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Abstract: Spatial health inequalities have often been analyzed in terms of socioeconomic
and environmental factorsThe present study aimed to evaluate spatial relationships
betweerspatial data collected at different spatial scalége approach was illustrated using
health outcomes (mortality attributable to cancer) initially aggregated to the county level,
district socioeconomic covariates, and exposure data modeled on a regular grid.
Geographically weighted regression (GWR) waedito quantify spatialelationships

The strongestaissociationsvere found when low deprivation was associated with lower lip,
oral cavity and pharynx cancer mortality and when low environmental pollution was
associated with low pleural cancer mortalityowever, applying this approach to other
areas or to other causes of death or with other indicators requires continuous exploratory
analysis to assess the role of the modifiable areal unit problem (MadPYlownscaling

the health data on the study ofetmelationship which will allow decisioamakers to
develop interventions where they are most needed.
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1. Introduction

Analyzing the relationship between the environment and health has become a major issue for public
health in France as forecasted by the national plans for health and environment (NPHE). Two priority
areas were selected during the first NPHE: (1) preventindthheaks related to the quality of
resources and to chemicals and (2) developing environmental health through research, expertise
training and information. In 2009, the second NPHE was prepared from the perspective of the
upcoming conference on healthdathe environment organized by the World Health Organization.
Two main axes were prioritized: (1) identifying and managing geographic areas where hotspot
exposures to substances present in air, soil, water, and foods resulting from anthropic activities
sugpected of generating potentially increasing risks to human health and (2) reducing environmental
health inequalities. Thus, environmental health inequality has become a substantial topic that guides
policy developments in France. To address this aim, teexe urgent need for tools that can quantify
the spatial relationships between the environment, socioeconomics and health and that can highligh
areas with strong inequalities.

Health inequalities are a quite recent study toftcevious studies were essentially based,
at an individual levelon specific surveysl[2] and, at a spatially aggregated level (administrative unit),
on specific region$3,4]. At a regional scale, data are often available at a fine level or resolution.
This allows for building environmental, socioeconomic and health indicatatgferent spatial scales;
for example, Salmondt al [5] built a new censubased index of deprivation based on the smallest
possible geographical areas.

Regarding health datahereare strict privacy rules for individud¢vel health data that prohibit
their public release. Aggregated data are only available at the geographic level, frondiadiasure
and reconstruction of patient identity are impossibie-rancethesecensus unitgould beregions or
counties.This aggregation unfortunately results in incidence or mortality rates that can be unreliable
over small and/or sparsely populated areas. This effect, known #&sntlal number problem[6],
should be correctedf an accurate evaluation of headthvironment relationships.

Several authors have already addressed the spatial relationships between health data an
environmental data. One of the isstesed by spatial epidemiologists and for exposure assessment is
the combination of data measured for very different spatial scales and with different levels of
reliability. In reality, the analysis of cancer mortality maps is often hindered by the presence of noise
caused by unreliable extreme rates computed from dpgospulated geographic units. A number of
approaches have been developed to improve the reliability of risk estim&le3 fiz most commonly
used are Bayesian methods [9], which are commonly referred to as the BYM model. Bayesian methods
prohibit any clange of scales, an operatidhat is easily conducted within the framework of
kriging. Goovaerts and Gebreab [10] conducted a simulatieed evaluation of the performance of
geostatistical and full Bayesian diseasapping models, and they found that tigeostatistical
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approach yielded smaller prediction errors and more precise and accurate probability intervals and tha
it allowed for better discrimination between counties with high and low mortality risks.

Poissonkriging, in this context, presentsspatial methodology that allows for filtering the noise
caused by the small number problem and enables the estimation of mortality risk and the associatec
uncertainty at different spatial scales. This approach has been implemented to modeling cancar risk b
number of authors: Oliveet al [11] studied cases of cancer in children under fifteen years of age,
and Goovaerts and collaborators considered lung canceyl3]12breast cancer []145],
prostate cancer [16¢ervical cancer [17], and pancreatiaicar [18], and all found it to be relevant for
this particular problem.

