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Abstract: Spatial health inequalities have often been analyzed in terms of socioeconomic 

and environmental factors. The present study aimed to evaluate spatial relationships 

between spatial data collected at different spatial scales. The approach was illustrated using 

health outcomes (mortality attributable to cancer) initially aggregated to the county level, 

district socioeconomic covariates, and exposure data modeled on a regular grid. 

Geographically weighted regression (GWR) was used to quantify spatial relationships.  

The strongest associations were found when low deprivation was associated with lower lip, 

oral cavity and pharynx cancer mortality and when low environmental pollution was 

associated with low pleural cancer mortality. However, applying this approach to other 

areas or to other causes of death or with other indicators requires continuous exploratory 

analysis to assess the role of the modifiable areal unit problem (MAUP) and downscaling 

the health data on the study of the relationship, which will allow decision-makers to 

develop interventions where they are most needed. 
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1. Introduction 

Analyzing the relationship between the environment and health has become a major issue for public 

health in France as forecasted by the national plans for health and environment (NPHE). Two priority 

areas were selected during the first NPHE: (1) preventing health risks related to the quality of 

resources and to chemicals and (2) developing environmental health through research, expertise, 

training and information. In 2009, the second NPHE was prepared from the perspective of the 

upcoming conference on health and the environment organized by the World Health Organization. 

Two main axes were prioritized: (1) identifying and managing geographic areas where hotspot 

exposures to substances present in air, soil, water, and foods resulting from anthropic activities 

suspected of generating potentially increasing risks to human health and (2) reducing environmental 

health inequalities. Thus, environmental health inequality has become a substantial topic that guides 

policy developments in France. To address this aim, there is an urgent need for tools that can quantify 

the spatial relationships between the environment, socioeconomics and health and that can highlight 

areas with strong inequalities.  

Health inequalities are a quite recent study topic. Previous studies were essentially based,  

at an individual level, on specific surveys [1,2] and, at a spatially aggregated level (administrative unit), 

on specific regions [3,4]. At a regional scale, data are often available at a fine level or resolution.  

This allows for building environmental, socioeconomic and health indicators at different spatial scales; 

for example, Salmond et al. [5] built a new census-based index of deprivation based on the smallest 

possible geographical areas.  

Regarding health data, there are strict privacy rules for individual-level health data that prohibit 

their public release. Aggregated data are only available at the geographic level, from which disclosure 

and reconstruction of patient identity are impossible. In France these census units could be regions or 

counties. This aggregation unfortunately results in incidence or mortality rates that can be unreliable 

over small and/or sparsely populated areas. This effect, known as the “small number problem” [6], 

should be corrected for an accurate evaluation of health-environment relationships.  

Several authors have already addressed the spatial relationships between health data and 

environmental data. One of the issues faced by spatial epidemiologists and for exposure assessment is 

the combination of data measured for very different spatial scales and with different levels of 

reliability. In reality, the analysis of cancer mortality maps is often hindered by the presence of noise 

caused by unreliable extreme rates computed from sparsely populated geographic units. A number of 

approaches have been developed to improve the reliability of risk estimates [7,8]. The most commonly 

used are Bayesian methods [9], which are commonly referred to as the BYM model. Bayesian methods 

prohibit any change of scales, an operation that is easily conducted within the framework of  

kriging. Goovaerts and Gebreab [10] conducted a simulation-based evaluation of the performance of 

geostatistical and full Bayesian disease-mapping models, and they found that the geostatistical 
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approach yielded smaller prediction errors and more precise and accurate probability intervals and that 

it allowed for better discrimination between counties with high and low mortality risks.  

Poisson kriging, in this context, presents a spatial methodology that allows for filtering the noise 

caused by the small number problem and enables the estimation of mortality risk and the associated 

uncertainty at different spatial scales. This approach has been implemented to modeling cancer risk by a 

number of authors: Oliver et al. [11] studied cases of cancer in children under fifteen years of age,  

and Goovaerts and collaborators considered lung cancer [12,13], breast cancer [14,15],  

prostate cancer [16], cervical cancer [17], and pancreatic cancer [18], and all found it to be relevant for 

this particular problem. 

