.72) than their field-derived
data model (r2 = 0.50).

Two studies by Eisen et al. [51] and Bunnel et al. [52] examined the temporal (seasonal) patterns
and the spatial extent of variation in peak and cumulative densities of infected Ixodes pacificus
nymphs. Eisen et al. examined environmental characteristics such as climatologic variables, habitat
type, deer usage on the tick-related traits within the Mendocino County in California [51]. They found
the average durations of total and peak nymphal density were 31% and 82% longer, respectively, in
areas with conifers present than in oak woodlands, which represented the warmest and driest habitat
type. Their results revealed a shift from peak nymphal densities occurring in oak woodlands in spring
to redwood/tanoak habitats in summer.

Bunnel et al. [52] studied abundance patterns of the black-legged tick, Ixodes scapularis in the
Middle Atlantic region of the U.S. In 1997 and 1998, 663 adult I. scapularis ticks were collected from
320 transects spanning 66,400 km2 in five states of the Middle Atlantic region. They found clustered
patterns, with relatively high numbers along the coastal plain of the Chesapeake Bay, decreasing
to the west and south. There were significant associations between tick abundance and land cover,
distance to water, distance to forest edge, elevation, and soil type.

These studies found clustered patterns, but did not attempt to address the possibility of spatial
heterogeneity (the potential for environmental relationships to vary spatially) in species-habitat
relationships. The reservoir host-tick-human interaction in different environments cause a great deal
of variation in the distribution of LD within endemic zones. Wimberley et al., however, addressed the
possibility of spatial heterogeneity (the potential for environmental relationships to vary spatially)
in species–habitat relationships by delineating geographical zones with similar species-environment
relationships, which can then be used to stratify landscapes for the purposes of further predictive
modelling [53]. By incorporating spatial autocorrelation (the tendency for distributions to be
clustered in space) or spatial heterogeneity into predictive spatial models, environmental predictions
of the geographic distribution of reservoir hosts and vectors could be improved [54]. In a comparative
study, Wimberley et al. assessed the accuracy that is gained by applying spatial autocorrelation and
heterogeneity in LD risk mapping [55].

3.1. The Causal Explanation of LD Trends

The causal explanations of LD trends in North America varies based on study scale. The
current endemic areas of LD in North America at the regional level are northeastern United States,
Southeastern Canada, upper Midwest and coastal central and northern California. Counties with less
fragmented forest cover has shown strong positive relationship between human incidence and tick
densities, but urban counties with dispersed forests did not show that strong positive relationship [5].
In California, at the county level analysis, high-risk clusters were located in the central interior and
most heavily populated regions, whereas low-risk areas were in close proximity to coastal population
centers [51]. Finer scale analysis at the zip code level revealed isolated clusters of elevated LD
incidence in close proximity to forested areas in California [51]. Based on a finer scale analysis at
the census tract level, states along the eastern coast of the United States [36] and coastal plains had
higher incidence with increasing latitude in peri-domestic (peri-urban) environments [52]. These
result validates that high resolution incidence data is an important attribute of LD research because
it captures isolated endemic areas.

As in the case of North America, geographic scale also mattered in the causal explanation of
LD trends in Europe. LD infection rates increased by settlement size. Peri-urban areas with isolated
houses and forests contributed to the increasing trends in many parts of Europe. A recent Czech
study by Zeman and Benes [56] found that this trend is driven by increasing infections acquired at
or nearby a residence, and a noticeable extension of the prevalence season from earlier in spring
to later in autumn. They classified cases as “local” or “remote” depending on whether distance
between residence and place of infection exceeded a 5 km limit. Municipalities were classified
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by size according to the number of residents registered during the study period. Local infections
increased in the smallest (less than 500 inhabitants) and mid-sized (2500 to 25,000) settlements, in
contrast to largest settlements of 50,000 inhabitants. This shows that the growth is progressive in
expanding settlements compared to those experiencing population declines (all age cohorts, inclusive
of small children and the oldest seniors migrating predominantly out of cities). These peri-urban
locations have intense residential construction with new dwellings erected every day as a result of
the liberalized housing and real estate market after the political and economic transformations that
have taken place in the country. This process led to increased contact between the populations and
the tick habitats. The amount of time people spent outdoors around their homes has increased not
only due to adopting rural manor houses but also lifestyle changes.