Selection of scale is perhaps the most important factor in creating and analyalagicanship
between environmental exposure and health outcdi®sThis issue is similar tthe modifiable area
unit problem (MAUP) a term introduced bppenshaw20,21]. The MAUP can causaelifferences in
the analytical results of the same input data compilel@udifferent zoning systems [23].

The present study aims to evaluate spatial relsligps at three levels of aggregation:
the IRIS level, anntermediate scale (the grid leve§nd the county level between health outcomes
(mortality attributable to cancer) initially aggregated to the county level, district socioeconomic
covariates, andxposure data modeled on a regular grid. The approach is illustrated usamjusied
lip, oral cavity and pharynx, and pleural cancer mortality rates over the perio@2RP0Q0for the
Picardy region. The deprivation index and trace metal exposuratmdi@re used as putative risk factors.

2. Materials and Methods
2.1.StudyArea

The region of Picardy covers an area of roughly 19,566 and is located between the
North Artois, the llede-France in the south, the Bay of the Somme to the west and the East Champagne.
It covers the departments of Somme, Oise and Aisne. The urbanization rate in this region is far below
the national average (60.496rsus74% for the ente country). The agricultural sector provides more
than 4% of French agricultural production. It also has significant industrial activity through which fine
chemicals and specialty chemicals account for nearly 15% of jobs and the vehicle industry comprises
40% of industrial employment (26.5% of assets employed in industigus19.5% at the national
level). Three administrative or statistical spatial units, of different sizes, were considered: IRIS
(the smallest administrative units in Picardy, 2,129s)miith irregular sizes and shapét km? grid
cells (308 unitsthat are all squares of same siaad counties (112 unitsyvith irregular sizesand
irregularshapesFigure 1 shows the counties of the study area.

2.2. Data
2.2.1. Exposure Indicators

The environmental indicators (inhalation and ingestion) used were those described in Caiddville
for building GlISbased modeling platforms for quantifying humanastpe to chemical substances][24
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The exposure indicators integrate soil, water, faod, demographic and behavioral geferenced
data to construct population exposure doses and associated risks at a fine resolutfagril).km

Figure 1. Map of thestudy area
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Figure 1. Cont.
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Trace elements (nick&i, cadmiumCd, and leadPb) were modeledithin the Picardy region [35
for various exposure pathways: atmospheric contaminant inhalation and ingestion of soil, vegetation,
meat, eggs, milk, fish and drinking water.

2.2.2. DeprivatnIndex(SE)

The deprivation inex used was developed by Rey][26d was built at the French census block
(IRIS) using the following socioeconomic dathe median household income, the percentage of high
school graduates in the population aged 15 yaadsolder, the percentage of bic@lar workers in
the active popul@n, and the unemployment rafehe deprivation index was also constructed for the
county. For each county, the deprivation index was calculated as the populeitried average
scorefor all of the IRISes in the county.

2.2.3. HealthData

The health data came from the Regional Health Observatory of Pidaiy where the
ageadjusted mortality rates are calculated for each county from 2000 to 2806f& 1 shows the
cumulative maximum and minimum numbef mortality andageadjustedatesper 100000 persoryears
by county from2000 to 2009.

Table 1. Cumulative maximum and minimum numbeif mortality and agedjusted rates
per100,000personyearsby county,2000 2009.

Cancer Mortality Numbers of Cases Age-adjusted RatesPer 100,000Personyears

Lip, oral cavity and pharynx cancer mortality

Cumulative 1,327 16.26
Minimum 1 2.81
Maximum 128 37.4

Pleural cancer mortality

Cumulative 263 3.78
Minimum 0 0
Maximum 18 11.94
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Figure 2 shows the spatial distributioageadjustedlip, oral cavity, pharynx, and pleur@ancer
mortality per 100,00(Qoersonyears.It should be noted thdfl) the population is not evenly distributed
throughout the study area af®) the ageadjusted rate calculated from the lgspulated counties tend
to be less reliable. This implies that the interpretation of the map must be carried out with caution.
The scatter plot at the bottom of Figdr#lustrates this effect, weknownas theismall number probletn

Table 2 pesents the different spatial scales of measurement and the approaches used to homogeniz
spatial coverage.

