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Abstract: Food and drinking water are poorly delineated sources of human exposure to 

chemical food mutagens and endocrine-disrupting chemicals. In this study, we investigated 

the presence of mutagens and chemicals exhibiting estrogenic activity in the daily diet of 

Nigerians, using in vitro assays. Commercially processed foods or snacks and various 

brands of pure water sachets were extracted by solid-phase extraction and liquid-liquid 

extraction, respectively. Mutagenicity was determined by the conventional Ames test and 

two complementary assays on two strains of Salmonella (TA 100 and TA 98),  

while the estrogenic activity was assessed by a yeast bioluminescent assay, using two 

recombinant yeast strains (Saccharomyces cerevisiae BMAEREluc/ERα and S. cerevisiae 

BMA64/luc). A third of the food varieties investigated (chin-chin, hamburger, suya and 

bean cake) were mutagenic in all three assays, either in the presence or absence of S9 mix. 

Of the packed water samples, five out of the sixteen investigated (31%), were found to be 

estrogenic, with estradiol and bisphenol A equivalents ranging from 0.79 to 44.0 ng/L and 

124.2 to 1,000.8 ng/L, respectively. Hence, although the current situation in Nigeria does 

not appear to be substantially worse than, e.g., in Europe, regular monitoring is warranted 

in the future. 
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1. Introduction 

Food and drinking water are major sources of human exposure to both mutagens and  

endocrine-disrupting chemicals (EDCs) globally [1–7]. This is alarming in view of the fact that food 

and water are prerequisites of human life. 

The sources of chemical mutagens in food vary remarkably, depending on the foodstuff and 

processing methodology. However, emphasis has traditionally been placed on reducing the levels of 

possible mutagenic residues in meat, grain, vegetables etc. prior to processing, neglecting the 

possibility of a less clear-cut risk: the formation of these mutagenic compounds in food as a result of 

processing. Yet, processed food items are reported to contain chemical substances known to have 

mutagenic, genotoxic and carcinogenic effects, and thus acting as a key global contributor to human 

cancer risk [8–11]. Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines have been 

reported in processed food (mainly meat and fish products) at various concentrations all over the  

world [12–15]. The formation of these chemical mutagens during food processing has been 

demonstrated to depend on a number of factors such as cooking time, method of cooking and type of 

heat source [3,8,12]. For example, the Ames test shows a correlation between meat-processing 

temperature and the number of revertants generated per gram of meat [3,4]. Chung et al. [12] also 

reported that charcoal-grilled pork contained higher levels of PAHs (10.2 µg/kg) compared with other 

methods of processing. Likewise, high concentrations of PAHs have been found in smoked-cured  

fish in Ghana [13] 

The contamination by mutagenic PAHs of thermally treated high-protein foods such as charcoal-grilled 

meat products is mainly due to the direct pyrolysis of food fats and the deposition of PAHs from smoke 

produced through incomplete combustion of the thermal agents [16]. Unfortunately, this method of 

food processing is the method of choice in most developing nations, including Nigeria.  

Although knowledge of proper processing techniques would help reduce the risk of generating 

mutagenic compounds in food, a recent study showed that only 4.76% of 63 subjects involved in food 

processing in Nigeria had a formal training in a food safety/hygiene-related discipline [17].  

Similar percentages have also been reported in Kenya and Ghana [18,19]. 

Regarding EDCs, the bulk of information available is on compounds possessing estrogen-like 

activity. Phytoestrogens and food contact materials are the main sources of human exposure to 

xenoestrogens in food [20–22]. While the health effects of phytoestrogens remain controversial, 

synthetic xenoestrogens have been associated with certain cancer types, reproductive disorders, 

developmental abnormalities and other adverse physiological effects in both humans and wildlife [23–25]. 

In this light, it is quite worrisome that drinking water sources as well as bottled mineral and flavored 

waters have been reported to contain estrogenic substances [5–7,26]. The estrogenic activity in bottled 

mineral and still water is mainly attributed to the prevailing use of several phthalates and other 

plasticizers including bisphenol A in packaging materials [5,6]. These chemicals are increasingly 
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raising concern, because they may leach into consumer products in normal use [27–29]. There are over  

50 chemical compounds authorized for use in food contact materials which are known to have  

endocrine-disrupting potential [30]. Interestingly, when food contact materials are assessed for their health 

risk, they are not routinely tested for their endocrine-disrupting potential [31]. However, the Endocrine 

Society has expressed its concern about the widespread exposure of humans to these chemicals,  

as they are capable of affecting multiple endpoints within a living system [32]. 

Chemical mutagens and EDCs in food and water samples have usually been determined by various 

methods of analytical chemistry. However, these methods suffer from a number of limitations in their 

ability to elucidate the entire range of chemical mutagens and EDCs in a single experiment, including 

an unknown number of yet-to-be identified compounds. In vitro assays offer the advantage of detecting 

all substances that contribute to the functional property (mutagenicity or estrogenic activity) being 

assessed in food, water and environmental samples. Therefore, in the present study, we sought to 

determine the genotoxic and estrogenic properties of food and water samples by in vitro assays.  

We focused on Nigerian products, because the customary food processing methods there are 

potentially risky in this regard (see above) and because, to the best of our knowledge, such information 

does not yet exist in the body of scientific literature. 

