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Abstract: The objective of the present study was to investigate the reduction of mobility, 

availability and toxicity found in soil contaminated with lead (Pb) and cadmium (Cd) from 

Santo Amaro Municipality, Bahia, Brazil using two combined methods, commonly tested 

separately according to the literature: metal mobilization with phosphates and phytoextraction. 

The strategy applied was the treatment with two sources of phosphates (separately and mixed) 

followed by phytoremediation with vetiver grass (Vetiveria zizanioides (L.)).  

The treatments applied (in triplicates) were: T1—potassium dihydrogen phosphate (KH2PO4); 

T2—reactive natural phosphate fertilizer (NRP) and; T3—a mixture 1:1 of KH2PO4 and 

OPEN ACCESS



Int. J. Environ. Res. Public Health 2014, 11 11529 

 

 

NRP. After this step, untreated and treated soils were planted with vetiver grass.  

The extraction procedures and assays applied to contaminated soil before and after the 

treatments included metal mobility test (TCLP); sequential extraction with BCR method; 

toxicity assays with Eisenia andrei. The soil-to-plant transfer factors (TF) for Pb and Cd 

were estimated in all cases. All treatments with phosphates followed by phytoremediation 

reduced the mobility and availability of Pb and Cd, being KH2PO4 (T1) plus phytoremediation 

the most effective one. Soil toxicity however, remained high after all treatments. 

Keywords: contaminated soil; toxic metals; remediation; phosphate; phytoremediation; 

vetiver grass; availability; TCLP; BCR; Eisenia andrei 

 

1. Introduction 

The worldwide environmental problem caused by soil and sediments contamination has stimulated 

scientific investigations to develop new technologies and materials for the removal and/or reduction of 

toxic metal concentrations to acceptable levels. Among the contaminants, lead (Pb) and cadmium (Cd) 

are of great concern due to the high toxicity they pose to the environment and humans, which is 

aggravated by the fact that metals concentrate in tissues with magnification in the food web [1]. 

Several studies show high correlation between exposure to contaminated soils and concentration of 

metals in the blood [2–4]. 

Since metals are not degraded, one strategy applied for remediation of soils contaminated with 

metals is in situ immobilization achieved when one metal is transformed into a more stable 

geochemical form, which reduces its bioavailability. Several investigations have been conducted with 

the purpose of clarifying the mechanisms responsible for immobilization of metals using, for instance, 

natural and synthetic phosphates [5–9]. 

Phosphate fertilizers are a source of phosphorus (P) available in the market and, therefore,  

easily obtained in large amounts at relatively low cost when compared to mineral phosphates and 

phosphate salts [10]. Phosphate fertilizers such as superphosphate simple [11] diammonium  

phosphate [12], triple superphosphate [10,13], calcium magnesium phosphate [13] and molten 

phosphate [14] reduce solubility, leaching, transportation and therefore, bioavailability. 

Another strategy is to remove the metals form the soil and several plant species have shown 

capacity to extract and accumulate metals in roots or aerial parts [15–17]. Among the investigated 

species, the vetiver grass (Vetiveria zizanioides (L.)) has been investigated in different parts of the 

world to phytoremediate soils contaminated by organic compounds and metals [18,19]. 

Although the application of phosphates and phytoremediation are both techniques that can achieve 

different levels of success, there is no record in the literature of any application of both strategies 

simultaneously or in sequence, probably because they are based on opposite strategies: immobilization 

by phosphate application vs. extraction-phytoaccumulation by the use of plants. Even though,  

one hypothesis waiting to be tested is the possibility or obtaining a complementary effect and 

remediation enhancement by using both techniques: the plants would extract those metals that 

phosphate has not immobilized. 
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Therefore, the objective of the present study was to assess the effect of two different sources of 

phosphate on metals immobilization in a soil contaminated with Pb and Cd, followed by the extraction 

of the same metals by vetiver grass (Vetiveria zizanioides (L.)), as a complementary technique for soil 

remediation. The study also assessed the toxicity posed by the contaminated soil before and after 

treatment by single and combined techniques. 