Selection of scale is perhaps the most important factor in creating and analyzing a relationship 

between environmental exposure and health outcomes [19]. This issue is similar to the modifiable area 

unit problem (MAUP), a term introduced by Openshaw [20,21]. The MAUP can cause differences in 

the analytical results of the same input data compiled under different zoning systems [22,23]. 

The present study aims to evaluate spatial relationships at three levels of aggregation:  

the IRIS level, an intermediate scale (the grid level), and the county level between health outcomes 

(mortality attributable to cancer) initially aggregated to the county level, district socioeconomic 

covariates, and exposure data modeled on a regular grid. The approach is illustrated using age-adjusted 

lip, oral cavity and pharynx, and pleural cancer mortality rates over the period 2000–2009 for the  

Picardy region. The deprivation index and trace metal exposure indicators are used as putative risk factors. 

2. Materials and Methods 

2.1. Study Area 

The region of Picardy covers an area of roughly 19,500 km
2
 and is located between the  

North Artois, the Ile-de-France in the south, the Bay of the Somme to the west and the East Champagne. 

It covers the departments of Somme, Oise and Aisne. The urbanization rate in this region is far below 

the national average (60.4% versus 74% for the entire country). The agricultural sector provides more 

than 4% of French agricultural production. It also has significant industrial activity through which fine 

chemicals and specialty chemicals account for nearly 15% of jobs and the vehicle industry comprises 

40% of industrial employment (26.5% of assets employed in industry versus 19.5% at the national 

level). Three administrative or statistical spatial units, of different sizes, were considered: IRIS  

(the smallest administrative units in Picardy, 2,129 units) with irregular sizes and shapes, 64 km
2
 grid 

cells (308 units) that are all squares of same size, and counties (112 units) with irregular sizes and 

irregular shapes. Figure 1 shows the counties of the study area. 

2.2. Data 

2.2.1. Exposure Indicators 

The environmental indicators (inhalation and ingestion) used were those described in Caudeville et al. 

for building GIS-based modeling platforms for quantifying human exposure to chemical substances [24]. 
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The exposure indicators integrate soil, water, air, food, demographic and behavioral geo-referenced 

data to construct population exposure doses and associated risks at a fine resolution (1 km
2
 grid). 

Figure 1. Map of the study area. 
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Figure 1. Cont. 
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Trace elements (nickel-Ni, cadmium-Cd, and lead-Pb) were modeled within the Picardy region [25] 

for various exposure pathways: atmospheric contaminant inhalation and ingestion of soil, vegetation, 

meat, eggs, milk, fish and drinking water. 

2.2.2. Deprivation Index (SE) 

The deprivation index used was developed by Rey [26] and was built at the French census block 

(IRIS) using the following socioeconomic data: the median household income, the percentage of high 

school graduates in the population aged 15 years and older, the percentage of blue-collar workers in 

the active population, and the unemployment rate. The deprivation index was also constructed for the 

county. For each county, the deprivation index was calculated as the population-weighted average 

score for all of the IRISes in the county. 

2.2.3. Health Data 

The health data came from the Regional Health Observatory of Picardy [27], where the  

age-adjusted mortality rates are calculated for each county from 2000 to 2009. Table 1 shows the 

cumulative, maximum and minimum number of mortality and age-adjusted rates per 100,000 person-years 

by county from 2000 to 2009. 

Table 1. Cumulative, maximum and minimum number of mortality and age-adjusted rates 

per 100,000 person-years by county, 2000–2009. 

Cancer Mortality Numbers of Cases Age-adjusted Rates Per 100,000 Person-years 

Lip, oral cavity and pharynx cancer mortality 

Cumulative 1,327 16.26 

Minimum 1 2.81 

Maximum 128 37.4 

Pleural cancer mortality 

Cumulative 263 3.78 

Minimum 0 0 

Maximum 18 11.94 
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Figure 2 shows the spatial distribution age-adjusted lip, oral cavity, pharynx, and pleura cancer 

mortality per 100,000 person-years. It should be noted that (1) the population is not evenly distributed 

throughout the study area and (2) the age-adjusted rate calculated from the less-populated counties tend 

to be less reliable. This implies that the interpretation of the map must be carried out with caution.  