2. Materials and Methods 

2.1. Materials 

All chemicals used in this study were of analytical grade. The NADP and glucose-6-phosphate  

used were obtained from Roche Biochem (Stockholm, Sweden). Aroclor-induced S9 from rat liver was 

purchased from Trinova Biochem (Giessen, Germany). Histidine, potassium chloride, magnesium sulfate, 

potassium phosphate dibasic anhydrous and sodium ammonium phosphate were purchased from 

Merck AG (Darmstadt, Germany). Magnesium chloride hexahydrate and citric acid monohydrate were 

acquired from VWR international (Leuven, Belgium). Biotin, tryptophan, methylcellulose (MC), 

dimethyl sulfoxide (DMSO), benzo[a]pyrene, 2-aminoanthracene, sodium azide, estradiol, bisphenol A, 

progesterone and testosterone were purchased from Sigma-Aldrich (Steinheim, Germany).  

D-Luciferin was obtained from Biotherma (Handen, Sweden). Yeast nitrogen base medium without 

amino acids was obtained from Becton Dickinson (Franklin Lakes, NJ, USA). 

2.2. Microorganisms 

The bacteria, Salmonella enterica sv. typhimurium strains TA 100 and TA 98, were obtained from 

Pasteur’s Institute (Paris Cedex, France). Two recombinant yeast strains Saccharomyces cerevisiae 

BMAEREluc/ERα and S. cerevisiae BMA64/luc [33] were used in this study. In the yeast bioluminescent 

assay, BMAEREluc/ERα served as a reporter strain, in which the ERα is expressed. Upon ligand binding, 

the dimerized receptor binds the estrogen response elements in the promoter region of the luc reporter 

gene. In S. cerevisiae BMA64/luc, luciferase is expressed constitutively, and this strain was used  

for determination of cytotoxicity of the test samples. Both yeast strains are kind gift donations by  

Dr. Johanna Rajasärkkä of the Department of Food and Environmental Sciences, Faculty of Agriculture 
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and Forestry, University of Helsinki, Finland. Yeasts were grown on Difco Yeast Nitrogen Base medium 

without amino acids, supplemented with 40% glucose and their respective amino acids. 

2.3. Cell Line 

Human hepatocellular carcinoma-derived cell line (HepG2) was obtained from American Type 

Culture Collection through LGC standards (Boras, Sweden) and cultured in Eagle’s Minimum Essential 

Medium (LGC standards) containing 10% heat-inactivated fetal bovine serum (Sigma-Aldrich, Steinheim, 

Germany). The cells were maintained at 37 °C in a humidified atmosphere of 5% CO2 in air atmosphere 

incubator (NuAire Inc., Plymouth, MA, USA). 

2.4. Sampling and Sample Preparation 

A total of 36 samples (3 lots of 12 varieties) representing commonly consumed, commercially 

processed food items in Nigeria were evaluated for their mutagenic potential. All varieties were 

obtained from different vendors since no quality control is carried out in the production of these food 

items. Moreover, equivalent food products obtained from the same manufacturer have been previously 

reported to vary in their mutagenic potential [2,4]. Since the major source of xenoestrogens in processed 

food items are phytoestrogens and food contact materials, and all our food samples were informed to 

be free of soy (a highly significant source of phytoestrogens) and mostly unpackaged, we targeted 

water samples as possible sources of exposure to EDCs. Sixteen sachet pure water samples sold in 

Benin City metropolis, Edo State, Nigeria were acquired for the purpose of this study. Food samples 

were extracted by solid phase extraction method [4], while possible estrogenic compounds were 

extracted from the water samples (1000 mL each) by liquid–liquid extraction as described by [34]. 

The final extracts were concentrated to approximately 2 mL using a rotary evaporator, and the 

concentrates were shipped on ice to the Department of Food Hygiene and Environmental Health, 

Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland. Upon arrival, samples were 

further concentrated to dryness under nitrogen. Food samples were reconstituted in DMSO, while water 

samples were reconstituted in 5% ethanol for in vitro analyses. Food packaging materials were 

extracted for possible estrogenic activity as described previously [1]. 

2.5. Cytotoxicity Assays 

The cytotoxic effect of the concentrations of food extracts used in this study was investigated by 

two independent assays measuring trypan blue exclusion and lactate dehydrogenase (LDH) activity as 

previously described [2]. Briefly, HepG2 cells were grown in 24-well plates (VWR, Finland) for 48 h, 

and further exposed to different concentrations of food extracts for 4, 24 or 48 h. After exposure,  

the cells were trypsinized and centrifuged for 5 min at 2500 rpm. Pellets were then resuspended in 

PBS, after which 10 µL of the cells were mixed with 5 µL (0.8 mM) trypan blue dye for microscopic 

observation. LDH activity was performed according to the instructions provided in the Cytotoxicity 

Detection KitPLUS (LDH), version 6 (Roche Biochem, Stockholm, Sweden). 
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2.6. Mutagenicity Assay 

The mutagenic potential of food extracts was initially determined by the standard plate incorporation 

assay. Samples showing mutagenic potential in this assay were subsequently subjected to “treat-and-wash” 

as well as methylcellulose overlay assays to ascertain to what degree a localized release of proteins, 

peptides or histidine from the samples contributed to the outcome. 

2.6.1. Standard Plate Incorporation Assay 

The standard plate incorporation assay was performed as described by Maron and Ames [35] using 

Salmonella strains TA 100 and TA 98 with and without metabolic activation (S9 mix). The amount of 

S9 used in the S9 mix was 10%. Water and DMSO were used as negative controls for both strains 

while sodium azide (0.04 mg/mL) and 2-aminoanthracene (0.02 mg/mL) served as positive controls for 

TA 100 and TA 98, respectively. Benzo[a]pyrene (0.1 mg/mL) was also used as a positive control for 

both strains. The volume of controls used was 50 µL/plate in triplicate plates. Sodium azide is a known 

direct mutagen in Salmonella TA 100 [36], whereas 2-aminoantracene is metabolically activated by 

mono-oxygenases of the CYP1A family in rat liver [37]. Likewise, benzo[a]pyrene requires metabolic 

activation for mutagenicity [38]. 