Figure 2. (a) Map of log population densityGeographic distribution of agmdjusted
mortality rates per d0,000 persotyears recorded over the period 200009 for:(b) lip,

oral cavity and pharynx(c) pleura cancer mortality. The bottom scatter plots illustrate
(d) the ageadjusted mortality rates for lip, oral cavity and pharynx cancers plotted against
population density and) the ageadjusted mortality rates of pleura cancers plotted against
population density
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Table 2. Spatially resolved data types and approaches used to homogenize spatial coverage.

Spatial Scale or

Indicator Variables Sources . Spatial Operation
Resolution
Socioeconomit SE: Deprivatiorindex French census Vector data from Spatialpopulation
Reyet al [26] the IRIS. weightedaggregation
Exposure F1: Exposure inhalation Caudevilleet al [24,25] Raster data of  Spatial aggregation
indicator 1 km? grid
F2: Exposure ingestion indicatt
Health Lip, oral cavity and pharynx Regional Health Vector data from Poisson kriging
cancer mortality Observatory of the county
Pleural cancer mortality Picardy[27] database

2.3. Methods

2.3.1 The Geostatistical ApproaciCorrecting Small Nmbers andEstimatingthe Corresponding Risk
at Different Spatial Scales

To correct for the instability attributable to the small number problem, a number of algorithms have
been developed that aim at estimating risk. The geostatistical approach, in this context, presents at
interesting alternative; it conducts the noise filtering and allows for risk estimation along with the
associated uncertainty at different scalgsis section provides a brief overview of the geostatistical

methodology for estimating risk values. See Goovdéfisfor more details about this approach.
The cancer mortality courd(v,) within a countyv, is interpretedas the realization of a random

variable D(v,) that is Poisson distributed with a parame®xpected number of countf)at is the
product of the population size(v,) by the local riskR(v,). R(v,) might be thought of as a
noisefiltered mortality rate forareav, , which we also refer to as tmeortality risk.It is estimated by

using a variant of kriging with nonsystemagicors known as Poisson krigifi2g].
Themortality risk and the associated kriging variance for an areae estimated as:

k
Ew,)=& /iz(v)

i=1

Kriging variance is computed as follows:
k
sz(va) = CR(Va’ V) -é. '{QR(V’ V)a - (In)t
i=1

where x represents either an area(ATA kriging). The kriging weights(/i) and the Lagrange
parametee v,J are computed by solving the Poisson kriging system of equations

é’J [Cr(v, %)+ F%)] +() &(yvil= K
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K

a’;=1

=

whered =1ifi =] and O otherwise. mT/m(\e) ledide to snwalier weightsifoa n c €
rates measured over smaller population sizes. The covar@nGe,v;) is approximated as the
populationweighted average of the poistipport covariancec.(h) computed between any two
discrete locations between the argandy, .

2.3.2. SpatialAutocorrelation

Global Moraris | was calculated for all of the explanatory variables as well as for the dependent
variables within three spatial structures to determine the role of spatial representation using
global spatial autocorrelation. The Global Mdisan spatial autocorrelation statistic measures the
selfsimilarity of a spatial variablis value as #unction of adjacency [d9using a firstorder Queeds
case spatial weight matrix and 999 permutations.

2.3.3. Exploring thérelationshipdetweerHealh, Environmentand Socioeconomic Factors

Analyses of correlatiabetween health data and putative factors are traditionally performed using
a global orflaspatiab regression model, under the implicit assumption that the impact of variables is
constant ovethe entire study area. This assumption is likely unrealistic for large areas, which can
display large geographic variatiottheringham and colleagues develo@etgraphicallyweighted
Regression (GWRio explore spatial nestationarity and map statiiss to visualize the spatial patterns
of the relationships between dependent and independent vaiz®lag].

