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Abstract: We present a two-stage approach for the “helicopters and vehicles” intermodal 

transportation of medical supplies in large-scale disaster responses. In the first stage,  

a fuzzy-based method and its heuristic algorithm are developed to select the locations of 

temporary distribution centers (TDCs) and assign medial aid points (MAPs) to each TDC. 

In the second stage, an integer-programming model is developed to determine the delivery 

routes. Numerical experiments verified the effectiveness of the approach, and observed 

several findings: (i) More TDCs often increase the efficiency and utility of medical 

supplies; (ii) It is not definitely true that vehicles should load more and more medical 

supplies in emergency responses; (iii) The more contrasting the traveling speeds of 

helicopters and vehicles are, the more advantageous the intermodal transportation is. 
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1. Introduction 

Timely relief supplies transportation takes an important role in emergency responses,  

directly affecting the efficiency and effectiveness of disaster relief [1–3]. Facing different disaster 

responses, decision-makers often integrate different transportation modes to deliver relief supplies  

as soon as possible. 

In this work, we focus on a kind of disaster response situation: Due to the long distance among 

supply nodes and demand nodes or the cut off of key roads to affected areas, helicopters are used to 

transport medical supplies to temporary distribution centers (TDCs) and then vehicles at TDCs are 

used to transit the received medical supplies to medical aid points (MAPs). 

The above intermodal transportation of helicopters and vehicles has been gradually used in 

emergency practices due to its specific advantages in challenging disaster situations: 

 Helicopters are not subject to existing transportation networks and can fly straight to affected 

areas, which could sharply shorten the delivery time of medical supplies. 

 Helicopters can take off and land vertically at relatively small places. Thus, it is flexible and 

quick to select and clear up places as TDCs for receiving medical supplies from helicopters. 

 In destructive disasters such as earthquakes and floods, the cut off of key roads often makes 

helicopters the most effective transportation mode to isolated affected areas.  

However, due to the limited number of helicopters, it is difficult or impossible to transport medical 

supplies to every MAP by helicopters in large-scale disaster responses. In general, TDCs are set up for 

receiving badly needed medical supplies from helicopters and then transiting the supplies to each MAP 

by vehicles. Since helicopters could take off and land vertically at relatively small places, in the work 

we assume that any place in affected areas could be located as TDCs. 

Figure 1 illustrates a simplified diagram of our focused problem. In response to a large-scale 

disaster, all inbound medical supplies are first collected at a large collecting and distributing hub 

(LCDH), then transported to TDCs by helicopters and finally delivered to corresponding MAPs by 

vehicles. The locations of LCDH and MAPs are given. The locations of TDCs are unknown and need 

to be determined. 

There are two subproblems that need to be solved: one is where TDCs should be located, and the 

other is how to arrange the delivery routes. In this work, we develop a two-stage approach for the 

above intermodal transportation problem. Stage I: A fuzzy-based method is presented to determine the 

locations of TDCs and assign MAPs to each TDC. In this stage, the intermodal transportation  

network is constructed. Stage II: Based on the constructed intermodal transportation network,  

an integer-programming model is built to produce the delivery routes. Our proposed approach has 

potential applications in some challenging emergency situations such as vaccine delivery in large-scale 

infectious diseases, blood transportation after earthquakes, and antidote delivery in chemical and 

biological attacks. 

The remainder of this paper is organized as follows. In Section 2, we give a brief review on  

related works. In Section 3, we present our approach, including the two-stage problem formulation,  

a fuzzy-based method for selecting TDCs and assigning MAPs in Stage I, and an integer-programming 

model for determining the delivery routes in Stage II. In Section 4, we conduct numerical experiments 
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to verify the effectiveness of the two-stage approach. Conclusions are drawn in Section 5, with some 

recommendations on future studies. 

Figure 1. A simplified diagram of the intermodal transportation. 
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2. Literature Review 

Many studies have been reported to achieve solutions for emergency logistics problems [4–6].  

In the work, our decision-making problem involves: how to locate TDCs, how to assign MAPs and 

how to arrange delivery routes. Thus, we briefly review part of related works on the location problem 

and multi-modal transportation problem in emergency logistics.  