For all samples, four different concentrations of the food extracts (25, 50, 100 and 200 mg/mL) 

were tested in triplicate plates (50 µL/plate). The highest concentration (200 mg/mL) was equivalent to 

1 g of the food sample. The plates were incubated at 37 °C for 48 h. 

The results of the mutagenic activities are presented as the number of revertant colonies per gram of 

food sample. Only the mean and standard deviation of the highest concentration for all food extracts 

are shown. 

2.6.2. Treat-and-Wash Assay 

The treat-and-wash assay was conducted according to the method described by Thompson et al. [39]. 

The protocol applied was as per the standard plate incorporation assay with the exception that the S9 

mix, bacteria and sample extract were incubated for 90 min prior to the addition of molten top agar. 

Briefly, a 500 µL aliquot of S9 mix/phosphate buffer (0.2 M, pH 7.4) was combined with 100 µL each 

of late-log bacterial culture and sample extract solution in a sterile 15 mL tube. The mixture was 

incubated for 90 min in a mechanical shaker (180 rpm) at 37 °C. The extended duration of bacterial 

exposure compensated for the absence of bacterial exposure on plates, as the test sample was washed 

away prior to plating. After a 90-min preincubation, 10 mL of wash solution (Oxoid No. 2 nutrient 

broth in phosphate-buffered saline (1:7 v/v)) was added, and the washed bacteria were collected by 

centrifugation at 2,000 g for 30 min. All but approximately 700 µL of the supernatant was removed and 

discarded, and the bacteria were resuspended in the residual supernatant prior to plating via top agar. 

2.6.3. Methylcellulose Overlay Assay 

Methylcellulose overlay assay was performed as previously described [39]. Briefly, a 500 µL 

aliquot of S9 mix/phosphate buffer (0.2 M, pH 7.4) was combined with 100 µL of late-log bacterial 

culture in a sterile 15 mL tube. A 2 mL aliquot of the MC overlay suspension was added to the tube, 
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and a 100 µL aliquot of the sample extract solution was added immediately afterward. The mixture 

was overlaid on a pre-warmed (37 °C) minimal glucose plate. Plates were held at 4 °C for 1 h after 

plating to ensure gelling of the MC overlay, and subsequently incubated (not inverted) at 37 °C for  

48–72 h. The MC overlay was prepared on the day of the test, and the mixture was stirred at 50–60 °C 

throughout use. 

2.7. Yeast Bioluminescent Assay 

The yeast bioluminescent assay was performed as previously described [1]. Estradiol and bisphenol 

A were used as positive controls, while progesterone and testosterone served as negative controls. 

2.8. Statistical Analysis/Interpretation of Data 

The mutagenic potency of each food sample was determined from the slope of the linear portion of 

the dose-response curve by linear regression analysis using the software program Prisma 4.0  

(GraphPad software Inc., San Diego, CA, USA). In addition to the requirement of a statistically 

significant (p < 0.05) dose-response effect, only those samples were considered mutagenic whose 

highest test concentration generated at least twice as many revertants as the negative control (DMSO). 

For proper interpretation and clarity, the number of revertants obtained was compared with both their 

experiment-specific controls and aggregate controls across all experiments. The p values of these 

comparisons in the tables are derived from the regression analyses. In the estrogenic activity assays, 

the fold induction, fold induction corrected (FIC) and limit of detection (LOD) were calculated as 

described previously [33]. The sigmoidal dose-response curves for increasing concentrations of 

estradiol and bisphenol A were obtained using Prisma 4.0. The estradiol and bisphenol A equivalents of 

food samples showing estrogenic activity were calculated from probit transformation of the curves. 

3. Results 

3.1. Plate Incorporation Assay: Control Substances 

The results obtained with the control substances on both strains of Salmonella are presented in 

Table 1. In the test system, the number of revertants generated by sodium azide was 4–5 fold the 

negative control (DMSO) in TA 100 strain, both in the presence and absence of metabolic activation 

(S9 mix). This was an expected outcome, because sodium azide is the recommended direct chemical 

mutagen for TA 100 strain [36]. Meanwhile, the number of revertants generated by benzo[a]pyrene 

was 3–4 and 2–3 fold that of DMSO with and without metabolic activation, respectively.  

In Salmonella TA 98 strain, 2-Aminoanthracene behaved as expected, with the number of revertant 

colonies being 17–23-fold higher than that of the control substance, in the presence of S9 mix.  

On the other hand, only a 2–3-fold increment was observed in the absence of S9 mix. No mutagenic 

effect/potency was observed with benzo[a]pyrene in the absence of metabolic activation; co-incubation 

with S9 resulted in an approximately three-fold increment in colony formation. 
  



Int. J. Environ. Res. Public Health 2014, 11 8353 

 

 

Table 1. Ranges for revertant colonies obtained with control substances in the standard plate 

incorporation assay. 