Wilking and Stark [22] analyzed geographic patterns and time trends of notified LD cases in
Germany. They discovered that human infection was not restricted to forested areas but also occurred
in urban areas with public parks such as those in Frankfurt and Schwerin. Small-scale mapping
of cases in Berlin showed peripheral neighborhoods were less affected. LD incidence revealed a
pronounced seasonality starting in April, reaching the peak in July and declining in December. Urban
counties exhibited the highest incidence during the period of 2009 and 2012. The incidence was
highest in the cities of Frankfurt and Schwerin and lowest in Berlin.

LD infections exhibited a large linear increase in Belgium over the last decade. Linard et al.
studied the spatial distribution of LD in Belgium [57]. They found that the spatial distribution of
LD is highly clustered along a North-South axis, in the provinces of Antwerp, Brabant and Namur.
LD patients were georeferenced to the municipality where infection took place. They assumed the
municipality of infection that was recorded was the residence. They combined socio-economic and
environmental characteristics of municipalities in explaining the disease occurrence. The population
density and the proportion of developed areas determined the urbanization of municipalities.
Explanatory variables that were provided as input into their spatial model included host population
(roe deer) and forest cover, and the human population living in separated houses and the
socio-professional level of the population sampling. Their findings revealed that LD is associated
with recreational and peri-domestic outdoor activities in high income, peri-urban areas with isolated
houses and forests.

The causal explanation of LD trends were examined also by studies examining the behavioral
risk of exposure to tick-borne diseases focusing on regions endemic for LD [58], and among
individuals with occupational exposure [59]. Bayles et al. measured the preventive behaviors of
visitors to recreational parks in the St. Louis, MO area, an endemic area to tick borne diseases other
than LD [60]. They used geographic stratification techniques. They created 5 km radius buffers
around the perimeter of each site, and overlaid the buffers on a map of census blocks with population
estimates from the 2010 U.S. Census. Based on human population densities, they classified parks as
either suburban, exurban or rural. Results presented significant differences in behaviors across parks.
Those in exurban parks were more likely to perform frequent tick checks and use insect repellents,
while those in suburban parks were more likely to avoid tick habitats. On the other hand, those in
rural parks were less likely to avoid tick habitats.

3.2. Climate Change

Climate change is an important factor in the spread of LD because areas that are not currently
endemic may become so due to climate change. Climate may induce alterations in the spatial
distribution of LD and temporal LD incidence [61]. LD is a sensitive disease to climate change.
Warming, humidity and moisture are important factors of the biology of tick survival and dispersion.
Climate change can directly affect LD transmission by affecting ticks’ geographic range, increasing
rates of reproduction, affecting biting behavior, and shortening incubation periods of the pathogen.
These hypothesized effects have been tested by a number of studies that examined climate
change through climate change models, remotely sensed data and GIS. For example, Barrios et al.
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used vegetation greenness and moisture—the Normalized Difference Water Index (NDWI) as an
explanatory variable in the modeling of LD incidence in Belgium [62]. NDWI was selected as an
indicator of vegetation moisture because it expresses the contrast between the sensed reflectance in
the short wave infrared (SWIR), which diminishes as vegetation water content increases. Humidity
and soil moisture are important factors of tick ecology. They used Moderate Resolution Imaging
Spectroradiometer Sensor (MODIS) during the periods 2000–2010 and focused on Neufchateau and
Turnhout districts with epidemiological relevance. Wavelet-based time series analysis was employed
to assess timing connections between the events occurring in the habitat and disease incidence.
The vegetation and moisture related events spanning periods of 2 or more years were influential
in shaping the temporal LD incidence. A reduction of LD incidence was noticed in southern Belgium
as a consequence of the 2003 drought.