The scatter plot at the bottom of Figure 1 illustrates this effect, well-known as the “small number problem”. 

Table 2 presents the different spatial scales of measurement and the approaches used to homogenize 

spatial coverage.  

Figure 2. (a) Map of log population density. Geographic distribution of age-adjusted 

mortality rates per 100,000 person-years recorded over the period 2000–2009 for: (b) lip, 

oral cavity and pharynx; (c) pleura cancer mortality. The bottom scatter plots illustrate:  

(d) the age-adjusted mortality rates for lip, oral cavity and pharynx cancers plotted against 

population density and (e) the age-adjusted mortality rates of pleura cancers plotted against 

population density.  

(a) 

 

(b)                                                                      (c) 

 

(d)                                                              (e) 
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Table 2. Spatially resolved data types and approaches used to homogenize spatial coverage. 

Indicator Variables Sources 
Spatial Scale or 

Resolution 
Spatial Operation 

Socioeconomic SE: Deprivation index  French census 

Rey et al. [26] 

Vector data from 

the IRIS. 

Spatial population-

weighted aggregation 

Exposure F1: Exposure inhalation 

indicator 

F2: Exposure ingestion indicator 

 

Caudeville et al. [24,25] Raster data of  

1 km2 grid 

Spatial aggregation 

Health Lip, oral cavity and pharynx 

cancer mortality 

Regional Health 

Observatory of  

Picardy [27] 

Vector data from 

the county 

database 

Poisson kriging 

Pleural cancer mortality 

2.3. Methods 

2.3.1. The Geostatistical Approach: Correcting Small Numbers and Estimating the Corresponding Risk 

at Different Spatial Scales  

To correct for the instability attributable to the small number problem, a number of algorithms have 

been developed that aim at estimating risk. The geostatistical approach, in this context, presents an 

interesting alternative; it conducts the noise filtering and allows for risk estimation along with the 

associated uncertainty at different scales. This section provides a brief overview of the geostatistical 

methodology for estimating risk values. See Goovaerts [17] for more details about this approach. 

The cancer mortality count d( v ) within a county
 
v  is interpreted as the realization of a random 

variable D( v ) that is Poisson distributed with a parameter (expected number of counts) that is the 

product of the population size n( v ) by the local risk R( v ). R( v ) might be thought of as a  

noise-filtered mortality rate for area v , which we also refer to as the mortality risk. It is estimated by 

using a variant of kriging with nonsystematic errors known as Poisson kriging [28]. 

The mortality risk and the associated kriging variance for an area v  are estimated as: 

1

ˆ? ) 牋 ( )牋牋
k

i i

i

r v z v 



 

 

Kriging variance is computed as follows: 

1
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where x represents either an area v (ATA kriging). The kriging weights ( )i  and the Lagrange 

parameter μ ( v ) are computed by solving the Poisson kriging system of equations: 
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where 
ij  = 1 if i = j and 0 otherwise. The “error variance” term, m

*
/n( iv ) leads to smaller weights for 

rates measured over smaller population sizes. The covariance ( , )
i

sjiR vvC  is approximated as the 

population-weighted average of the point-support covariance ( )RC h  computed between any two 

discrete locations between the areas iv and
jv . 

2.3.2. Spatial Autocorrelation 

Global Moran’s I was calculated for all of the explanatory variables as well as for the dependent 

variables within three spatial structures to determine the role of spatial representation using  

global spatial autocorrelation. The Global Moran’s I spatial autocorrelation statistic measures the  

self-similarity of a spatial variable’s value as a function of adjacency [29], using a first-order Queen’s 

case spatial weight matrix and 999 permutations. 