Controls 

Number of Revertant Colonies 

Respective Controls * Aggregate Controls ** 

+S9 −S9 +S9 −S9 

Salmonella TA 100 

Water 134.3–177.7 112.7–134.3 161.8 ± 22.4 125.2 ± 11.0 
DMSO 138.7–166.3 111.0–128.3 155.3 ± 17.9 120.2 ± 11.3 

Sodium azide 568.7–651.0 432.7–516.3 621.6 ± 78.8 470.1 ± 42.7 
Benzo[a]pyrene 438.0–517.3 248.0–270.0 471.6 ± 48.5 260.7 ± 75.7 

Salmonella TA 98 

Water 32.3–42.7 19.0–34.0 37.4 ± 3.1 25.0 ± 4.8 
DMSO 35.7–36.7 19.0–24.0 36.2 ± 2.8 21.5 ± 3.6 

2-Aminoanthracene 624.3–837.7 55.0–69.3 754.2 ± 68.2 61.4 ± 11.2 
Benzo[a]pyrene 102.0–122.0 20.3–29.7 116.8 ± 10.4 24.0 ± 5.1 

Notes: * Range; ** Mean ± SD. 

3.2. Plate Incorporation Assay: Test Substances/Food Samples 

The mutagenic activity of commercially processed food items, obtained by the standard plate 

incorporation assay, is presented in Tables 2 and 3. The majority of samples investigated (75%) 

exhibited fairly high mutagenic activity (the maximal responses being comparable to those elicited by 

benzo[a]pyrene), mainly in Salmonella TA100 strain. However, there was notable lot-to-lot variation. 

In TA 100 strain, chin-chin, hamburger, suya and bean cake were the most mutagenic food samples 

investigated. The number of revertants generated by these samples was over twice that of DMSO in all 

the batches analyzed and mostly independent of the S9 mix. A somewhat surprising result was found 

with the potato products (french fries and potato chips), as at least one of the lots of both products 

proved directly mutagenic. Roasted maize, plantain chips and coconut-candy did not show any 

evidence of mutagenic potency in this strain (Table 2). 

In Salmonella TA 98, only three food or snack varieties (potato chips, peanut and suya)  

exhibited mutagenic potency in at least one of the batches investigated (Table 3). Suya displayed the 

most coherent outcome with all its three batches being mutagenic in the presence of S9 mix. In support 

of the result with TA 100, the same batch of potato chips (number 3) exhibited direct mutagenicity  

also in TA 98. 
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Table 2. Number of revertants generated by the highest concentrations (1.0 per g of food sample) of food extracts on Salmonella TA 100 

(mean ± SD) in the standard plate incorporation assay. 

Food Products 

Revertants per Gram 

Batch 1 Batch 2 Batch 3 

+S9 −S9 +S9 −S9 +S9 −S9 

Doughnut 319.0 ± 12.1 †,ф 254.0 ± 14.0 †,ф 201.3 ± 07.1 198.7 ± 10.0 209.7 ± 14.0 186.0 ± 13.1 
Chin-chin 285.7 ± 15.5 † 191.3 ± 10.3 460.3 ± 28.3 †,ф 330.7 ± 75.8 †,ф 469.3 ± 71.9 †,ф 257.7 ± 26.1 †,ф 

Hamburger 353.3 ± 43.5 †,ф 248.3 ± 79.2 †,ф 469.3 ± 44.4 †,ф 350.0 ± 45.8 †,ф 212.3 ± 38.0 302.7 ± 72.9 †,ф 
Coconut-candy 265.7 ± 12.4 198.0 ± 06.9 245.7 ± 18.9 203.0 ± 09.7 180.0 ± 28.9 137.7 ± 05.8 

French fries 255.0 ± 47.8 304.3 ± 33.8 †,ф 208.0 ± 26.9 157.7 ± 12.3 189.3 ± 19.6 308.3 ± 43.0 †,ф 
Potato chips 159.0 ± 10.8 159.3 ± 04.6 210.7 ± 15.1 193.3 ± 07.0 188.7 ± 06.5 256.7 ± 11.4 †,ф 

Plantain chips 124.7 ± 11.8 109.3 ± 01.5 159.3 ± 27.3 192.7 ± 11.1 185.7 ± 11.1 154.7 ± 06.5 
Peanut 293.3 ± 30.6 † 242.7 ± 04.6 †,ф 339.0 ± 62.6 †,ф 272.7 ± 61.6 †,ф 215.0 ± 26.2 175.3 ± 28.4 

Roasted maize 252.3 ± 23.0 187.3 ± 04.7 176.7 ± 29.9 154.0 ± 07.0 215.7 ± 20.0 202.7 ± 18.5 
Suya 383.0 ± 20.7 †,ф 240.7 ± 10.0 †,ф 401.7 ± 12.1 †,ф 296.0 ± 06.0 †,ф 308.7 ± 14.6 263.3 ± 05.8 †,ф 

Fried chicken 138.7 ± 06.0 133.0 ± 08.5 394.7 ± 14.7 †,ф 204.3 ± 06.0 381.0 ± 35.5 †,ф 156.0 ± 23.5 
Bean cake 312.0 ± 25.4 †,ф 241.7 ± 36.8 †,ф 365.0 ± 22.6 †,ф 159.0 ± 25.9 294.7 ± 12.3 278.7 ± 09.1 †,ф 

Notes: †: Significantly different from respective controls (p < 0.05); ф: Significantly different from aggregate control (p < 0.05). 
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Table 3. Number of revertants generated by the highest concentrations (1.0 per g of food sample) of food extracts on Salmonella TA 98  

(mean ± SD) in the standard plate incorporation assay. 