Barrios et al. further examined the links between climate, vegetation and LD by monitoring
vegetated areas and frequent weather anomalies in a subsequent study [63]. LD has been responsible
for major outbreaks in Belgium in the last decade and its risk could increase with climate change.
Growing degree days (GDD) values were derived from hourly temperature data and calculated
separately for spring, summer and autumn from Royal Meteorological Institute of Belgium. GDD
represents the cumulative effect of heat units and has been used for assessing the timing of various
biological processes. During their study period of 2003–2010, they assessed the temporal variability
of LD risk by computing vegetation indices from MODIS images and combining with meteorological
data. Their risk maps showed existence of spatial autocorrelation in disease risk and exhibited
cluster size changes. Two resultant northern and southern zones presented differences in their
landscape composition.

Three articles by Ogden et al. focused on potentially how far I. scapularis extend north into
Canada with climate change scenarios. Ogden et al. [64] mapped the geographic limits for I. scapularis
in Canada using annual degree days (DD > 0 ˝C), a good indicator of the seasonally variable
temperature conditions. They used two Global Climate Models; the Canadian CGCM2 and the UK
HadCM3 for two greenhouse gas emission scenario enforcements, “A2” and “B2”, defined by the
Intergovernmental Panel on Climate Change [65]. In scenario A2 the future world has increasing
heterogeneous population, fragmented economic growth and technology change. In scenario B2, the
future world has intermediate levels of economic development and a lower population growth rate
than A2.

In a follow up study, Ogden et al. [66] examined how the geographic limits for I. scapularis
establishment may change with climate change scenarios for three future projections: 2020s, the 2050s
and 2080s. They found that using either climate model, under scenario A2, the theoretical range of
I. scapularis has extended northwards by approximately 200 km by the 2020s, and 1000 km by the
2080s. Under scenario B2 reductions in emissions had little effect on projected range expansion up to
the 2050s. The projected expansion between 2050s and 2080s was less than that under scenario A2.

Ogden et al. [1] developed risk maps for the occurrence of the LD vector I. scapularis in Canada
under current and projected climate [1]. In order to calculate algorithms to estimate risk, they
combined simulation models of vector populations, ambient temperature, number of nymphal ticks
immigrating on migratory birds and forest habitat coverage. They mapped low, moderate and
high risk regions from 1970–2000 temperature normals to the 2080s using predicted temperature
conditions and emission scenarios. Risk maps were validated with field studies under current climate
conditions. An index of certainty of ticks was determined for each field site. Their novel approach
using information on the biology of vector survival and dispersion helps assess the spatial and
temporal risks for vector borne diseases that are not currently endemic but may become so due to
climate change.
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3.3. Population Genetic Analysis

Studies of phylogeographic analysis yields valuable insights into LD evolution/emergence and
seeks answers to the following questions: Does LD vary genetically over geographic and temporal
scales? Is transmission distance-related and varied seasonally in response to finer-scale microclimatic
and landscape characteristics? Two studies could identify signals of spatial and demographic tick
populations through population genetic analysis. Kelly et al. [67] studied the demographic and
spatial expansion of I. scapularis in Virginia through examining population genetic structure. They
found strong signals of both demographic and spatial expansion in Virginia and attributed that this
expansion may count for dramatic rise in human LD in the state. Eastern-most tick populations
showed demographic expansion but not spatial expansion in contrary to central and western tick
populations. This could be due to drops from migratory birds or imported from deer at nearby
coastal locations. Inability of detecting differences in genetic diversity among sites could suggest that
ticks may not be dispersal-limited. There is potential for differences in host preference and questing
behavior among different I. scapularis populations in Virginia. They are likely to have originated in
the South and then radiated upon populating northern forests following the retreat of glaciers [68].

3.4. Host-Pathogen Relationship

Host-pathogen relationship is an important relationship to study in LD epidemiology because
LD could involve the same agent but different ticks and hosts in different regions. This could lead
to regional variations in the LD transmission cycle. LD cycle could be maintained in wildlife but
might not transmit to humans because of the biting preference of certain ticks. Vollmer et al. [69]
studied the level of geographic structuring of populations of LD group species (burgdorferi species
group) to determine if they are consistent with patterns of dispersal of their different vertebrate
host groups. They specifically studied the bird-associated species B. garinii and rodent associated
B. afzelii populations. They analyzed Borrelia isolates from England, Scotland, Latvia, Germany,
Switzerland, France and China, and compared European strains to Chinese strains. They plotted rank
pairwise genetic distance between strains against the rank geographic distance between collection
sites using Spearman’s rank correlation. The European correlations were found to be significant.
Results demonstrated range expansions of B. garinii and B. afzelii populations in Europe in the distant
past. In response, they proposed that the expansion of B. afzelii in Europe might be linked to rodent
population expansions after the last glacial maximum. Strains have expanded and spread out of a
refuge in the distant past with their rodent hosts.

