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Abstract: This paper concentrates on the HFMD data of China from March 2009 to 

December 2012. We set up a mathematical model to fit those data with the goodness of fit 

and obtain the optimal parameter values of the model. By the Chi-square test of statistical 

inference, the optimal parameter values of the model are reasonable. We obtained the basic 

reproductive number of the disease for each year, and it is larger than 1. Thus, we conclude 

that HFMD will persist in China under the current conditions, so we investigate the 

preventive measures to control the HFMD. If the preventive measures proposed in our 

paper were implemented, HFMD would be controlled quickly and the number of infections 

would decline rapidly over a period of time. 
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1. Introduction 

Hand, foot and mouth disease (HFMD), an infectious disease caused by enterovirus and 

Coxsackievirus, usually happens to children under age of five, with an especially high incidence being 

observed for those under three. It can result in herpes in such body parts as hands, feet and mouth and 

even other complications such as myocarditis, pulmonary edema, and aseptic meningoencephalitis in 

some children. Some severely affected patients may die due to the quick progress of the disease [1]. 

There are over twenty types of enterovirus leading to HFMD. The common pathogens of HFMD are 
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Type 16, Type 4, Type 5, Type 9, and Type 10 for Coxsackievirus Group A, Type 2 and Type 5 for 

Coxsackievirus Group B, and Enterovirus 71 (EV71). Coxsackievirus A16 and EV71 are the most 

common, and cause severe mortality in children. 

HFMD spreads to children in the following ways: close contacts with crowds, touching  

virus-carrying hands, towels, handkerchiefs, toys, utensils, bedding and underclothes and alike, air-borne 

spread and mouth-to-mouth spread of the virus in the throat secretions and saliva, and consuming 

infected water and food. Adults are immune to the disease due to the antibodies in their bodies 

although most of them are exposed to the virus. Some 80% of the infected are children under the age 

of five. Most adults do not have any symptoms after infection, which is called a latent infective status. 

Most infants and very few adults would present symptoms, which is called apparent infective status. 

The proportion of latent to apparent infections is about 100:1. Most infected children can be cured 

without any sequela after infection. Ulcerative stomatitis will heal up in a week or so, and the herpes in 

vola will recover in ten days or so. However, delayed diagnoses and treatment may cause heart, brain 

and kidney complications that can result in the death of the infected children. HFMD is a highly 

contagious disease with a latency period of 3–7 days. The possibility of serious symptoms caused by 

the virus infection by HFMD is much higher than that by other types of enterovirus [2]. 

In 1957, the first case of HFMD was reported in New Zealand. In 1958, the Cox Virus was 

extracted and purified in Canada and the disease which caused by Cox Virus was named HFMD in 

America in 1959. Enterovirus 71 which was later realized as the other kind of HFMD virus was first 

discovered in California [3] and then outbreaks of HFMD epidemic ocurred in many areas of the 

world, such as the United States of America, Australia, Europe, Brazil, Japan, and Malaysia [3–11]. 

These outbreaks of HFMD have caused panic among people from all over the world, making people 

worry about such epidemics of HFMD, because innumerable people were infected and many of them 

were in immediate danger of death and even died eventually. In 1975, an epidemic of HFMD appeared 

in Bulgaria, 750 people were infected, 149 people had paralyses and 44 people died [5]. In 1997,  

a HFMD epidemic attacked Sarawak, Malaysia, causing 34 children deaths [11]. In 1998, a large-scale 

epidemic of HFMD occurred in Taipei, where according to the statistical data of the local government, 

there were 129,106 people who were infected by HFMD virus or herpangina, and 405 people got even 

worse, with neurological complications or pulmonary edema, and finally 78 children died during this 

HFMD epidemic [12–16]. In China, there have also been reports of HFMD cases such as an epidemic 

of HFMD that broke out in Fuyang, Anhui Province in 2008, where in a short period, there were 

25,000 people infected with HFMD virus, and among these, 42 children lost their lives [17]. In 2010, 

an outbreak occurred in southern China’s Guangxi Autonomous Region as well as in Guangdong, 

Henan, Hebei and Shandong provinces. Until March 70,756 children were infected and 40 children 

died from the disease. By June, 537 children had died [18]. Besides, in other places or countries of 

Asia, outbreaks of HFMD epidemic have also occurred and been publically reported. 