AspatialRegression

The explanatory power of SE and exposure indicators was first investigated using the following
multiple linear regressiomodel:

g- ba R e

where[ is the kriging risks estimatefor observationi, T o is the intercept] 4is the regression
coefficient (slope) of each factos, and-is the error termTo account for the reliability of the
kriged risksin the regression, each observation receives a weight that is thecactipf the kriging
variance [33.

GeographicallywWeighted Regression

In geographically weighted regression, the regression is conducted within local windows centered
around eaclobservation. The regression coefficients are thus locatmendent

9= uwa hbvx e

Within each window, observations are weighted according to their proximities to the center of the
window. A variety of distance decay functions are availdblehis paper, we used the XX function,
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which is characterized by a bandwidth that corresponds to the distance beyond which the weight
rapidly approaches zero.
The bandwidth is estimated by minimizing the AICc value

a n+tr(S)

AIC. =2nlog. (B +nlog_(2
o 9 (§) +nlog, (2 p) B 2-1()

wheren is the number of observations in the datadeis the estimate of the standard deviation of
the residuals, antt(S) is the trace of the hat matrikor more information on the theory and practical
application of GWR, the reader is referred to Fotheringabath [34].

3. Results
3.1.PoissorKriging for Health Indicator

Figures 3 and 4 show the risk values with the corresponding prediction vari@stimated by
Poisson kriging at(a) the county level(b) the grid level and (c) the IRIS level. All maps are
substantiallysmoother than the original rate map because the noise caused by small population sizes
has been filtered. These maps allow a Ibeftgualization of areas of higher risk&e lip, oral cavity
and pharynx cancer mortality rates vary between 2.81 and 37.40 p@0@p6rsonyears After the
application of Poisson kriging, the minimum rate increased from 2.81 to 8.87 dea®@0100
personyears and the maximum rate of 37.40 decreased to 25.14 deaths p@@dpersonyears
We can note, for instance, that the high rates recorded in sparsely populated counties such a:
SainsRichaumont (37.40 deaths/1,000 personyearg, north of he Aisne department, are strongly
smoothed (24.46 deaths/1000 personyeard. The highest rate recorded in a densely populated
county (i.e., Abbeville North county26.60 deaths/10@00 personyearg remained nearly the same
after smoothing (24.90 deathsl00000 personyeary. Zero pleural cancer mortality rates
recorded in sparsely populated counties were also smoothed, leading to minimum values of
1.00 deaths/1Q000personyears

The maps of the kriging variance indicate the higher reliability of risks estimated in densely
populated areasuch as Amiens, Beauvais, Saint Quentin, and Abbevilke variance of the risk
estimates decreased as the geographic unit area increasedhdrdoRiS level to the grid level and
then to the county levéTable 3).

The risk estimates are characterized by positive spatial autocorrelation within the three spatial
scalespO 0. 05) but display | ow | evel =lationfat tlsetlRIS i st
level in comparison with the grid and county lev@able 3). In this case, the counties are internally
homogeneous in terms of mortality according to the risks estimated by kriging.
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Figure 3. Maps of thelip, oral cavity and pharyngancemortality risk estimates and the
corresponding prediction variance computed by Poisson kriging at three spatial scales:
(a) county level (b) grid level andc) IRIS level.
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Figure 4. Cont.
(@) (b) (©)
B sw2

B esto 108
B e4toss
[]72t084
[]ste72
[]48to6
[]36t48
[ 241036
B 121024
Wowi2

We:tes

Bl ssto63
B 48to56
[]42toss
[]35tos2
[]z8t3s
[Jzitze
[ 14te21
Wl oters
Wotwor

Kriging variance

Table 3. Summarystatisticsfor health indicatorsfter applyingPoisson kriging

Lip. Oral Cavity and Pharynx Cancer M ortality

Estimation Type Mean Min Max Moransd

County Level
Kriging risk 15.59 8.88 25.14 0.65 (0.001)
Kriging variance 8.36  1.87 13.42

Grid Level
Kriging risk 15.32 8.31 25.92 0.78 (0.001)
Kriging variance 16.06 2.81 30.09

IRIS Level
Kriging risk 15.35 7.38 26.56 0.96 (0.001)
Kriging variance 22.52 4.1 33.24