Bowman et al. studied LD caused by infection with the Borrelia burgdorferi in dogs [70]. They
mapped antibodies to Borrelia in dogs by aggregating each dog tested to postal zip code into counties
and states in the United States. Percent positive test results were calculated by dividing the number
of dogs reported positive for Borrelia burgdorferi by the total number of dogs tested. The prevalence
map showed the most likely clusters in the coastal Northeast, upper Midwest and West Coast.
Hyper-endemic areas with positive rates greater than 40% were clustered in Northeast and Midwest.

Foley et al. examined spatial and temporal relationships among B. burgdorferi-exposed coyotes
with vegetation type and climate in California [71]. Coyotes are well distributed in various
ecosystems in California and inhabit both peri-domestic and wild land. They looked for associations
of seropositive and seronegative coyote locations with vegetation cover and precipitation layers
in the GIS environment. Their spatial analysis showed a non-random pattern of seropositive
coyotes with increased seropositivity in blue-oak foothill pine, montane hardwood and redwood
vegetation regions, and decreased seropositivity in coastal sagebrush and cropland. Increased
rainfall was associated with higher seropositivity of B. burgdorferi. They found increased exposure to
B. burgdorferi in blue oak woodlands. The findings of this finer scale study provided valuable insight
on host-pathogen relationship and tick-to-human transmission at local ecological processes.
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3.5. Vaccine Deployment

Breaking the LD transmission cycle starts in the wild by targeting the reservoir host. There
are very few published accounts of GIS and GPS utilization in host-targeted methodologies being
detailed for vaccine deployment in LD epidemiology. Transmission risk declines with increasing
distance between susceptible host and the pathogen source. Understanding current conditions
of spatial interaction between hosts and vectors and the spatial distribution of these organisms
would help predict future distributions and facilitate better vaccine deployment. Simple applications
might involve determining the location of sampling sites, plotting maps for use in the field studies.
More complex applications take advantage of GIS-based suitability modelling to determine the
best locations for bait stations containing a pesticide-delivery system. A study by Richer et al.
found that significant decreases in tick infection prevalence were observed within 3 years of vaccine
deployment [17]. In a prospective 5-year field trial, they showed that oral vaccination of wild
white-footed mice resulted in outer surface protein A-specific seropositivity that led to reductions
of 23% and 76% in the nymphal infection prevalence in a cumulative, time-dependent manner (2 and
5 years, respectively), whereas the proportion of infected ticks recovered from control plots varied
randomly over time. Significant decreases in tick infection prevalence were observed within 3 years
of vaccine deployment. Their results suggest that implementation of such a long-term public health
measure could substantially reduce the risk of human exposure to Lyme disease.

4. Conclusions

Several conclusions emerged from this review. First of all, understanding Lyme disease starts
with identifying its spatial characteristics. Spatial analysis of LD contributes to epidemiologic
knowledge of exposure to infected ticks which informs diagnostic testing and assists clinicians in
the accurate diagnosis of LD. Spatial analysis provides high levels of insight into understanding the
conditions under which ticks spread, risk areas could be highlighted and environmental and climatic
factors behind the prevalence of LD could be determined.

Specifically, the distribution of B. Burgdorferi genotypes, the density of infected nymphs [5]
and the presence of forests [56] were found to be consistently associated with increased LD risk
and incidence. Heterogeneous landscapes with fragmented land use mixing forests and houses are
associated with higher risk and incidence than other landscapes [56]. Some forests exhibit higher LD
risk and incidence than others. For example, tick presence is positively associated with deciduous,
dry to mesic forests. Contrary, tick absence associated with grasslands, conifer forests, wet/wet mesic
forests [40].

