Next Article in Journal
Recess Physical Activity and Perceived School Environment among Elementary School Children
Previous Article in Journal
Correction: Brewer, R.; et al. Risk-Based Evaluation of Total Petroleum Hydrocarbons in Vapor Intrusion Studies. Int. J. Environ. Res. Public Health 2013, 10, 2441–2467
Article Menu

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2014, 11(7), 7184-7194; doi:10.3390/ijerph110707184

Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

1
Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa
2
Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa
3
Department of Physics, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa
*
Author to whom correspondence should be addressed.
Received: 21 May 2014 / Revised: 4 July 2014 / Accepted: 7 July 2014 / Published: 14 July 2014
View Full-Text   |   Download PDF [255 KB, uploaded 14 July 2014]   |  

Abstract

Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. View Full-Text
Keywords: anaerobic digestion; dairy manure; enteropathogens; viable counts; regression models; South Africa anaerobic digestion; dairy manure; enteropathogens; viable counts; regression models; South Africa
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Okoh, A.I.; Makaka, G.; Simon, M. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester). Int. J. Environ. Res. Public Health 2014, 11, 7184-7194.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top