2.3.3. Exploring the Relationships between Health, Environment and Socioeconomic Factors 

Analyses of correlations between health data and putative factors are traditionally performed using 

a global or “aspatial” regression model, under the implicit assumption that the impact of variables is 

constant over the entire study area. This assumption is likely unrealistic for large areas, which can 

display large geographic variations. Fotheringham and colleagues developed Geographically Weighted 

Regression (GWR) to explore spatial non-stationarity and map statistics to visualize the spatial patterns 

of the relationships between dependent and independent variables [30–32].  

Aspatial Regression 

The explanatory power of SE and exposure indicators was first investigated using the following 

multiple linear regression model: 

0 ki ii k
k

x       

where   is the kriging risks estimate for observation i,    is the intercept,   is the regression 

coefficient (slope) of each factor   , and    
is the error term. To account for the reliability of the 

kriged risks in the regression, each observation receives a weight that is the reciprocal of the kriging 

variance [33]. 

Geographically Weighted Regression. 

In geographically weighted regression, the regression is conducted within local windows centered 

around each observation. The regression coefficients are thus location-dependent:  

0
( , ) ( , )

i i i i ik ii k
k

u v u v x       

Within each window, observations are weighted according to their proximities to the center of the 

window. A variety of distance decay functions are available. In this paper, we used the XX function, 
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which is characterized by a bandwidth that corresponds to the distance beyond which the weight 

rapidly approaches zero. 

The bandwidth is estimated by minimizing the AICc value:  

( )
ˆ2 log ( ) log (2 )

- 2 - ( )
c e e

n tr S
AIC n s n p n

n tr S

 
    

 
 

where n is the number of observations in the dataset, ̂  is the estimate of the standard deviation of 

the residuals, and tr(S) is the trace of the hat matrix. For more information on the theory and practical 

application of GWR, the reader is referred to Fotheringham et al. [34]. 

3. Results  

3.1. Poisson Kriging for Health Indicator 

Figures 3 and 4 show the risk values with the corresponding prediction variance estimated by 

Poisson kriging at: (a) the county level; (b) the grid level and (c) the IRIS level. All maps are 

substantially smoother than the original rate map because the noise caused by small population sizes 

has been filtered. These maps allow a better visualization of areas of higher risks: the lip, oral cavity 

and pharynx cancer mortality rates vary between 2.81 and 37.40 per 100,000 person-years. After the 

application of Poisson kriging, the minimum rate increased from 2.81 to 8.87 deaths/100,000  

person-years, and the maximum rate of 37.40 decreased to 25.14 deaths per 100,000 person-years.  

We can note, for instance, that the high rates recorded in sparsely populated counties such as  

Sains-Richaumont (37.40 deaths/100,000 person-years), north of the Aisne department, are strongly 

smoothed (24.46 deaths/100,000 person-years). The highest rate recorded in a densely populated 

county (i.e., Abbeville North county-26.60 deaths/100,000 person-years) remained nearly the same 

after smoothing (24.90 deaths/100,000 person-years). Zero pleural cancer mortality rates  

recorded in sparsely populated counties were also smoothed, leading to minimum values of  

1.00 deaths/100,000 person-years. 

The maps of the kriging variance indicate the higher reliability of risks estimated in densely 

populated areas such as Amiens, Beauvais, Saint Quentin, and Abbeville. The variance of the risk 

estimates decreased as the geographic unit area increased: from the IRIS level to the grid level and 

then to the county level (Table 3). 

The risk estimates are characterized by positive spatial autocorrelation within the three spatial 

scales (p ≤ 0.05) but display low levels of statistically significant spatial autocorrelation at the IRIS 

level in comparison with the grid and county levels (Table 3). In this case, the counties are internally 

homogeneous in terms of mortality according to the risks estimated by kriging. 
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Figure 3. Maps of the lip, oral cavity and pharynx cancer mortality risk estimates and the 

corresponding prediction variance computed by Poisson kriging at three spatial scales:  

(a) county level; (b) grid level and (c) IRIS level. 