Alfisol types of soils (semi-arid to humid areas, typically under a hardwood forest cover) with
loam-sand texture had a positive correlation with tick presence. Tick absence was associated with
acidic soils of low fertility and a clay soil texture [40].

Some findings were related to seasonal variations such as a shift is observed from peak nymphal
densities occurring in oak woodlands in spring to redwood habitats in summer in California [51]. LD
Risk is associated with prior year’s abundance of mice and chipmunks and acorns in eastern United
States [49].

Lagged climatic effects, vegetation and moisture related events spanning periods of 2 or more
years had an impact on LD risk [62]. Local characteristics of vegetative systems such as vegetation
greenness and moisture, frequent weather anomalies, seasonally variable temperature conditions
(Growing Degree Days; Annual Degree Days) had an association with higher incidence [63]. Vector
populations, ambient temperature, number of nymphal ticks immigrating on migratory birds and
forest habitat cover are associated with higher incidence in Canada [1].

Current LD research also focused on potentially how far ticks extend north into Canada with
modelling climate change scenarios. Given the scenario of increasing heterogeneous population,
fragmented economy, and technology change, there were observable and reported changes in the
range of I. scapularis and LD cases in Canada moving northwards 200 km by the 2020s and 1000 km
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by the 2080s [64]. Given the scenario of intermediate levels of economic growth and lower population
growth it is projected to expand between 2050s and 2080s [66]. These changes were due to an increase
in temperature and seasonally variable temperature conditions. Warming climate trends affect ticks’
geographic range and increasing rates of reproduction [66]. Tick populations are highly sensitive to
temperature at multiple life stages but nymphal stage is most relevant for transmission of agent to
humans. The timing of nymphal host seeking is correlated with ambient temperatures and humidity.
Warmer weather encourages outdoor activities and, therefore, the chance of encounters between
infected ticks and humans increases.

Based on a study in Rhode Island [47], occurrence of plant communities (forests) suitable for
sustaining vector populations was not predictive of Lyme disease risk. Instead, a highly significant
spatial trend was observed for decreasing number of ticks and incident cases of Lyme disease with
increasing latitude [47]. Population genetic analysis results confirm that in the United States, eastern
most ticks exhibited demographic expansion but not spatial expansion but central and western
tick populations exhibit spatial expansion [67,68]. Rodent population expansions after the glacial
maximum had an impact on geographic distribution of LD incidence [69]. Vegetation cover and
rainfall are associated with seropositive and seronegative coyote locations in California [71].

Exposure to deer ticks and LD risk occurs mostly in the peri-domestic (peri-urban)
environment [40]. In Eastern Europe, countries (i.e., Czech Republic) with political and economic
transformations had LD risk in peri-residential areas by the vicinity of newly constructed homes [56].
High incidence was observed among 50 to 65 years old people and 10 years old children [56]. Amount
of time spent outdoors in these new economies had an impact on LD incidence. Based on a US study,
participants having a family member with LD were more likely to use preventive behaviors [58].
Outdoor work [59] and human population density estimates are associated with higher incidence [60].
In parts of Europe (i.e., Germany), urban counties with forested areas and public parks exhibited
highest incidence. In the United States, human incidence is higher in low—than in medium—density
residential developments [2]. LD expands towards south and west along eastern coast of the U.S.
There is a clustered pattern of LD incidence along coastal plain of the Chesapeake Bay. Rural
landscapes are associated with higher incidence [52]. Areas with education and surveillance needs
are the ones with the highest LD risk [48].

Another important conclusion was that Reservoir-targeted vaccine development appears
effective in preventing tick transmission [72]. Sustained deployment of vaccines can decrease risk
exposure to LD to all potential reservoir species over time. Implementation of a long-term vaccine
development as a public health measure could substantially reduce the risk of human exposure to
Lyme disease [17].