Pleural Cancer Mortality

Variables Mean Min Max Moranés |

County Level

Kriging risk 316 1 8.72 0.52(0.001)
Kriging variance 1.92 0.43 3.07

Grid Level
Kriging risk 2.99 0.87 8.48 0.62(0.001)
Kriging variance 3.65 0.63 6.67

IRIS Level
Kriging risk 3.21 0.87 9.04 0.93(0.001)
Kriging variance 4.99 0.89 7.32
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3.2.SpatialAggregationfor the Explanatory Variables

The mean values of the explanatory variables under each of the three spatial structures are simila
(Table 4). The variables F1 (exposure inhalation indicator) and F2 (exposure ingestion indicator)
display greatly reduced variability under different spatial structures. The variable SE has the highest
levels of variability. In contrast, the SE index is affectedthy use of different spatial structures.

The lowest average was4.5 at the county level in comparison witly.32 at the IRIS level,
and the variance decreased with increasing aggregation, unlike with F1 and F2, for which the lowes
and strongest averag weresomewhasimilar for the three spatial scales.

All of the variables were characterized by positive spatial autocorrelation within the three spatial
scales atlevels @O 0. 05 . FotheMbtamtd F2values of trehe t |
similar (Table 4); however, the F1 and F2 were not affected by the use of different spatial structures.
This is explained by the fact that the exposure indicator presented a homogeneous distribution within
each county (the original resolution of expa&sundicator data was a grid (18 10 km);
see Caudvillest al [24,25]. Figures 5 and Ghow maps of the Sidex and the F1 aggregated at (a)
county level (b) grid level and (c) IRIS level

Table 4. Summary statistickor theexplanatory variables.

Variables Mean Min Max Variance Moran's |

County Level

SE: Deprivation index 0.61 145 348 2.84 0.63(0.001)

F1: Exposure inhalation indicator 0.08 0.06 0.13 0.0002 0.81(0.001)

F2: Exposure ingestion indicator 0.27 0.27 0.39 0.002 0.61(0.001)
Grid Level

SE: Deprivation index 0.58 15.1 41  3.02 0.70(0.001)

F1: Exposure inhalation indicator 0.08 0.06 0.13 0.0002 0.88(0.001)

F2: Exposure ingestion indicator 0.27 0.28 0.48 0.002 0.61(0.001)
IRIS Level

SE: Deprivation index 0.48 17.3 18 4.62 0.55(0.001)

F1: Exposure inhalation indicator 0.08 0.06 0.15 2,00H 04 0.91(0.001)

F2: Exposure ingestion indicator 0.26 0.31 0.68 0.003 0.65(0.001)

Figure 5. Maps ofthe deprivationindex computed at three spatial sca(@¥.county level
(b) grid level, (c) IRIS level
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Figure 6. Maps ofthe exposurdanhalationindicator (F1) aggregated afa) county level
(b) grid level (c) IRIS level.
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3.3.Aspatial Regression

Table 5 shows the correlation coefficient between each covariate and mortality rates before and
after noisefiltering using Poisson kriging. Filtering the noise because of the small number problem
clearly enhanced the explanatory power of the covariates: therpoop of variance explained
(adjustedR?) increased by nearly one order of magnitude: lip, oral cavity and pharynx cancer
mortality, 0.11 to 0.26, and pleural cancer mortality, 0.11 to 0.25. The uncertainty attached to the risk
estimates can be accounted for by weighting each estimate accarding inverse of its kriging
variance, leading to correlation coefficients aufjustedR? values that were slightly larger for pleural
cancer mortality and a slightly lower mortality rate for lip, oral cavity and pharynx cancers.

Application of the lineamodel for lip, oral cavity and pharynx cancer mortality data explained a
moderate proportion of the total varian@eljustedR? = 0.22 and 0.19) at the county level and grid
level, respectively. This proportion was lower when the analysis was conducted IS level
(adjustedR? = 0.11). It is noteworthy that the correlation coefficients for the SE factor were always
significant for the different aggregation levels and were higher at the county level than at the IRIS
level, which was the expected r#sbecause aggregation is known to increase the strength of
correlation [2085]. Linear association between SE index and cancer mortality hasdbeemstrated
in other works [3639)].