 
Lip, oral cavity and pharynx cancer mortality (age-adjusted rates per 100,000 person-years) 

 

                    (a)                                          (b)                                        (c) 

 
Kriging risk 

 
Kriging variance 

Figure 4. Maps of the pleural cancer mortality risk estimates and the corresponding 

prediction variances computed by Poisson kriging at three spatial scales: (a) county level; 

(b) grid level; and (c) IRIS level. 

 
Pleural cancer mortality (age-adjusted rates per 100,000 person-years) 
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Figure 4. Cont. 
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Table 3. Summary statistics for health indicators after applying Poisson kriging. 

Lip. Oral Cavity and Pharynx Cancer Mortality 

Estimation Type  Mean Min Max Morans’I 

County Level 

Kriging risk 15.59 8.88 25.14 0.65 (0.001) 

Kriging variance 8.36 1.87 13.42 
 

Grid Level 

Kriging risk 15.32 8.31 25.92 0.78 (0.001) 

Kriging variance 16.06 2.81 30.09 
 

IRIS Level 

Kriging risk 15.35 7.38 26.56 0.96 (0.001) 

Kriging variance 22.52 4.1 33.24 
 

Pleural Cancer Mortality 

Variables Mean Min Max Moran’s I 

County Level 

Kriging risk 3.16 1 8.72 0.52 (0.001) 

Kriging variance 1.92 0.43 3.07 

 Grid Level 

Kriging risk 2.99 0.87 8.48 0.62 (0.001) 

Kriging variance 3.65 0.63 6.67 

 IRIS Level 

Kriging risk 3.21 0.87 9.04 0.93 (0.001) 

Kriging variance 4.99 0.89 7.32 
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3.2. Spatial Aggregation for the Explanatory Variables 

The mean values of the explanatory variables under each of the three spatial structures are similar 

(Table 4). The variables F1 (exposure inhalation indicator) and F2 (exposure ingestion indicator) 

display greatly reduced variability under different spatial structures. The variable SE has the highest 

levels of variability. In contrast, the SE index is affected by the use of different spatial structures.  

The lowest average was −4.5 at the county level in comparison with −7.32 at the IRIS level,  

and the variance decreased with increasing aggregation, unlike with F1 and F2, for which the lowest 

and strongest averages were somewhat similar for the three spatial scales. 

All of the variables were characterized by positive spatial autocorrelation within the three spatial 

scales at levels of p ≤ 0.05. For F1 and F2, the Moran’s I values of the three spatial structures were 

similar (Table 4); however, the F1 and F2 were not affected by the use of different spatial structures. 

This is explained by the fact that the exposure indicator presented a homogeneous distribution within 

each county (the original resolution of exposure indicator data was a grid (15 × 10 km);  

see Caudville et al. [24,25]. Figures 5 and 6 show maps of the SE index and the F1 aggregated at (a) 

county level, (b) grid level and (c) IRIS level. 

Table 4. Summary statistics for the explanatory variables. 

Variables Mean Min Max Variance Moran's I 

 
County Level 

SE: Deprivation index 0.61 −4.5 3.48 2.84 0.63(0.001) 

F1: Exposure inhalation indicator 0.08 0.06 0.13 0.0002 0.81(0.001) 

F2: Exposure ingestion indicator 0.27 0.27 0.39 0.002 0.61(0.001) 

   Grid Level 

SE: Deprivation index 0.58 −5.1 4.1 3.02 0.70(0.001) 

F1: Exposure inhalation indicator 0.08 0.06 0.13 0.0002 0.88(0.001) 

F2: Exposure ingestion indicator 0.27 0.28 0.48 0.002 0.61(0.001) 

  IRIS Level 

SE: Deprivation index 0.48 −7.3 −8 4.62 0.55(0.001) 

F1: Exposure inhalation indicator 0.08 0.06 0.15 2,00E−04 0.91(0.001) 

F2: Exposure ingestion indicator 0.26 0.31 0.68 0.003 0.65(0.001) 

Figure 5. Maps of the deprivation index computed at three spatial scales: (a) county level; 

(b) grid level; (c) IRIS level. 