2. Experimental Setup 

2.1. Treatment of Soil Contaminated with Pb and Cd Using Phosphates and Vetiver Grass 

The soil samples were collected at 12°32′24.7″ latitude South and 38°43′40.9″ longitude West in 

Santo Amaro Municipality, state of Bahia in Brazil, where soil contamination by Pb and Cd has been 

reported due to decades of operation of a factory that produced lead ingots. The contaminated site and 

impacts on the human health have been previously reported [20]. For the purpose of the present study, 

soil samples from two well-known contaminated hotspots within the site were collected with the sole 

purpose of conducting laboratory studies with the focus on remediation using phosphates combined 

with vetiver grass. The samples obtained from 20 cm-depth once they arrived in the laboratory, they 

were dried at 40 °C, sieved (335 μm) and homogenized. The 335-μm sieve was chosen due to the high 

clay content found in vertisoil and high colloidal activity (see Results, Table 1), which makes sieving 

in smaller net inappropriate for column tests and root development. Each column formed by PVC rings 

with 25 cm high, 6.5 cm in diameter received approximately 1 kg of soil. The experiment included in 

total, 12 columns (representing three treatments and one control in triplicates). Treatment T1 consisted 

of potassium dihydrogen phosphate; treatment T2 consisted of reactive rock phosphate fertilizer; 

treatment T3 consisted of a 1:1 (molar ratio) mixture of both phosphates used in T1 and T2. The same 

6:1 P:metal molar ratio was applied in all treatments, according to preliminary tests in the laboratory 

with Brazilian soils with very high clay content and colloidal activity [21]. The soil treated with 

phosphates were homogenized in a mixer and transferred to the columns built up in triplicates. 

Contaminated soil with no treatment (T0) was used as positive control. After 120 days of treatment, 

which has previously been considered a time period enough to promote sorption of metals by 

phosphates [22,23], pots with soils from all treatments were planted with vetiver grass Vetiveria 

zizanioides (L.) in 12 pots. After 90 days, the plants were taken for analysis. 

Table 1. Physical and chemical characteristics of the soil. 

Texture Composition of the Fine 

Soil (g·kg-1) 

pH 

(Water) 

Organic Carbon 

(g·kg-1) 

Assimilable 

P (mg·kg-1) 

Metal Concentration 

(mg·kg-1) 

Sand Silt Clay 
8.0 11 1 

Pb Cd 

223 324 453 3196 33 

Sorptive complex (cmol+·kg-1) CEC (cmol+·kg-1) N (g·kg-1) 
Detection Limit-DL 

(µg·L-1) 

Ca2+ Mg2+ K+ Na+ 
46 2.6 

Pb Cd 

34 11 0.36 0.28 60 3 



Int. J. Environ. Res. Public Health 2014, 11 11531 

 

 

2.2. Soil and Plant Biomass Characterization 

2.2.1. Physical and Chemical Characterization of Soil Samples 

The methodologies recommended by EMBRAPA-Solos [24] were used to characterize the soil samples 

regarding texture, organic matter content, water retention capacity, cationic exchange capacity (CEC) and 

pH. The methodology applied for Pb and Cd quantification was based on USEPA 3051A [25]. 

2.2.2. Metal Extraction from Plant Tissues Using Nitro-Peroxide Method 

Entire plants collected from the pots were washed with distillate water, dried at 60 °C during 24 h. 

Then, roots and aerial part were shredded separately in a Model 11 Basic automatic shredder (IKA do 

Brasil, Sao Paulo, Brazil). 

Triplicates of 0.5 g from each anatomic part were placed in quartz tubes where 5 mL of HNO3  

(70% ultra-pure, Vetec Quimica Fina Ltd., Rio de Janeiro, Brazil) and 2 mL of H2O2 (30%–32% 

supra-pure Vetec Química Fina Ltd.) were added. 

The microwave received a program for digestion of plant tissue, with temperature reaching 180 °C 

and pressure of 27 atm in 5.5 min, remaining in this temperature during 9.5 min and then, declining in 

15 min. After reaching room temperature, the extract was centrifuged (Model 206-R, FANEM,  

Sao Paulo, Brazil) and the volume completed to 30 mL with distillate water followed by filtration [24]. 

The reference material SRM1515 Apple Leaves (NIST, Gaithersburg, MD, USA) was used to 

compare metal recovery with certified values. The recovery rates (above 75%) obtained for Pb and Cd 

were considered satisfactory. 

2.3. Mobility, Availability and Toxicity of Soil 

2.3.1. Toxicity Characteristic Leaching Procedure (TCLP) 

Soil samples (2.5 g) in triplicates were sieved and reduced to 1 mm in size and then, placed in 100 mL 

tubes with extractor fluid. The fluid was formed by 5.7 mL of glacial acetic acid (CH3COOH) added 

with distilled water to complete 1 L with final pH 2.88 ± 0.05. The tubes were placed in a mechanic 

shaker (pendulous shaking table Model TE 240-Tecnal, Sao Paulo, Brazil) at 30 ± 2 h in room 

temperature [26]. After this shaking period, the samples were filtrated and the concentrations of Pb and 

Cd were determined by an ICP-OES (OPTIMA 3000, Perkin Elmer, MA, USA). 