Table 5. Resultsof the correlation analysis

Lip. Oral Cavity and Pharynx Cancer M ortality

RegressionM odel SE F1 F2 Adjusted R
County-level correlation
Age-adjusted rate 0.32* 1T0.1 004 0.11
Kriging risk 0.53* 1T0.2 0.06 0.26
Kriging risk (weighted) 0.49* T0. 2 0.03 0.22
Grid -level correlation (64 km)
Kriging risk 0.49* 0.2 0.03 0.24

T
Kriging risk (weighted) 0.43* 10.2 001 0.19
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Table 5.Cont.
Lip. Oral Cavity and Pharynx Cancer Mortality
Regression Model SE F1 F2 Adjusted B
IRIS-level correlation
Kriging risk 0.37* 1T0. 21 0.01 0.15
Kriging risk (weighted) 0.32* 1T0.*13 T0.03 0.11
Pleural Cancer Mort ality
RegressionModel SE F1 F2 Adjusted R
County-level correlation
Age-adjusted rate 1T0.13 0.35* 0.03 0.11
Kriging risk 1T0.18 0.51* 0.02 0.25
Kriging risk (weighted) 1T0.16 0.52* 1T0.01 0.28
Grid -level correlation (64 km)
Kriging risk 1T0.18 0.47* 0.04 0.20
Kriging risk (weighted) 1T0. 17 0.49* 0.03 0.24
IRIS-level correlation
Kriging risk 1T0.01 0.46* 0.06 0.22
Kriging risk (weighted) 0.04 0.50* 0.05 0.28

Notes:* Significant atU= 0.01; SE Deprivation index;F1: Exposureinhalation indicator;
F2: Exposurdngestionindicator.

The model explains a moderate proportion of the total variance when the dependentyarbleal
cancer mortality for different levels of aggregation. The adjustedafyes between 0.24 and 0.28,
with significant correlation coefficients of up to 0.5 for F1. The results showed the consistency of the
association between trace metal inkiala exposure and pleural mortality across the different
aggregation levels. This is explained by the fact that the pleural mortality presented a homogeneous
distribution within each county and the exposure indicator was not affected by the use oftdifferen
spatial structures. Pleural mesothelioma is ontowf types of mesotheliombaut it accounts for
approximately 75 percent of all diagnoses of asbeastased cancers. The disease starthéngleura,
the soft protective tissue surrounding the lungs, which can be attributed directly to its cause:
repeated or heavy occupational exposure to airborne asbestos fibers. However, Peterson suggests tha
significant number of cases of this cancez apparently not asbestodated and that even in the
absence of asbestos, other agents can induce malignant mesothéljor8ame types of nanoparticles
especially those containing nickel, could also be a risk of pleural dijddses

3.4. Geograplrcally Weighted Regressi(GWR)

In the aspatial analysis, we implicitly assumed thatimpact of covariates was constant across the
study area This assumption is likely unrealistic for large areas, which can display substantial
geographic variation isocioeconomic and environmental conditions. Therefore, the global statistics
reported by this traditional regression model could potentially hide a number of interesting local
relationships. The question is then to examine whether there are any measpagjall variations in
these relationships.


http://www.asbestos.com/mesothelioma/types.php
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Countylevel data were used to optimize the bandwidth of the GWR distance decay function.
Figure 7 shows the relationship between AICc and bandwidth size for the two types of cancer.
The following bandwidths werfound to be optimal: lip, oral cavity and pharynx cancer mortalitkif®7
and pleural cancer mortality (54 km). The local regression was based on the following number of
closest observations, which represente®i1Z0% of the data: 22 for the county é&yv39 for the grid
level, and 426 for the IRIS level. A comparison of the AICc values suggests that all of the GWR
models outperformed the global mo{d€&hble6).