Jia et al. built a facility location model of medical supplies and developed three heuristic algorithms 

to solve the model [7]. Mete and Zabinsky considered possible disaster types and magnitudes to 

develop a stochastic programming model, which could be used to select the storage locations of 

medical supplies [8]. An et al. considered service disruptions to propose an emergency facility location 

model that could determine the pre-emergency facility location planning [9]. Yarmand et al. focused 

on the vaccine allocation in infectious diseases and proposed a two-phase vaccination policy [10]. 

These studies have developed effective approaches for determining the location of emergency facilities 

and supplies, which are mainly regarding the disaster preparedness stage. In our work, the locating of 

TDCs depends on the distribution of MAPs in disaster responses, and the integrated decision making 

of locating TDCs and assigning MAPs needs to be considered. Meanwhile, most extant studies 

formulated crisp location models using 0–1 variables, which cannot fully reflect the closeness degrees 

of the MAPs assigned to the same TDC. If two MAPs are assigned to the same TDC, both their 

variable values in extant crisp models would be one. In fact, the distances of the two MAPs to the TDC 

may be different. Motivated by these observations, we will present a fuzzy-based method for locating 
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TDCs and assigning MAPs, where the membership degree in fuzzy set theory is used to represent the 

closeness degree. 

A few researchers have studied the multi-modal transportation of relief supplies in disaster 

responses. Haghani and Oh formulated the logistical problem in disaster relief management as a  

multi-commodity, multi-modal network flow model with time windows, and presented two heuristic 

algorithms to solve the model [11]. Barbarosolu and Arda formulated another multi-commodity and 

multi-modal network flow model for relief supplies transportation in disaster responses [12],  

and Özdamar modeled the emergency logistics as a multi-period multi-commodity network flow 

problem with different transportation modes [13]. Hu built an integer-linear-programming model for 

the container multimodal path selection in the context of emergency relief [14]. Najafi et al. proposed  

a multi-mode stochastic model to manage the logistics of both commodities and injured people in the 

earthquake response [15], and then developed a dynamic model for the same problem [16]. In these 

studies, multiple transportation modes including air, railway and road were simultaneously considered, 

aiming at selecting suitable modes with different transportation efficiencies for kinds of relief supplies 

in different urgency degrees. Different from the extant multi-mode emergency transportation model, 

we focus on a kind of intermodal transportation in disaster response situations where helicopters and 

vehicles are used collaboratively. 

3. The Proposed Approach 

3.1. A Two-Stage Problem Formulation 

As Figure 1 shows, our focused problem can be described as follows. In response to a large-scale 

disaster, there are n  medical aid points (MAPs) providing medical service to their covered affected 

areas. These MAPs need medical supplies in different amounts due to different disaster levels and 

social situations in their covered affected areas. A large collecting and distributing hub (LCDH) is set 

up for collecting and transporting medical supplies to temporary distribution centers (TDCs) by 

helicopters. m  TDCs need to be located for receiving medical supplies from helicopters and transiting 

the received supplies to their covered MAPs by medical vehicles.  

In disaster responses, medical supplies should be transported to MAPs as soon as possible [17–19]. 

Thus, the decision-making objective is to minimize the total duration time of all the intermodal routes. 

The decision subproblems include: how to locate TDCs and assign MAPs, and how to arrange delivery 

routes, so in this work we present a two-stage approach: 

Stage I: In this stage, we select the locations of TDCs and determine which MAPs should be 

assigned to each TDC, aiming at minimizing the total distance among TDCs and their covered MAPs. 

This stage could determine the intermodal transportation network.  

Stage II: Based on the located TDCs and assigned MAPs in Stage I, we develop an  

integer-programming model to arrange the delivery routes in the intermodal transportation network, 

aiming at minimizing the total duration time of all intermodal routes. 

For simplicity, our developed approach is subject to the following assumptions: 
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(1) All inbound medical supplies are first collected at the LCDH, where the supplies are transported 

to TDCs by helicopters and then from TDCs to MAPs by vehicles. In emergency practices, external 

relief supplies are often collected at large and safe hubs [20,21]. 

(2) The capacities of helicopters and selected TDCs are large enough, compared to the small 

volume of limited medical supplies in disaster responses. In pressing times, helicopters are often 

unable to deliver scarce medical supplies with full capacity [22].  