2.3.2. Calculation of the Soil-Plant Transfer Factor (TF) for Pb and Cd 

The soil-plant transfer factor (TF) is defined as the ratio between the total concentration of a certain 

contaminant in the plant tissue and the total concentration of the same contaminant in the soil.  

This relation depends not only on the total concentration of metal in the soil but also on the chemical 

species, type of soil and plant species. Therefore, a great variability in TFs has been found.  

The transfer of each metal (Pb or Cd) from soil to plant was estimated according to Intawongse  

and Dean [27]:  

FT = Cpr/Cs (1)
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FT = Cpa/Cs (2)

where: Cpr = metal concentration in the root dry biomass; Cpa = metal concentration in the aerial dry 

biomass; Cs = metal concentration in the soil (dry weight). 

2.3.3. Chemical Fractionation of Soil Samples According to the BCR Method 

The BCR sequential method is recommended to determine the fractionation or distribution of metals  

in soils, or in other words, to determine metal concentrations in different fractions. Four different steps 

in the BCR method split the metals in the following fractions: water-soluble, exchangeable and  

linked to carbonate (E1); linked to iron and manganese oxides (E2); linked to organic fraction (E3); 

and residual (E4). In order to apply the BCR method, soil (1 g, in triplicate) was mixed with different 

extracting solutions, according to the procedure described in the literature [28]. For each step, the 

samples were washed to remove residues and filtered in paper filter (medium pores). For that,  

they were agitated during 15 min with Milli-Q water (20 mL) and centrifuged during 20 min at 3000 rpm 

and the supernatants were discarded [28]. 

A certified reference material (CRM BCR 701) was subjected to the BCR protocol and the Pb  

and Cd recovery observed was higher than 75% in all steps, indicating satisfactory recovery of the 

fractionation process. 

2.3.4. Toxicity Assays with the Bioindicator Eisenia andrei 

The toxicity of the contaminated soil was assessed before and after treatments with phosphates and 

phytoremediation using the bioindicator Eisenia andrei. The objective of this assay was to evaluate if 

the treatments applied to the contaminated soil were sufficient to eliminate or reduce the acute toxicity 

(lethality) and chronic toxicity (reproduction rate and biomass loss) caused by the presence of toxic 

metals Pb and Cd in the soil. 

For all experimental units (four replicates for each treatment), the worms were previously selected 

according to the sexual development with weight between 300 to 600 mg, washed in tap water and 

weighted [29]. Each 500 mL beaker containing 200 g of soil, received 10 adults, according to the ISO 

11268-1 protocol [30]. For each treatment, 200 individuals in total were exposed. After the 7th day of 

exposure, for the lethality assays, the dead organisms were counted and removed from the beakers and 

the survivors were kept until the 14th day. For the chronic assay (reproduction), the norm applied was 

the ISO 11268-2 [31]. All assays were developed under controlled environment with temperature of  

20 ± 2 °C, photoperiod light: dark 12:12 h. Every week the beakers were weighed for checking and 

correction of the soil moisture content, food and counting of eggs and juveniles. This procedure took 

about five weeks. 

2.3.5. Experimental Design and Statistical Analyses 

The experimental design using columns and pots was entirely random with triplicates. The software 

SAEG [32] was used for variance analysis (ANOVA). Tukey or Scott Knott tests were applied for 

mean comparison and data grouping [33]. The significance level assumed was p < 0.05. 
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2.3.6. Analytical Procedure for Metal Analyses 

The metals Pb and Cd in soil and plant biomass were quantified with a Perkin Elmer Optima  

3000 ICP-OES Spectrometer. The standards were Perkin Elmer Pure IV, lot 9-81YPY1, 1,000 mg·L−1 

of Cd and Pb. The calibration curve was 0.5, 1.0, 2.0, 5.0 and 10 mg·L−1, with 15 L·min−1 flux from an 

argon plasma, auxiliary flux of 0.8 L·min−1 argon and nebulizer flux of 0.5 L·min−1. The sample flow 

was 2.0 mL·min−1 with power of 1,500 Watts being 214,438 nm for Cd and 220,353 nm for Pb 

(detection limits DL of 3 and 60 µg·L−1 respectively). 

3. Results and Discussion 

3.1. Soil Characterization 

The physical and chemical analyses showed that the soil had a clayey texture with high cationic 

exchange capacity (CEC) related to the high colloidal activity, as expected for a vertisoil (Table 1). 

Some properties including pH, organic matter, type of clay, surface charge among others are responsible 

for controlling the behaviour of the contaminants in soils [34]. 