The breath of GIS applications and approaches applying spatial analysis techniques to LD
epidemiology varied in the reviewed studies. One finding was very interesting that GIS-based
environmental data could predict nymphal density more accurately than field-derived data [50].
Some studies were follow up field studies integrating GPS based field data into GIS [5,17,40,49,67].
Variety of data were mapped, such as tick densities, pathogen genotypes, human incidence and
population demographics, host and vector habitats. Variety of mapping approaches were applied
such as density surface (tick) mapping [5,49–51], risk mapping [1,40], population (human) density
mapping [22], spatial expansion mapping of population (pathogen) genetic signals [68], range
mapping of rodent populations and prevalence mapping of antibodies [68,71] and prevalence of
nymphal infection [17]. Some studies used GIS to analyze and model habitats. GPS-based field
data were integrated into a GIS for habitat analysis. They used land cover data, proximity measures
(distance to water, forest edge), soil variables (soil types, soil texture, soil Ph), leaf litter thickness,
slope and elevation data, and forest cover (tree species, forest types). Density surface mapping,
zonal statistics, predictive modelling, and geostatistical tools were commonly used to perform spatial
analysis [38,40,51,52]. Spatial variability in land cover, soils, and geology affect habitat suitability
for vector species. Predictive modelling studies of tick and host distributions have applied spatial
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interpolation, spatial modeling and spatial clustering techniques based on environmental indicators.
Spatial autocorrelation improved predictive spatial models [53–55]. Risk maps are developed by
vegetation cover, moisture and temperature variables derived from satellite imagery.

To model and project the related potential alterations in climate change on the distribution
of ticks, data sources from NASA, USGS, CDC, NOAA and (climatic and environmental data) are
utilized in the development of spatial models. Monitoring tick abundance provides epidemiologically
relevant information as well as tick absence so that statistical methods and predictive models
can reveal the relationships of biological distributions with climate covariates. Maximum daily
temperature, growing season temperature, annual degree days (DD > 0 ˝C), growing degree days,
monthly vapor pressure (humidity measure), yearly and seasonal precipitation were the variables
used to model and project the related potential alterations in climate change on the distribution of
ticks. In order to test the hypotheses of the connections between climate and LD, wavelet-based time
series analysis, and spectral indices, such as the Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI) are routinely used as remotely sensed measures
of vegetation greenness and moisture. Spatial interpolation of climate data have been investigated
as complementary approaches to predict spatial variations in frequent weather anomalies such as
monthly climate.

There are a number of potential issues and limitations of spatial analysis on Lyme disease. Cases
are reported on the basis of the patient’s residence rather than on the location in which the exposure
occurred. Therefore, Lyme disease in a traveler returning from an area in which the disease is highly
endemic cannot be construed as evidence of local transmission. Spatio-temporal component could
provide misleading results because of the movement of the population between the time of infection
and the onset of symptoms [73]. Inconsistent methods of tracking human cases (e.g., as case numbers
rather than incidence or incidence rates) and incomplete disease reporting of confirmed cases could
result in fluctuations in case counts and reported rates, which in many instances vary between
provinces or states within a country. Over-reporting in non-endemic areas and under-reporting
in endemic areas could cause spatially biased results [74]. More standardized data collection and
analysis methods are needed given the current limitations of data collection and inconsistent tracking
methods. National, provincial, and municipal boundaries are used for counts of human cases as part
of notifiable disease surveillance systems for mapping human incidence data. These administrative
boundaries are arbitrary boundaries that do not coincide with biologic boundaries. This presents a
potential problem since biologic boundaries contain ecological conditions of habitats, which affect the
distribution and density of vectors and host animals involved in the transmission.

One of the drawbacks of researching LD epidemiology is that there are still not good baseline
data sets available on vector surveillance. Ground-verifying field studies are time-consuming and
expensive. Empirical data on tick density and tick infection rates are difficult to collect for large
areas. Therefore, there are very few large scale studies researching the geographical variation
in the relationship between human case surveillance data and tick densities [5]. Region-specific
standardized data collection and analysis approaches are needed to identify the determinants of
spatial variation in LD risk and incidence. For example, socio-cultural factors, recreation activities,
demographics and urbanism patterns influence humans and in turn, occurrence of LD cases. The
times of highest entomologic risk determine when best to do vector surveillance. Though factors
affecting the entomological risk are location dependent. Local weather patterns (e.g., temperature,
humidity) are influential for tick survival. Potential reservoir-hosts for the North American LD
system are rodents (e.g., white-footed mice, eastern chipmunks) and their abundance are strongly
affected by their habitat variables including abundant food, forest cover and nesting site conditions.
These factors affect the reservoir host-tick-human interaction and consequently cause a great deal of
variation in the distribution of LD within endemic zones.