(3) Any place in affected areas could be located as TDCs, and the selected TDCs should cover all 

the MAPs. This assumption is consistent with the fact helicopters could take off and land vertically at 

relatively small places, and the fairness criterion widely considered in practical disaster responses. 

(4) There are limited medical vehicles at TDCs for transferring medical supplies to MAPs, and the 

vehicles are with the same maximum capacity. Unlike conventional supplies such as food and water, 

medical supplies transportation need special vehicles, which can keep the supplies unspoiled and 

uninfected, so the number of these special vehicles is often limited in large-scale disaster responses [8]. 

(5) In a given delivery interval, each MAP is visited only once, and every vehicle leaves from and 

returns to its TDC. Emergency response is often a lasting process [13,20], so vehicles should be 

arranged with no repeated delivery for one MAP in a given interval. After finishing a delivery task, 

vehicles should return to their TDCs for the next delivery task. 

(6) The distances from the LCDH to TDCs and helicopter traveling speed are known.  

Each helicopter serves one TDC. The distances among TDCs and MAPs, and the vehicle traveling 

speed are also known. 

Notations used in the work are defined as follows: 

m : The number of TDCs needed to be selected; 

iC : The coordinate vector of the i th TDC, that is, ( , )x y T

i i iC C C , 1,2,...,i m ; 

n : The number of MAPs in the disaster response; 

jA : The coordinate vector of the j th MAP, that is, ( , )x y T

j j jA A A , 1,2,...,j n ; 

jR : The allocated quantity of medical supplies for the j th MAP; 

H : The number of available helicopters at the LCDH; 
iC

N : The set of covered MAPs of the i th TDC; 
iC

n : The number of the elements in iC
N ; 

0
iC

N : The union of iC
N  and the i th TDC, whose index in the set is 0; 

0
iC

n : The number of the elements in 0
iC

N , which is equal to 1iC
n  ; 

iC
K : The set of available vehicles at the i th TDC; 

iC
k : The number of the elements in iC

K ; 

vQ : The maximum capacity of each delivery vehicle at TDCs; 

iC

jlkq : The available load of vehicle k  when the vehicle travels from the j th MAP (or the i th TDC) 

 to the l th MAP (or the i th TDC), {1,2,..., }i m  , 0, iC
j l N ; 

iLCd : The distance between the LCDH and the i th TDC, 1,2,...,i m ; 

iC

jld : The distance among the i th TDC and its covered MAPs, {1,2,..., }i m  , 0, iC
j l N ; 

hV : The average helicopter travel speed; 

vV : The average vehicle travel speed; 
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iC

jlkx : A binary variable: 1iC

jlkx   means vehicle k  travels from the j th MAP (or the i th TDC) to the 

 l th MAP (or the i th TDC), {1,2,..., }i m  , 0, iC
j l N , iC

k K ; otherwise 0iC

jlkx  ; 

iC

jky : A binary variable: 1iC

jky   means that the j th MAP (or the i th TDC) is visited by vehicle k , 

 {1,2,..., }i m  , 0
iC

j N , iC
k K ; otherwise, 0iC

jky  . 

3.2. Stage I: Selecting TDCs and Assigning MAPs 

In this section, we propose a fuzzy-based method for selecting TDCs and assigning MAPs 

according to the distribution of MAPs.  

In response to a large-scale disaster, the locations of n  MAPs are denoted by 1 2, ,..., nA A A ,  

and m  TDCs whose locations are denoted by 1 2, ,..., mC C C  need to be selected. In order to minimize 

the total distance among TDCs and their covered MAPs, the decision criterion is to assign each MAP 

to its closest TDCs.  

As discussed in Section 2, the binary variable in crisp location models cannot fully reflect the 

closeness degrees of the MAPs assigned to the same TDC. Motivated by the fuzzy theory, we use the 

membership degree to represent the closeness degree. Let iju  denote the membership degree of the 

j th MAP belonging to the i th TDC, 10  iju . In order to keep the consistency with crisp binary 

variable, we assume that the sum of one MAP’s membership degrees to all TDCs is equal to 1, that is, 

iju  satisfies: 

1

1, 1,2,...,
m

ij

i

u j n


    (1) 

As stated above, the objective of Stage I is to minimize the total distance among TDCs and their 

covered MAPs. Since the membership degree, rather than a binary variable, is used to represent the 

closeness degree, we use the quadratic sum of the weighted distances among MAPs and TDCs to 

formulate the objective function of Stage I: 

2

1 1

m n

ij i j

i j

J u C A

 

   (2) 

where i jC A  represents the distance between iC  and jA , that is, 

2 2( ) ( )x x y y

i j i j i jC A C A C A     , and  1,   is a weighted coefficient. As we can see,  

if i jC A  is smaller, a bigger weight iju  will be assigned to it, so the solutions of Equation (2)  

(that is, iC s) could produce the shortest total distance among TDCs and their covered MAPs.  