Nowadays, people have become aware that HFMD is dangerous to the health of human beings, 

especially to infants and children and that it is a threat to society. Tiing and Labadin used a deterministic 

SIR model to predict the sum of infected people and the duration of an outbreak as it occured in 

Sarawak [19]. Liu used a SEIQRS models to simulate the dynamics of HFMD transmission, got a positive 

periodic solution, and proved that the disease persists [1]. Su and Liu set up an age-structured HFMD 
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model with isolation to analyze the conditions of the existence of the endemic equilibrium [20]. Ma et al. 

proposed a dynamic model with periodic transmission rates to investigate the seasonal HFMD [2]. 

This paper is organized as follows: Section 2 gives the data of HFMD in China and studies how to 

build a suitable epidemic model. Section 3 shows the results. Section 4 presents the corresponding 

conclusions and possible preventive measures to control HFMD. 

2. Methods  

2.1. Data  

The Ministry of Health of the People’s Republic of China declared that HFMD was ranked as a 

Class C Infectious Disease on May 2nd, 2008. The Chinese Center for Disease Control and Prevention 

(China CDC) does statistical work on the number of people who have HFMD every month [21].  

The following is the data from China CDC from March 2009 to December 2012 in China (Hong Kong, 

Macao and Taiwan are not included in this work.). See Table 1 (where “– –” indicates missing data).  

In general, medical staffs easily determine HFMD infections just by relying on symptoms such as a 

slight fever followed by blisters and ulcers in the mouth and rashes on the hands and feet. In fact, it is 

easy to distinguish between chicken pox, dental ulcer, foot-and-mouth disease, herpangina, scarlet 

fever and so on. Furthermore, the final result of the diagnosis will be made in the laboratory according 

to samples of throat swabs or feces. So the data from the China CDC comprises the reported data of 

HFMD from one place or another, and clinically confirmed cases. Once an outpatient is examined to 

confirm HFMD infection, he or she would be necessarily be hospitalized, so the data that China CDC 

provides covers hospitalization. Certainly, we have to ignore the rare cases where the patients’ 

conditions were relatively mild and they returned home for treatment with the doctors’ permission. 

Table 1. The number of the HFMD patients reported every month/year. 

Mouth/Year 2009 2010 2011 2012 

January – – 37,567 32,179 50,758 
February – – 23,862 10,609 40,505 

March 54,713 77,756 34,709 99,052 
April 212,435 248,609 99,819 237,478 
May 169,073 354,347 230,460 462,116 
June 178,680 343,100 303,594 381,626 
July 162,060 261,263 253,442 248,739 

August 99,897 119,096 132,154 118,333 
September 85,504 101,654 120,802 135,974 

October 76,948 87,612 122,491 146,392 
November 61,918 79,591 152,768 150,264 
December 47,817 60,879 126,679 127,205 

2.2. Model Analysis  

The population associated with HFMD is divided into five compartments: The susceptible (S), 

exposed (E), infectious and not hospitalized (I), infectious and hospitalized ( Q ), and recovered ( R) 
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individuals. The total population is N = S + E + I + Q + R. We use β, , ρ, γ1, γ2, γ to denote the 

transmission rate, the rate of progression to the infectious and not hospitalized, the proportion of the 

infectious and hospitalized, the recovery rate of the infectious and not hospitalized, the recovery rate of 

the infectious and hospitalized individuals, the ratios of the recovered individuals becoming 

susceptible individuals (Figure 1). 

Figure 1. Flow chart of compartments of the HFMD model. 

 

2.3. Parameters and Model Hypothesis 

(1) Given the short course of HFMD, it is reasonable that we ignore the mobility of the patients,  

the space structure and the environmental climate of the model to collect all these data. 

(2) According to the annual data from the China CDC, we can assume the initial numbers  

Q(0) (see Table 2.). 
(3) We fix the birth and death rate   = 1/(70 × 365) = 3.9139 × 10−5. We select 10% of the total 

population in China as the object of our investigation, that is S(0) = 1.4 × 108. 

(4) By simulation, we find that the mortality rate   of HFMD is very small and almost equal to 0, 

that is  = 0.  

(5) According to the biological significance, we set the range of each parameter reasonably in Table 2. 