                   (a)                                        (b)                                       (c)  
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Figure 6. Maps of the exposure inhalation indicator (F1) aggregated at: (a) county level; 

(b) grid level; (c) IRIS level. 

                (a)                                        (b)                                          (c)  

 

3.3. Aspatial Regression 

Table 5 shows the correlation coefficient between each covariate and mortality rates before and 

after noise-filtering using Poisson kriging. Filtering the noise because of the small number problem 

clearly enhanced the explanatory power of the covariates: the proportion of variance explained 

(adjusted R
2
) increased by nearly one order of magnitude: lip, oral cavity and pharynx cancer 

mortality, 0.11 to 0.26, and pleural cancer mortality, 0.11 to 0.25. The uncertainty attached to the risk 

estimates can be accounted for by weighting each estimate according to the inverse of its kriging 

variance, leading to correlation coefficients and adjusted R
2
 values that were slightly larger for pleural 

cancer mortality and a slightly lower mortality rate for lip, oral cavity and pharynx cancers.  

Application of the linear model for lip, oral cavity and pharynx cancer mortality data explained a 

moderate proportion of the total variance (adjusted R
2
 = 0.22 and 0.19) at the county level and grid 

level, respectively. This proportion was lower when the analysis was conducted at the IRIS level 

(adjusted R
2
 = 0.11). It is noteworthy that the correlation coefficients for the SE factor were always 

significant for the different aggregation levels and were higher at the county level than at the IRIS 

level, which was the expected result because aggregation is known to increase the strength of 

correlation [20,35]. Linear association between SE index and cancer mortality has been demonstrated 

in other works [36–39]. 

Table 5. Results of the correlation analysis. 

Lip. Oral Cavity and Pharynx Cancer Mortality 

Regression Model SE F1 F2 Adjusted R2 

 
County-level correlation 

Age-adjusted rate 0.32 * −0.11 0.04 0.11 

Kriging risk 0.53 * −0.27 0.06 0.26 

Kriging risk (weighted) 0.49 * −0.26 0.03 0.22 

 
Grid-level correlation (64 km) 

Kriging risk 0.49 * −0.28 0.03 0.24 

Kriging risk (weighted) 0.43 * −0.26 0.01 0.19 
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Table 5. Cont. 

Lip. Oral Cavity and Pharynx Cancer Mortality 

Regression Model SE F1 F2 Adjusted R2 

 
IRIS-level correlation 

Kriging risk 0.37 * −0.21 0.01 0.15 

Kriging risk (weighted) 0.32 * −0.13 * −0.03 0.11 

Pleural Cancer Mortality 

Regression Model SE F1 F2 Adjusted R2 

 
County-level correlation 

Age-adjusted rate −0.13 0.35 * 0.03 0.11 

Kriging risk −0.18 0.51 * 0.02 0.25 

Kriging risk (weighted) −0.16 0.52 * −0.01 0.28 

 
Grid-level correlation (64 km) 

Kriging risk −0.18 0.47 * 0.04 0.20 

Kriging risk (weighted) −0.17 0.49 * 0.03 0.24 

 
IRIS-level correlation 

Kriging risk −0.01 0.46 * 0.06 0.22 

Kriging risk (weighted) 0.04 0.50 * 0.05 0.28 

Notes: * Significant at α= 0.01; SE: Deprivation index; F1: Exposure inhalation indicator;  

F2: Exposure ingestion indicator. 

The model explains a moderate proportion of the total variance when the dependent variable y is pleural 

cancer mortality for different levels of aggregation. The adjusted R
2
 ranges between 0.24 and 0.28,  

with significant correlation coefficients of up to 0.5 for F1. The results showed the consistency of the 

association between trace metal inhalation exposure and pleural mortality across the different 

aggregation levels. This is explained by the fact that the pleural mortality presented a homogeneous 

distribution within each county and the exposure indicator was not affected by the use of different 

spatial structures. Pleural mesothelioma is one of four types of mesothelioma, but it accounts for 

approximately 75 percent of all diagnoses of asbestos-related cancers. The disease starts in the pleura, 

the soft protective tissue surrounding the lungs, which can be attributed directly to its cause:  

repeated or heavy occupational exposure to airborne asbestos fibers. However, Peterson suggests that a 

significant number of cases of this cancer are apparently not asbestos-related and that even in the 

absence of asbestos, other agents can induce malignant mesothelioma [40]. Some types of nanoparticles, 

especially those containing nickel, could also be a risk of pleural diseases [41].  