Food Products 

Revertants per Gram 

Batch 1 Batch 2 Batch 3 

+S9 −S9 +S9 −S9 +S9 −S9 

Doughnut 40.3 ± 8.4 22.0 ± 8.2 30.7 ± 11.6 19.0 ± 4.6 28.0 ± 3.0 19.0 ± 6.1 
Chin-chin 34.0 ± 1.7 23.3 ± 2.1 31.0 ± 7.9 20.0 ± 5.3 37.7 ± 6.5 27.3 ± 4.2 

Hamburger 46.0 ± 14.0 26.3 ± 3.1 31.7 ± 4.5 20.7 ± 3.5 43.0 ± 7.0 20.7 ± 2.1 
Coconut-candy 38.7 ± 4.9 24.3 ± 1.6 40.7 ± 6.1 25.3 ± 5.1 34.7 ± 9.3 21.3 ± 1.5 

French fries 32.3 ± 1.5 36.0 ± 6.6 30.3 ± 3.5 17.0 ± 2.0 31.3 ± 4.0 18.7 ± 6.4 
Potato chips 36.3 ± 5.9 26.7 ± 3.8 33.0 ± 4.6 26.3 ± 4.0 31.7 ± 2.1 72.7 ± 18.0 †,ф 

Plantain chips 29.0 ± 5.6 29.0 ± 2.6 32.3 ± 2.9 18.7 ± 5.5 38.3 ± 6.1 21.0 ± 4.6 
Peanut 69.7 ± 5.6 34.7 ± 4.0 78.0 ± 12.5 †,ф 37.0 ± 14.9 35.0 ± 2.0 27.3 ± 5.0 

Roasted maize 24.3 ± 2.1 20.0 ± 2.0 31.7 ± 4.9 28.0 ± 5.3 27.3 ± 5.0 23.7 ± 7.4 
Suya 86.7 ± 5.8 †,ф 27.7 ± 2.5 83.0 ± 3.5 †,ф 19.0 ± 4.6 97.3 ± 7.6 †,ф 20.7 ± 3.5 

Fried chicken 32.0 ± 5.0 28.3 ± 5.1 24.0 ± 4.0 19.7 ± 3.8 28.3 ± 3.2 20.7 ± 2.5 
Bean cake 32.0 ± 5.3 11.0 ± 1.7 28.7 ± 8.5 22.3 ± 5.8 32.3 ± 3.1 21.0 ± 2.0 

Notes: †: Significantly different from respective controls (p < 0.05); ф: Significantly different from aggregate control (p < 0.05). 
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3.3. Modified Ames Tests 

To ascertain to which degree a localized release of proteins, peptides or histidine contributed to the 

mutagenicity test results obtained with the standard plate incorporation assay, “treat-and-wash” as well 

as MC overlay assays were performed (Tables 4 and 5). The outcome proved to depend on bacterial 

strain, type of food, S9 status, and assay. For some food extracts initially found to be mutagenic in the 

standard plate incorporation assay, the number of revertants decreased below the two-fold limit level in 

comparison with the negative control. Hence, the original Ames test result was in these cases 

interpreted to be of secondary nature and not due to genuine mutations. However, in a large number of 

cases, the food extracts were mutagenic in all three assays both in the presence and absence of S9 mix. 

For some food items (hamburger, suya and bean cake), a single lot was mutagenic in all three assays 

but only in the presence of S9 mix. In the absence of S9, the outcome with these three products varied. 

In contrast to this pattern, a single batch of hamburger (batch 2) was mutagenic in all three assays,  

both in the presence and absence of S9 mix. A couple of surprises also emerged in these complementary 

assays. Extracts of fried chicken (batch 2) and bean cake (batch 2) that required metabolic activation 

for their mutagenicity in the standard plate incorporation assay, were, unexpectedly, directly mutagenic 

in the treat-and-wash assay in Salmonella TA 100 strain (Table 4). One of these samples (bean cake, 

batch 2) behaved the same way also in the MC overlay assay (Table 4). An identical shift from indirect 

to direct mutagen was recorded in Salmonella TA 98 strain for extracts of peanut (batch 2) and suya  

(batch 2) (Table 5). 

3.4. Cytotoxicity Assays 

The cytotoxicity of the four concentrations of all food extracts was determined by both trypan blue 

exclusion and LDH secretion assays in HepG2 human hepatocellular carcinoma cells. The non-survival 

percentage of HepG2 cells in the trypan blue exclusion test did not exceed 50%. Also, there was a 

significant difference between the positive control (lysis solution) and the test samples in the amount 

of LDH released. Hence, the extracts were classified non-cytotoxic in these assays following exposure 

for 4, 24 or 48 h. 

3.5. Estrogenic Activity Assay: Control Substances 

The positive and negative control compounds used in this study behaved as expected with the  

S. cerevisiae BMAEREluc/ERα yeast strain. Both positive controls (estradiol and bisphenol A) produced 

a sigmoidal dose-response curve (Figure 1), while the negative controls (progesterone and testosterone) 

did not elicit any luciferase activity in the test system. This is in keeping with previously published 

data [29,40]. The limit of detection (LOD) in the yeast bioluminescent assay was 2.4-fold induction 

corrected (FIC), corresponding to 76 fM and 1.2 nM of estradiol and bisphenol A, respectively. 
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Table 4. Number of revertants in the treat-and-wash as well as methylcellulose overlay 

assays generated by the highest concentrations (1.0 per g of food sample) of food extracts 

showing mutagenic potential on Salmonella TA 100 (mean ± SD) in the standard plate 

incorporation assay. 