These results strongly suggest that the relationships between cancer (lip, oral cavity and
pharynxpleural) mortality and the environmental and deprivation indexes are not stationary but
insteadvary over the study aredhe application of GWR clearly enhances the explanatory power of
the covariates for the three spatial levels: the propodforariance explained (adjust&d) is almost
doubled(Table6).

Figure 7. Impact of bandwidth size on the AICc of geographically weighted regression
for each cancer.
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Figures8 and 9 showthe results of the geographically weighted regression applied to the county,
grid and IRIS data. Two statistics are displayed for each spatial ézplbbe proportion of variance
explained R%) and(b) the local correlation coefficient.

The three spatiadcales share the sammeutheashorthwesttrend in the explanatory power of the
local regression models ftip, oral cavity and pharynx cancerortality: the lower mortality values in
the south are better explained by the SE index than is the higher risk recorted narthwest
As a recall, the larges? observed in the south (Rige 8 8 corresponds to areas with low SE index
variation. Similar to tie gloal model (Table 5 GWR led to local correlation coefficients afd
values that were higher at the county level than at the IRIS level.

The lower pleural cancer mortality values are better explained in areas of low F1 variation
(Figure ). The naps of the local correlation coefficients and fievalues also present the same spatial
structure over the different spati al coverages
and higher in the north of the Oise departmé&fary similar results were obtained for thifferent
spatial scales
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Table 6. Comparisorof local and global regression models at the three spatial scales.

Lip. Oral Cavity and Pharynx Cancer M ortality

Regression model Bandwidth Size Adjusted R2 AlCc
County-level correlation

Global model 0.22 567.00
47 km

Local model 0.52 51347

Grid -level correlation (64 km)

Global model 0.19 1,530.76
47 km

Local model 0.48 1,280.26

IRIS-level correlation

Global model 0.11 10,932.00
47 km

Local model 0.21 10,112.32

Pleural Cancer Mortality

RegressionM odel Bandwidth Size Adjusted R2 AlCc

County-level correlation
Global model 0.28 374.35
Local model 54 km 0.48 348.09
Grid -level correlation (64 km)
Global model 0.24 931.65
Local model 54 km 0.49 803.08
IRIS-level correlation
Global model 0.28 6,219.21
Local model 54 km 0.46 5,852.26

Figure 8. Results of the geographically weighted regression applied to the lip mortality
kriged rates{a) maps of the proportions of variance explaineddbprivationindex (F);
(b) maps of the local correlation coefficients with theprivationindex
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Figure 9. Results of the geographically weighted regression applied to the pleural cancer
mortality kriged rates(a) maps of the proportion ofariance explained bthe exposure
inhalation indicatoR?); (b) maps of the local correlation coefficients with #yosure
inhalation indicatar
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4. Discussion

Our results substantiate the work on noise filtering described in the introduction section from
Oliver et al [11] and Goovaertst al [12,18]. Indeed, we foundhe following (1) the mean risk
values estimated under each of the three spatial strusteressimilar;(2) the IRIS risk estimates
were nonrnegative; (3) and their sums were equal to the original county risk. Although the
disaggregation of cancer data on a small scale is somewhat arbitrary, in particular when it does nof
take into account sendary information to guide this downscaling, the approach should facilitate the
analysis of the relationships between health data and the putative covareatesnyironmental,
socioeconomic, behavioral or demographic factors) that are typically esdirfa@t different spatial
scales. These covariates can potentially be subsequently used as secondary information in the kriging
leading to more detatl risk maps at finer scales [42

The other issue was the-salled modifiable areal unit problem (MAUPipr which different
geographic scales can lead to inconsistent results for relationships analysis. For example, the mortality
rate reported afl) the county level requires an aggregated deprivation index at the same resolution,
and this aggregation obges the intracounty variation and thus the relationship 48y the IRIS
level, at which the disaggregation leads to a large variance in estimated risk. Exploratory methods,
such as the wunivariate Moranos c afrthe MAUPvVrethea s i
study how relationships based on the homogeneity and heterogeneity of spatial data are affected by th
study level and may affect the ability of thad to detect a relationship [#3