3.2. Mobility, Availability and Toxicity of Soil Samples 

3.2.1. Toxicity Characteristic Leaching Procedure (TCLP) 

The results obtained with the TCLP after phytoremediation showed that all treatments were 

effective in reducing the mobility of Pb and Cd (Table 2).  

Table 2. Pb and Cd extraction with TCLP (mg·kg−1) after treatment with phosphates and 

phytoremediation with V. zizanioides (L.) (n = 9). 

Mean (± SD) 

Treatments Pb Cd 

T0—Control 181 (±11.0) a 9.8 (±7.3) a 
T1—KH2PO4 26 (±1.4) d 6.4 (±4.4) b 

T2—NRP 164 (±5.9) b 9.4 (±2.9) a 
T3—KH2PO4 + NRP 48 (±2.7) c 6.9 (±2.9) b 

Notes: Different letters (a, b, c, d) within the same column mean 

differences statistically significant among treatments (p < 0.05). 

 

T1 was the treatment that resulted in less release of Pb and Cd in the extraction solution, but even in 

this case the solution had concentrations above the threshold limits established by USEPA [22],  

which is 5 mg·L-1 and 1 mg·L−1, respectively. T3 was the treatment that released less after T1, 

followed by T2 and finally T0 (the positive control) which as expected, was the one that released more 

Pb and Cd. The treatments T1, T3 and T2 promoted a reduction in the release of Pb of 86%, 74% and 

10% respectively compared to the control T0. Regarding Cd, the treatments T1, T3 and T2 promoted a 

reduction 40%, 30% and 8%, respectively. The concentrations in the extraction solution in all cases 

were found to be above the threshold limits. 
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3.2.2. Pb and Cd Transfer Factor from Soil to Plant 

According to Intawongse and Dean [23] the transfer factors (TF) are considered low when they are 

within the range of 0.0–0.9 for Pb and 0.0–2.7 for Cd. The TF found for Pb in the aerial biomass, 

regardless the treatments applied were all very low (Table 3). For both Pb and for Cd the TF values 

were higher in the root biomass; however, the TF for Cd in both root and aerial biomasses were 

approximately 10 times higher than the TF for Pb. These results suggest that the Cd availability is 

higher than the Pb availability in the studied soil even after treatment with phosphates. According to 

Alloway [35], Cd has a tendency for being more mobile in soils and therefore, more available for 

plants than many other metals, including Pb. According to Magna et al. [36], after these metals are 

transferred to the plant, they accumulate mostly in the roots, which are the first anatomic part affected 

by soil contamination. 

The pre-treatment with phosphates (which reduced the mobility and availability of the metals), does 

not explain alone the low TF values observed, since the positive control (T0) had showed also a low 

TF (Table 3). One cannot ruled out the fact that this is a vertisoil, with very high clay content and  

high cation exchange capacity (CEC), making it to act as natural barriers against the contaminant 

dispersion [37] affecting the absorption by plants [36]. Since some transfer of metals from soil to plant 

biomass, mostly to the root biomass was observed even after treatment with phosphates, a complementary 

removal of metals from soil by vetiver grass is occurring. A complete assessment of a combined 

treatment would require successive planting periods and an increasing reduction of the TF should be 

expected. According to the results, the treatment T2 was the one that allowed more metal transfer from 

soil to plant biomass (Table 3), which is agreement with the fact this treatment promoted less 

phosphate-metal sorption in the soil. 

Table 3. Metal concentrations and soil-plant transfer factors (TFs) calculated for Pb and 

Cd after soil treatments with different phosphates. 

Treatments 

Pb and Cd Transfer Factor from Soil to Plant 

mg·kg−1 (Dry Weight) Transfer Factor (TF) 

Soil Aerial Root TF (Total) TF (Aerial) TF (Root) 

Pb Cd Pb Cd Pb Cd Pb Cd Pb Cd Pb Cd 

T0 4233 44 10 1.8 158 15 0.040 0.386 0.002 0.345 0.037 0.041 
T1 4001 44 8 1.8 60 14 0.017 0.359 0.002 0.320 0.015 0.039 
T2 3943 46 17 2.8 224 33 0.061 0.790 0.004 0.071 0.057 0.719 
T3 3838 41 14 2.7 156 23 0.044 0.613 0.004 0.060 0.041 0.554 

3.2.3. Chemical Fractionation with Soil Samples According to the BCR Method 

Figure 1a shows the results obtained with the sequential extraction after phosphate treatment and 

phytoremediation with vetiver grass (Vetiveria zizanioides (L.)) with the average values transformed 

into percentage. T1 followed by T3 was the treatment that resulted in the highest reduction of Pb 

concentration obtained with step E1. Additionally, T3 was the treatment that increased the Pb 

concentrations extracted with steps E3 and E4. The typical behaviour of Pb in contaminated soils is 

one of high retention, low mobility and therefore, low bioavailability [35]. 
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Figure 1. Results of the sequential extraction with the BCR method for Pb (a) and Cd (b) 

(n = 144). 