Food Product Batch 

Revertants per Gram 

Treat-and-Wash Assay Methylcellulose Overlay Assay 

+S9 −S9 +S9 −S9 

Doughnut 1 115.0 ± 4.2 84.3 ± 8.7 215.0 ± 34.6 191.3 ± 10.6 
Chin-chin 1 192.7 ± 17.5 58.7 ± 7.8 128.3 ± 9.8 95.0 ± 11.4 

Hamburger 1 633.0 ± 23.3 * 124.7 ± 10.6 330.0 ± 10.4 * 166.7 ± 28.3 
French fries 1 121.3 ± 11.7 103.0 ± 1.4 84.3 ± 22.6 86.0 ± 4.9 

Peanut 1 108.0 ± 7.1 123.5 ± 13.4 182.3 ± 26.2 93.0 ± 15.6 
Suya 1 366.0 ± 22.6 * 113.0 ± 1.4 382.0 ± 17.2 * 271.7 ± 9.4 * 

Bean cake 1 736.3 ± 85.1 * 156.0 ± 13.9 * 401.0 ± 28.4 * 238.2 ± 12.1 
Chin-chin 2 618.7 ± 58.7 * 32.3 ± 12.5 126.0 ± 8.5 125.7 ± 10.6 

Hamburger 2 397.7 ± 21.2 * 408.0 ± 32.5 * 304.7 ± 19.4 * 263.3 ± 9.3 * 
Peanut 2 141.3 ± 23.3 42.0 ± 11.3 344.3 ± 31.8 * 201.3 ± 2.1 
Suya 2 181.0 ± 16.9 240.0 ± 42.4 * 165.0 ± 10.6 76.0 ± 5.0 

Fried chicken 2 174.3 ± 12.4 150.3 ± 12.8 * 192.3 ± 13.9 138.3 ± 12.4 
Bean cake 2 470.0 ± 16.3 * 260.7 ± 33.2 * 324.7 ± 28.6 * 271.3 ± 19.4 * 
Chin-chin 3 126.3 ± 12.0 131.7 ± 10.6 183.3 ± 9.9 164.0 ± 16.3 

Hamburger 3 135.0 ± 18.4 126.3 ± 9.2 166.7 ± 0.7 162.0 ± 22.6 
French fries 3 139.7 ± 6.8 97.0 ± 8.5 110.0 ± 3.5 95.3 ± 2.1 
Potato chips 3 194.7 ± 11.6 108.3 ± 9.4 90.7 ± 10.0 106.0 ± 18.2 

Suya 3 179.0 ± 9.9 209.0 ± 19.7 * 194.3 ± 7.8 271.0 ± 14.4 * 
Bean cake 3 371.3 ± 12.1 * 228.0 ± 23.3 * 267.7 ± 14.3 290.0 ± 21.9 * 

Fried chicken 3 117.7 ± 12.3 108.3 ± 11.4 158.0 ± 12.8 124.3 ± 11.4 

Note: *: Significantly different from control (p < 0.05). 

Table 5. Number of revertants in the treat-and-wash as well as methylcellulose overlay 

assays generated by the highest concentrations (1.0 per g of food sample) of food extracts 

showing mutagenic potential on Salmonella TA 98 (mean ± SD) in the standard plate 

incorporation assay. 

Food Product Batch 

Revertants per Gram 

Treat-and-Wash Assay Methylcellulose Overlay Assay 

+S9 −S9 +S9 −S9 

Suya 1 78.0 ± 8.5 * 17.0 ± 1.4 48.0 ± 4.8 24.3 ± 2.7 
Peanut 2 30.0 ± 8.5 158.0 ± 51.0 * 31.3 ± 5.0 84.3 ± 9.6 * 
Suya 2 33.3 ± 5.0 154.0 ± 0.0 * 29.3 ± 1.9 78.7 ± 6.6 * 

Potato chips 3 48.3 ± 7.2 21.7 ± 4.1 33.0 ± 2.4 19.3 ± 2.1 
Suya 3 42.0 ± 9.9 18.0 ± 3.1 39.7 ± 5.2 26.7 ± 3.8 

Note: *: Significantly different from control (p < 0.05). 
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Figure 1. Dose-response curves of increasing concentrations of estradiol and bisphenol A. 

 

3.6. Estrogenic Activity of Pure Water Sachets 

The estrogenic activities of the 16 pure water samples investigated ranged from below LOD to  

44.0 ng/L (median: 23.0 ng/L) estradiol equivalent (the amount of estradiol needed to bring about the 

same effect as the sample analyzed in an assay specific for estrogens) concentrations (EEQs).  

Five out of the 16 sachets produced luciferase activities greater than the LOD. The positive water 

samples were coded W1 to W5 (Table 6). W1 had the lowest value of 0.79 ng/L or 124.2 ng/L 

estradiol vs. bisphenol A equivalent concentrations, respectively. Concurrently, the highest values found 

(for sample W2) extended to 44.0 ng/L (estradiol equivalent) or 1000.8 ng/L (bisphenol A equivalent). 

Table 6. Estradiol (EEQ) and bisphenol A (BPAEQ) equivalent concentrations of sachet 

water samples. 

Sample Code 
Water Samples Sachet/Packaging Material 

EEQs (ng/L) BPAEQs (ng/L) EEQs (pg/L) BPAEQ (pg/L) 

W1 0.79 124.2 14.5 224.0 
W2 44.0 1000.8 <LOD <LOD 
W3 28.0 597.8 10.2 186.1 
W4 23.0 442.8 <LOD <LOD 
W5 15.0 269.7 <LOD <LOD 

Median 23.0 443.0 12.4 205.0 
Average 7.0 152.0 2.0 26.0 

As an attempt to further trace the origins of the estrogenic activities observed, the sachets 

themselves were analyzed for possible leaching of estrogenic substances into the water. The packaging 

material of three out of the five positive samples did not generate any positive signal in the yeast-based 

assay. However, a feeble response was obtained from the packaging material of the two other  

samples (Table 6). 
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4. Discussion and Conclusions 

Processed food items and bottled water are consumed in increasing quantities all over the world. 