3.4. Geographically Weighted Regression (GWR) 

In the aspatial analysis, we implicitly assumed that the impact of covariates was constant across the 

study area. This assumption is likely unrealistic for large areas, which can display substantial 

geographic variation in socioeconomic and environmental conditions. Therefore, the global statistics 

reported by this traditional regression model could potentially hide a number of interesting local 

relationships. The question is then to examine whether there are any meaningful spatial variations in 

these relationships. 

http://www.asbestos.com/mesothelioma/types.php
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County-level data were used to optimize the bandwidth of the GWR distance decay function.  

Figure 7 shows the relationship between AICc and bandwidth size for the two types of cancer.  

The following bandwidths were found to be optimal: lip, oral cavity and pharynx cancer mortality (47 km), 

and pleural cancer mortality (54 km). The local regression was based on the following number of 

closest observations, which represented 15%–20% of the data: 22 for the county level, 39 for the grid 

level, and 426 for the IRIS level. A comparison of the AICc values suggests that all of the GWR 

models outperformed the global model (Table 6).  

These results strongly suggest that the relationships between cancer (lip, oral cavity and  

pharynx-pleural) mortality and the environmental and deprivation indexes are not stationary but 

instead vary over the study area. The application of GWR clearly enhances the explanatory power of 

the covariates for the three spatial levels: the proportion of variance explained (adjusted R
2
) is almost 

doubled (Table 6). 

Figure 7. Impact of bandwidth size on the AICc of geographically weighted regression  

for each cancer. 

 

Figures 8 and 9 show the results of the geographically weighted regression applied to the county, 

grid and IRIS data. Two statistics are displayed for each spatial scale: (a) the proportion of variance 

explained (R
2
) and (b) the local correlation coefficient. 

The three spatial scales share the same southeast-northwest trend in the explanatory power of the 

local regression models for lip, oral cavity and pharynx cancer mortality: the lower mortality values in 

the south are better explained by the SE index than is the higher risk recorded in the northwest.  

As a recall, the largest R
2
 observed in the south (Figure 8 a) corresponds to areas with low SE index 

variation. Similar to the global model (Table 5), GWR led to local correlation coefficients and R
2
 

values that were higher at the county level than at the IRIS level.  

The lower pleural cancer mortality values are better explained in areas of low F1 variation  

(Figure 9a). The maps of the local correlation coefficients and the R
2
 values also present the same spatial 

structure over the different spatial coverages of aggregation: lower in the west оf tһе Aisne department 

and higher in the north of the Oise department. Very similar results were obtained for the different  

spatial scales.  
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Table 6. Comparison of local and global regression models at the three spatial scales. 

Lip. Oral Cavity and Pharynx Cancer Mortality 

Regression model Bandwidth Size Adjusted R2 AICc 

 
County-level correlation 

Global model 
47 km 

0.22 567.00 

Local model 0.52 513.47 

 
Grid-level correlation (64 km) 

Global model 
47 km 

0.19 1,530.76 

Local model 0.48 1,280.26 

 
IRIS-level correlation 

Global model 
47 km 

0.11 10,932.00 

Local model 0.21 10,112.32 

Pleural Cancer Mortality 

Regression Model Bandwidth Size Adjusted R2 AICc 

 
County-level correlation 

Global model  0.28 374.35 

Local model 54 km 0.48 348.09 

 
Grid-level correlation (64 km) 

Global model  0.24 931.65 

Local model 54 km 0.49 803.08 

 
IRIS-level correlation 

Global model  0.28 6,219.21 

Local model 54 km 0.46 5,852.26 

Figure 8. Results of the geographically weighted regression applied to the lip mortality 

kriged rates: (a) maps of the proportions of variance explained by deprivation index (R
2
); 

(b) maps of the local correlation coefficients with the deprivation index. 