 
 

In Figure 1b one can observe different steps of the sequential extraction for Cd. Treatments T1 and 

T3 were those that reduced more the concentrations of Cd in E1, followed by treatment T2.  

For the treatments T1 and T2, no significant changes occurred during steps E3 and E4 if compared 

with T0. T3 was the treatment that increased the concentrations of Cd in the steps of less availability 

(E3 and E4). 

In this study, Cd was more labile than Pb. Saheen [38] mentioned that Pb seems to suffer more 

easily complexation with functional groups in the surface of the soil particles and in the internal sphere 

when compared to Cd, and this would be the reason Pb is less labile than Cd. 

3.2.4. Toxicity Assay with the Bioindicator Eisenia andrei 

The results of the toxicity assay with Eisenia andrei based on the observations after 7 and 14 days 

of exposure are found in Table 4. The treatments T0 and T1 showed the same mortality rate (7%);  

the same occurred for the treatments T2 and T3 (2%). Treatment T1 however, was the one that was the 

most efficient in immobilizing the metals in the soil. Therefore, the higher toxicity observed for T1  

(as high as the toxicity posed by T0) is likely to be associated to the type of phosphate used for metal 

immobilization (KH2PO4). The worms in treatment T1 might respond to the effect of the treatment 

itself, which could attenuate with time. Therefore, to assess eventual toxicity posed by KH2PO4  

a sensibility test with this phosphate is required. It is important to highlight that the soil pH observed in 

different treatments (including T0-control) varied from 7.0 up to 7.9, suggesting that pH had no 

relevance on the final toxicity. 

Table 4. Acute toxicity test with E. andrei and soil contaminated with Pb and Cd after 

treatment with phosphates and phytoremediation with V. zizanioides (L.). 

Treatment 
Lethality (%) 

7 Days 14 Days 

T0—Control 7 7 
T1—KH2PO4 7 7 

T2—NRP 2 2 
T3—KH2PO4 + NRP 2 2 
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Figure 2 shows biomass loss of E. andrei (in % compared to the initial weight) when the worms 

were exposed to the contaminated soil with no treatment (control-T0) and after treatments with 

different sources of phosphate (T1, T2, T3) followed by plantation with vetiver grass. The treatments 

that included NRP (T2 and T3) were those that caused less biomass loss, particularly during the first 

weeks (Figure 2). At the 5th week however, almost no difference in biomass loss was observed among 

treatments. The interpretation of the results took into account the fact that since phosphate in NRP (T2) 

is less soluble than in KH2PO4 (T1), more metals were bioavailable during the first weeks in the soil 

treated with NRP, allowing removal by the vetiver grass, resulting in fewer metals in the soil. 

Figure 2. Biomass loss (in %) of E. andrei after exposure to Pb and Cd contaminated soil 

and treated soil with different sources of phosphate (T0-control, T1, T2, T3). Different 

letters within each week mean differences statistically significant (p < 0.05). Bars mean 

standard deviations (SD). 

 

Regarding the reproduction test, there was no significant difference among treatments; in other 

words, low reproduction was observed in untreated soil (control-T0) as well as in treated soils (T1, T2 

and T3) with low production of eggs by the exposed worms. In 5 weeks, few eggs and no juvenile 

forms were found. Spurgeon et al. [39] investigated the effects on worms due to exposure to different 

concentrations of Cd, Zn, Cu and Pb and concluded that egg production was more affected than 

survival for all metals, mostly Cd and Cu. 

4. Conclusions 

When vertisoil contaminated with Pb and Cd was treated with two different types of phosphates 

followed by planting with vetiver grass (Vetiveria zizanioides (L.)), the mobility and the availability of 

both metals was significantly reduced with all treatments. The treatment with KH2PO4 (T1) was the 

most effective in reducing availability followed by the mixture of KH2PO4 + natural reactive 

phosphate-NRP (T3) and finally, natural reactive phosphate alone (T2). The treatments were more 

efficient in immobilizing Pb than Cd. Regardless the reduction in mobility combined with transfer 
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from soil to plant of metals still bioavailable, after all treatments with phosphate, the soil remained 

toxic to E. andrei. 
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