Therefore, it is of utmost importance to ensure that in addition to their microbial safety, the products do 

not contain chemicals which might pose a toxicological risk to consumer health. A conceivable 

potential risk in this regard is the formation of genotoxic compounds during the processing of 

foodstuffs and leaching of food contact materials into food and water. Regular screening studies are 

necessary to verify that the methods used by food vendors are appropriate and sound also from this 

point of view. The present investigation aimed at exploring the current situation in Nigeria. 

To the best of our knowledge, this is the first study on mutagenicity of food products from Africa. 

To compare our data with those of previous studies is challenging because of the paucity of published 

data on mixture effects combined with the wide variation in food types in different parts of the world. 

However, it is possible to compare foodstuffs based on the number of revertants their extracts generate 

in the Ames test and its derivatives, and we will utilize this approach. 

Food processing methods as well as the sales of processed food items in Nigeria are poorly—if 

ever—regulated. Furthermore, it has been reported that the majority of Nigerians involved in food 

processing do not have formal training on food safety issues or related techniques [17,41]. This may 

bear on the present finding that the majority of food items (75%) investigated were mutagenic in the 

standard plate incorporation assay for at least one of the three batches when studied in Salmonella  

TA 100 strain. On the other hand, in Salmonella TA 98 strain only 25% of food extracts were found to 

yield a mutagenic response, possibly due to a weaker sensitivity of this strain compared with TA 100 

or to the type of mutagens present. 

The conventional Ames test outcome cannot, however, be taken at its face value in the case of  

food extracts as these may be sources of localized release of proteins, peptides or histidine itself  

onto the bacterial plates [2]. To prevent this potential misinterpretation of ostensible mutagenicity,  

“treat-and-wash” as well as methylcellulose overlay assays were performed for all samples eliciting a 

positive outcome in the conventional Ames test. The results of these complementary assays were 

consistent for some samples (bean cake, suya, hamburger, fried chicken and chin-chin),  

further reinforcing our initial findings with the Ames test. Extracts of bean cake and suya stood out 

from among the positive samples. All batches of bean cake exhibited mutagenic activity in the  

treat-and-wash assay with the Salmonella TA 100 strain, both in the presence and absence of S9 mix. 

One of these lots (batch 1) generated a conspicuously high number of revertants, almost five-fold its 

control (DMSO), with metabolic activation. A similar situation was observed with the MC overlay 

assay, as all bean cake samples were mutagenic in Salmonella TA 100 strain in the presence of S9 mix. 

Similarly, all batches of suya were consistently mutagenic in the treat-and-wash assay, with the 

Salmonella TA 100 strain, either in the presence or absence of S9 mix. 

Bean cake is commonly consumed in different parts of Nigeria, irrespective of ethnicity, religion or 

social status. A probable explanation for the mutagenicity test results observed with extracts of bean 

cake is in the method of its processing. Bean cake is processed by deep-frying for several minutes. 

Deep-frying has previously been reported to result in the formation of mutagenic and genotoxic 

compounds in the final product [42]. Food vendors in Nigeria are also known to repeatedly reuse their 

frying oil, which is often already of questionable quality, for several days or weeks. This may have 
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contributed to the high number of revertants obtained with extracts of bean cake and fried chicken. 

Double heat-treatment of cooking oil has been shown to cause an increase in the genotoxic activity of 

food products [43,44]. During frying, cooking oil undergoes deterioration through various chemical 

and physical processes such as oxidation, polymerization, hydrolysis and cyclization, leading to the 

formation of both volatile and non-volatile undesirable by-products [43]. These derivatives are 

partially absorbed by the fried food, which thus becomes carcinogenic [45]. For example, the PAH 

compounds benzo[a]pyrene and benzo[a]anthracene are all well-known human carcinogens which 

have been detected in different types of cooking oil [45].  

The positive mutagenicity test results obtained with suya were not unexpected. Suya is 100% beef, 

and it is a special type of delicacy, mainly consumed in Nigeria, irrespective of social status. All suya 

products are processed the same way: by charcoal-grilling. After processing, the products are left to be 

heated on the charcoal for several hours, until they are purchased. This processing method typically 

explains the reason for the mutagenicity test results obtained with extracts of suya in our study.  

The contamination of thermally treated high-protein foods, such as charcoal-grilled meat products,  

by PAHs and heterocyclic aromatic amines is well established [12,46–48]. The building up of PAHs in 

this case is due to their generation by direct pyrolysis of food fats and the direct deposition of PAHs 

from smoke produced through incomplete combustion of the thermal agent [16]. Heterocyclic aromatic 

amines, in turn, are formed through the condensation of creatine/creatinine and the strecker degradation 

radicals (pyridines and pyrazines) generated from the reaction of sugars and amino acids during the 

Maillard reaction [49]. The present findings are worrisome, because meat-cooking habits have been 

linked with several forms of cancer [50–53]. In Argentina, for example, cooking meat at a high 

temperature and close to the cooking source has been linked with increased incidence of colorectal 

cancer [54]. This is also the case in Hawaii and the Netherlands [55,56]. More recently, a number of 

PAHs have been reported in different types of smoked meat in Serbia, Latvia and Sweden [14,57,58]. 

However, no nexus has been established in relation to increased incidence of cancer in these countries. 

In Nigeria, there is a paucity of data on the incidence of different cancer types, but the two major 

forms, breast and prostate cancers, may be increasing [59]. Both of them have been associated with 

meat-cooking habits [60]. 

Hamburger products have previously been reported as a major source of chemical food mutagens  

to consumers [38,61]. The results obtained in our study further reinforce this view, as two different lots 

of hamburgers examined were found to be mutagenic in all three assays in Salmonella TA 100 strain, 

with one of the lots (batch 2) being both directly and indirectly mutagenic in all three assays.  