2.4. Model Formulation 

The differential equations for HFMD model are: 
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with initial conditions: 

  5
+(0), (0), (0), (0), (0) RS E I Q R   (2)

Following van den Driessche and Watmough [22], we can compute the basic reproduction number: 
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3. Results 

3.1. Parameter Estimation 

We estimate parameters of system (1) by calculating the minimum sum of square (MSS) [23]:  

2(log (1 data per month)MSS   
2

2log (1  on day 1+infectious +on day  and hospi 28(or 29,3t 0al ,3iz )ed 1))   (4)

with the MATLAB (The Mathworks, Inc., Natick, MA, USA) tool fminsearch, which is a part of 

optimization toolbox. All optimal parameter values are obtained only when the results of fminsearch are 

convergent. Those values are shown in Table 2. Here, we also calculate the basic reproduction number. 

Table 2. Estimation of parameters and the basic reproduction number from 2009 to 2012. 

Parameter Interval and 0R  Source 2009 2010 2011 2012 

 in [0.0001,50] MSS 1.0252 0.5575 0.5149 0.7738 

1 in [0.1,1] MSS 0.9419 0.5136 0.4744 0.7348 

2 in [0.1,1] MSS 0.4034 0.2251 0.3080 0.2013 

 in [0.0001,1] MSS 0.3907 1 1 1 
 in [0.01,1] MSS 0.01 0.01 0.01 0.01 
 in [0.0001,1] MSS 0.0089 0.0072 0.0126 0.0111 

(0)S  Fixed 1.4 × 108 1.4×108 1.4 × 108 1.4 × 108 

(0)E in [1.8 × 104,1.4 × 107] MSS 2.4029 × 105 2.0430 × 104 1.8290 × 104 1.9790 × 104

(0)I  in [1.8 × 103,1.8 × 105] MSS 1.9469 × 103 1.8001 × 103 1.8 × 103 1.8001 × 103

(0)Q  Fixed 1,765 1,212 1,038 1,673 

(0)R  Fixed 0 0 0 0 

0R  Calculated 1.1028 1.0993 1.0911 1.0809 

It is shown that the same parameters in the model (1) change relatively little in every year in Table 2,  

so we make predictions about the prevalence trends in subsequent years with the help of the data of 

HFMD from 2009 to 2012 in China, which means that our research work possesses a certain reference 

value. More specifically, by analyzing the parameters  , 2 , 0R  in Table 2 we draw up the following 

conclusions conformed to reality that the incubation period 1/  is approximately equal to 1–2.5595 

days, and the course of treatment 21/   is about 2.4786–4.9677 days. Moreover, 0R , indicating the 

numbers of persons that one patient infects in an average sick period, is basically stable at around 1.1, 

which explains why HFMD has yet not broken out on a large scale despite the fact that it continues to 

be prevalent in China. 
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3.2. Chi-Square Test of Goodness of Fit 

In order to test how well our model reflects the data actually, we consider the following hypotheses: 

Null hypothesis, 0H : The estimated parameters are equal to actual values. 

Alternative hypothesis, 1H : The estimated parameters are not equal to actual values. 

The Chi-square values and degrees of freedom for each year are shown in Table 3. Therefore, we 

cannot reject the null hypothesis at the 5% significant level by Pearson's criterion of Chi-square test [24]. 

Table 3. Chi-square values and degrees of freedom for each year. 

 2009 2010 2011 2012 

Chi-square value 0.0525 0.1094 0.257 0.1012 

  * 1 3 3 3 
AV * 3.841 7.815 7.815 7.815 

Note: *   denotes degrees of freedom. * AV denotes the accepting value at 5% significant 

level with degrees of freedom 1 or 3. 

Figure 2. The comparison chart of the data of HFMD in China and simulation results  

by model (1). 

 

The numerical simulation of the number of the infectious and hospitalized individuals of HFMD by 

model (1) is shown in Figure 2. The simulation provides a good match with the data of HFMD in 

China from March 2009 to December 2012. 

3.3. Sensitivity Analysis 

Next, we consider the impact of parameters on 0R . Considering  ,  , 1  and 2  as an 

independent variable and the other parameters as constants, respectively. One obtains implicit 
differentiation of 0R  with respect to  ,  , 1 and 2 , respectively: 
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By the signs of 0dR

d
, 0dR

d
, 0

1

dR

d
and 0

2

dR

d
, we can see that 0R  decreases as   decreases, 0R  

decreases as 1  or 2  increases, and the impact of   on 0R  depends on the values of 1  and 2 .  