 
(a) 

  
(b) 
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Figure 9. Results of the geographically weighted regression applied to the pleural cancer 

mortality kriged rates: (a) maps of the proportion of variance explained by the exposure 

inhalation indicator (R
2
); (b) maps of the local correlation coefficients with the exposure 

inhalation indicator. 

   
(a) 

   
(b) 

4. Discussion 

Our results substantiate the work on noise filtering described in the introduction section from  

Oliver et al. [11] and Goovaerts et al. [12,18]. Indeed, we found the following: (1) the mean risk 

values estimated under each of the three spatial structures were similar; (2) the IRIS risk estimates 

were non-negative; (3) and their sums were equal to the original county risk. Although the 

disaggregation of cancer data on a small scale is somewhat arbitrary, in particular when it does not 

take into account secondary information to guide this downscaling, the approach should facilitate the 

analysis of the relationships between health data and the putative covariates (i.e., environmental, 

socioeconomic, behavioral or demographic factors) that are typically estimated for different spatial 

scales. These covariates can potentially be subsequently used as secondary information in the kriging, 

leading to more detailed risk maps at finer scales [42]. 

The other issue was the so-called modifiable areal unit problem (MAUP), for which different 

geographic scales can lead to inconsistent results for relationships analysis. For example, the mortality 

rate reported at (1) the county level requires an aggregated deprivation index at the same resolution, 

and this aggregation obscures the intra-county variation and thus the relationship and (2) the IRIS 

level, at which the disaggregation leads to a large variance in estimated risk. Exploratory methods, 

such as the univariate Moran’s can serve as indications of the potential effect of the MAUP in the 

study how relationships based on the homogeneity and heterogeneity of spatial data are affected by the 

study level and may affect the ability of the study to detect a relationship [43].  
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In this study, very similar results were obtained for the different spatial scales between: 

 pleural cancer mortality and the exposure indicator F1.  

 lip, oral cavity, pharynx cancer mortality and the SE index.  

Whereas other studies on the relationship between heath and deprivation showed that the use of 

spatial representations other than the census tract produced different analytical results [35,44],  

the significant association between lip, oral cavity, pharynx cancer mortality and the SE index 

estimated using the county structure were stronger than they were under the IRIS structure.  

This difference between the significant correlation coefficients is the result of aggregation because 

the aggregation level is known to increase the strength of correlation [20]. Future work could provide 

tools to exhaust all possible aggregations and generate empirical frequency distributions of the 

statistical estimates that could be used to evaluate the sensitivity of results to aggregation effects. 

Based on the results obtained, we can confirm that the presence of this significant statistical 

association was likely not induced by the use of a particular geography. At the three spatial scales,  

the strongest correlation coefficients were found where low deprivation was associated with low lip, 

oral cavity and pharynx cancer mortality and where low environmental pollution was associated with 

low pleural cancer mortality.  

5. Conclusions 

This paper presents an approach for evaluating spatial relationships between health outcomes 

(mortality attributable to cancer) initially aggregated at the county level, district socioeconomic 

covariates, and exposure data modeled on a regular grid. The approach was illustrated using age-adjusted 

lip, oral cavity and pharynx, and pleural cancer mortality rates measured over the period 2000–2009 for 

the Picardy region. The deprivation index and trace metal exposure indicators were used as putative risk 

factors. For the different spatial scales, the strongest associations were found where low deprivation was 

associated with low lip, oral cavity and pharynx cancer mortality and where low environmental pollution 

was associated with low pleural cancer mortality. However, applying this approach to other areas,  

for other causes of death, or with other indicators always requires exploratory analysis to assess the role 

of the MAUP and downscaling health data in the study of the relationships that will allow  

decision-makers to develop interventions where they are the most needed.  
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