For future implications, efforts to model climate change with more sophisticated remote sensing
data will improve our understanding of LD transmission cycles, identify risk areas and assess
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their characteristics. Using satellite imagery, geographic information systems, and spatial statistical
methods in conjunction with ground-verifying ecologic studies and LD case surveillance data is
a promising development in LD research. Since LD transmission depends on complex ecological
systems involving more than one agent, vector, host and regionally variable, spatial analysis of LD
should adopt complementary approaches to geography, GIS and spatial epidemiology from many
other disciplines including ecology, entomology, zoology, climatology, and virology.

Future research should also focus on long-term data collection which provides wide coverage of
environmental and climatic, biotic and abiotic variables and consequently contribute to the progress
made in identifying the determinants of spatial variation in LD risk. The geographical and annual
variation in the timing of human Lyme disease can be largely explained by weather conditions. Many
GIS and RS based spatial models are developed for this. As availability of seasonal (temporal) and
long term spatial data increases, the quality and accuracy of GIS and RS methods improve, so does
the effectiveness of spatial analysis.

The significant variability in seasonal as well as spatial risk of exposure to LD within small, but
ecologically diverse geographic areas shows that temporally dynamic and spatially explicit models
are needed to assess the risk of exposure to tick-borne pathogens at spatial scales encompassing
diverse climatologic or ecological conditions. Scale matters in predictive models. Variables with
small spatial variance (i.e., macro-climatic conditions) in small areas have nearly no predictive value,
whereas diversified variables (i.e., vegetation type) have limited value in large-scale studies. This
aspect highlights the significance of multi-resolution analysis and long term monitoring studies for
possible lagged climatic effects on the geographic distribution of vector populations. We need high
resolution (finer scale such as Zip Codes) human incidence data to help reveal isolated endemic areas.
New GIS and RS-based studies are needed to monitor occurrence at the macro-level, and GPS-based
field studies help pinpoint areas of occurrence at the micro-level where spread within populations of
reservoir hosts, clusters of infected ticks and tick-to-human transmission may be better understood.

Modeling risk based on habitat alone without follow-up data on the distribution of vectors and
human cases would not be valid without testing the adequacy of these variables. Therefore, robust
field studies are needed to validate and refine the risk maps. These risk maps can lead to new
endemic areas. Surveillance methods could be targeted for tick vectors in these expanded regions.
Spatial models that use coarse scales and general climate and vegetation indexes fail to capture the
complex relationship between tick activity and its field environment [75]. Ground-verifying ecologic
studies and acarological follow-up studies are crucial for effective control measures. Laboratory
studies and spatial entomological and ecological risk models might show clear relationships between
climatic variables (i.e., relative humidity) and tick survival but follow-up field studies might produce
conflicting results. Host abundance patterns might have not been accounted for within field studies
and could provide a limitation for verification of findings [76].

For future applications, more efficient control measures could be implemented with the aid
research outcomes from spatial analysis. GIS and spatial analysis could take a role in the optimal
distribution strategies of the vaccines, such as locating bait stations containing a pesticide-delivery
system. To reduce vector-tick populations and human-tick encounters, by means of host-targeted
methods, new GIS-based suitability models should be developed for effective vaccine deployment.
Future developments will further enhance the novel use of GIS merging data from various sources
into an end-product tailored specifically to vaccine deployment.

Spatially comprehensive studies are needed on strategic implementation of the intervention in
LD endemic areas. An important conclusion pertaining to human populations considers that people
living in areas where LD was not thought to be endemic may also be at risk for infection. New
prevalence studies should be conducted on newly identified areas of endemicity.

Policies directing public health objectives in minimizing risk from LD could also include
partnering with the tourism sector in disease surveillance by monitoring and reporting field
conditions at high risk recreation areas. More inter-sectoral initiatives could be established to assess
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health implications of other sectors’ climate change policies, such as urban planning, transport,
energy supply, food production and water resources.
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