In theory, if we can control some parameters such that 0 1R  , then the disease will die out. On this 

basis we shall put forward detail preventive strategies of HFMD in the following section. 

4. Discussion and Conclusions 

There have been plenty of papers on how to control and prevent HFMD from a public health and 

statistical model perspective. However, there are few works [2] constructing differential equations 

models to simulate data of HFMD. All the parameters of the model proposed in [1] and [2]  

are estimated without using statistical methods to verify the rationality of the parameters. 

Consequently, we demonstrate rationality of the parameters in our model as well as consistence with 

reality by applying the Chi-square test. 

In this paper, we consider the HFMD data reported by China CDC, and construct a SEIQRS model 

to fit the HFMD data. From the last column in Table 2, the basic reproductive number in each year is 

larger than 1. Thus, we conclude that HFMD will persist in China under the current conditions. As a 

matter of fact, there is no effective vaccine or antiviral treatment specifically for HFMD, but if we can 

provide some preventive measures to control the HFMD, it will be very meaningful.  
Next, we select the year of 2012 as an example (The simulation of the sum of not hospitalized 

infectious ( )I t and hospitalized infectious ( )Q t is presented in Figure 3a.), and propose some 

preventive measures as follows:  

Strategy 1: Reducing the transmission rate   for the susceptible can effectively control the spread 

of HFMD (see Figure 3b). Therefore, health-care education such as washing hands before meals and 

after using the toilet, and making air fresh indoors and so on, should be carried out in kindergardens, 

schools, hospitals and other places to popularize health knowledge and advocate good personal 

hygiene habits. Kindergardens should clean and disinfect toys and appliances every day. In addition, 

hospitals should strengthen infection control practices to avoid nosocomial cross infection. 

Strategy 2: Reducing the rate of progression to infective individuals   can control the spread of 

HFMD at a lower level (see Figure 3c). For example, more fruits, vegetables, and regular exercise will 

increase their immunity. Even if they carry the enterovirus, they may not be infected. 

Strategy 3: Increasing the recovery rate of non-hospitalized infectious individuals 1  can effectively 

control the spread of HFMD (see Figure 3d), so we suggest they should see a doctor in a timely 

fashion and thus reduce the chance of contact with other people when the adults appear to have 

symptoms of fever, rash and so on. However, changing the recovery rate of hospitalized infectious 

individuals 2 , the control effect is relatively small (see Figure 3e). 
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In a word, if we use the above preventive measures, the HFMD will be controlled quickly and the 

number of infections will decline rapidly in a period of time. Those measures can effectively prevent 

the large-scale diffusion of the disease. 

We can see that   and 1  are the most sensitive parameters comparing Figure 3b,d with the others 

because just slight changes can achieve the goal of control. These existing measures to control and 

prevent HFMD can be essentially attributed to how to reduce  . Based on the discussion in this paper, 

it is vitally important not only to reduce   but also to increase 1 . In addition, it is more effectively to 

increase 1  than to increase 2  precisely because persons with latent infection are more than apparent 

infection. So far, there are few papers using ordinary differential equations models to simulate the real 

data of HFMD and make measures to control and prevent it. Not only that, a powerful theoretical basis 

is provided for more detail control countermeasures in our paper. 

Figure 3. (a) Simulation of the sum of not hospitalized infectious ( )I t and hospitalized 

infectious ( )Q t with parameters from the sixth column of Table 2. (b) Simulation of the 

sum of ( )I t and ( )Q t with   = 0.6964 (=0.7738 × 0.9), other parameters from the sixth 

column of Table 2. (c) Simulation of the sum of ( )I t and ( )Q t with   = 0.005, other 

parameters from the sixth column of Table 2. (d) Simulation of the sum of ( )I t and ( )Q t

with 1  = 0.8267 (=0.7348 × 1.125), other parameters from the sixth column of Table 2.  

(e) Simulation of the sum of ( )I t and ( )Q t with 2  = 0.8052 (=0.2013 × 4), other 

parameters from the sixth column of Table 2. 
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