Stavric et al. [61] previously reported hamburger products purchased in Ontario, Canada, to be mutagenic 

in a similar assay, but only with Salmonella TA 98 strain. The number of revertants generated in that 

study ranged from 63 to 1042 rev/g (average: 199 rev/g). This is in contrast to our study, in which 

hamburger products were only mutagenic with the Salmonella TA 100 strain, and not TA 98.  

In a recent study in Finland [2], the number of revertants generated with extracts of hamburger 

products were slightly lower than those obtained in this study, both with Salmonella TA 100 and  

98 strains. Although these findings might seem to implicate the current cooking methods of hamburgers 

in Nigeria, the present outcome may not be entirely attributable to the processing methods. This is due 

to the fact that high levels of potassium bromate, a well-known mutagen and human carcinogen,  

have been detected in bread in different parts of Nigeria [62–64]. In one of these cases, Alli et al. [62] 
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found that even the lowest level of potassium bromate in their bread samples was over 150 times 

higher than the maximal permissible limit. 

Overall, the mutagenicity test outcome of our study is in keeping with previously published data on 

food mutagenicity elsewhere [3,4,61], but somewhat at odds with a recent study published in Finland, 

where only 40% of the processed food items investigated showed mutagenic properties in the conventional 

Ames test [2]. In further contrast with the current findings, for most food varieties in the study by 

Omoruyi and Pohjanvirta [2], only a single batch proved positive. This may reflect more refined food 

processing techniques in Finland as compared with Nigeria. 

In Nigeria, it is estimated that about 25% and 53% of people living in urban and rural areas, 

respectively, lack access to pure, portable water [65]. This is related to recent outbreaks of several  

water-borne diseases in major states of the country, specifically cholera [66,67]. It has prompted 

entrepreneurs to continuously establish water plants, in which pure water samples are mainly packaged 

in plastic sachets. 

Our study demonstrates that pure water sachets may contain estrogen-like chemicals. Five of the  

16 samples investigated were discovered to be estrogenic in our in vitro test system, with EEQs 

ranging from 0.79–44.0 ng/L. Both the frequency of positive samples and their concentrations  

were actually lower than we feared, considering that the proprietors of pure water sachet factories in 

Nigeria are principally entrepreneurs with little or no knowledge of water quality (microbiological, 

physicochemical or toxicological). There are two recent studies carried out in Europe in which 

estrogenic activity of water samples was assessed by a comparable in vitro yeast assay to that of ours. 

Pinto and Reali [68] analyzed mineral waters packed in polyethylene terephthalate (PET) bottles in 

Italy. The levels they detected varied from 0.03 through 23.1 ng/L (mode 9.5 ng/L) EEQs. Somewhat 

surprisingly, tap water made of either surface water or ground water contained approximately 15 ng/L 

EEQs. In another study, Wagner and Oehlmann [6] determined estrogenic activities in 20 major brands 

of bottled water in Germany. Twelve of these samples proved positive with the levels ranging from 

2.64 to 75.2 ng EEQ/L (average 18.0 ng/L). Interestingly, in their material, the highest estrogenic 

activities were recorded for waters packaged in either non-reusable PET or reusable glass bottles,  

and even water packed in Tetra Pak™ bricks contained levels that were similar to those found in our 

study (14–44 ng/L). Thus, substances exhibiting estrogen-like activity are common in water samples in 

both industrialized and developing countries. 

It is widely believed that the decline in male reproductive functions, increased incidence of different 

cancer types amongst young men and women and neurobehavioural diseases observed in the population 

of different countries may, at least partly, be attributable to exposure to estrogenic compounds, particularly 

during the intrauterine phase or during critical periods of postnatal development [23–25,69]. Studies in 

recent years have shown, for example, that the commonly used plasticizer, di(2-ethylexyl)phthalate 

(DEHP), alters gene expression in rats and that, at appropriate concentrations, it alters the development 

of the central nervous system in the fetus [70]. Similarly, certain compounds, such as benzophenone used 

as food contact material, are reported to almost completely block the 17β-hydroxysteroid dehydrogenase 

type 3 enzymes that are required for testosterone synthesis [71]. 

The presence in or leaching into water samples of endocrine-disrupting chemicals is influenced by a 

number of factors such as storage conditions, exposure to sunlight and ambient temperature [72,73]. 

Unfortunately, the environmental conditions in Nigeria (abundant sunlight and high temperature) tend 
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to favor the migration of endocrine-disrupting chemicals from the packaging materials into water,  

as, for example, during transport of water containers. Therefore, sachets of water stored or transported 

in less appropriate conditions than our samples would be at risk of containing higher concentrations of 

estrogenic substances. 

The bulk of dietary xenoestrogen exposure for adults has been proposed to emanate from dairy 

products, and total daily intake of estrogens has been estimated to be 80–100 ng [74]. Assuming an 

average daily water consumption of 3 L at Nigerian latitude [75], in the worst-case scenario based on 

our sample material, the intake from pure water sachets would double the estimated exposure.  

Hence, every effort should be taken to reduce the estrogen levels in these waters in the future. 

In conclusion, the results obtained in our study show that both commercially processed food items 

and sachet-packed pure water sold in Nigeria, are sources of mutagen and estrogen-like chemicals, 

respectively. Although their concentrations are not alarming in the light of food and water analyses from 

other countries, measures should be taken to reduce them further and monitor their levels regularly.  

Since the number of samples examined here was relatively low, further survey studies are also warranted. 
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