Since the constraint of the objective Equation (2) is 
1

1, 1,2,...,
m

ij

i

u j n


   , according to the 

Lagrange algorithm [23,24], the constrained objective Equation (2) could be transformed into the 

following unconstrained objective Equation: 

2

1 1 1 1

( 1)
m n n m

ij i j j ij

i j j i

F u C A u 
   

       (3) 

where j  represents the Lagrange multiplier of the constraint condition (1), 1,2,...,j n . 
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Taking the derivative of Equation (3), we can get the necessary conditions of minimizing the 

unconstrained objective function: 

2
1( ) 0ij i j j

ij

F
u C A

u

 
   


 (4) 

1

1 0
m

ij

ij

F
u

 


  


  (5) 

1

1

2 (( ) ( ))
0

0
2 (( ) ( ))

n
x x

ij i jx
ji

n
y yi

ij i jy

ji

F
u C A

CF

FC
u C A

C









  
                    




 (6) 

By Equations (4)–(6), we can get: 

1

1

(( ) )

( )

n

ij j

j

i n

ij

j

u A

C

u














 (7) 

1
1

2 1

2
1

m
i j

ij

k
k j

C A
u

C A









 
  
   
    

 



 

(8) 

The detailed derivations of Equations (7) and (8) are respectively given in Appendix I and 

Appendix II. As seen from Equations (7) and (8), the location of the i th TDC could be determined if 

the locations of MAPs and corresponding membership degrees are known, and we can use iteration 

algorithms to get the solutions of the unconstrained objective Equation (3), that is, iC  and iju .  

The termination criterion of iteration algorithms could be set as  ( ) ( 1)max t t

ij ij iju u   , where   is 

a given threshold between 0 and 1, and t  represents the iteration step. After getting the iju , we could 

assign the j th MAP to the TDC with the maximal ,  1,2,...,iju i m .  

In the following, we develop a heuristic algorithm to get iC  and iju :  

Inputs: m : the number of TDCs needed to be selected; n : the number of MAPs; ,  1,2,...,jA j n : 

the location of MAPs;  : the fuzzy weighted coefficient of (2);  : the termination threshold of  

the iteration. 

Outputs: 
( )t

iC : the location of selected TDCs; ( ) [ ]t

ij m nU u  : the final membership degree matrix; 

)(tJ : the value of the objective function (2); 
( )iC t

N : The set of covered MAPs of TDC ( )t

iC . 

Then, the detailed steps of the heuristic algorithm are as follows: 

Step 1: Initialize m , n , jA ,  ,  ; 
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Step 2: Randomly generate an initial matrix of membership degrees (0) ( )ij m nU u   such that 

0 1iju   and 
1

1, 1,2,...,
m

ij

i

u j n


    (In details, we randomly generate the initial locations of  

m  TDCs, and then use the normalized reciprocals of the distances among MAPs and the initial TDCs 

to determine the initial membership degrees); 

Step 3: Use 
( ) ( ) ( )

1 1

(( ) ) ( )
n n

t t t

i ij j ij

j j

C u A u 

 

   where t  represents the iteration step to calculate the 

locations of TDCs (i.e., ( )t

iC , 1,2,...,i m ); 

Step 4: Use 
2

( ) ( ) ( )

1 1

( )
m n

t t t

ij i j

i j

J u C A

 

   to get the value of the objective function;  

if     )1()(max t

ij

t

ijij uu , then stop the iteration and turn to Step 6 with the values of ( )t

iC , )(tU  and )(tJ ; 

Step 5: Calculate the new )1( tU  using  
1

2 2 1

1

1
m

ij i j k j

k

u C A C A




   , then 1 tt  and go 

to Step 3; 

Step 6: Based on 
)(tU , calculate the maximal membership of each jA  belonging to ( )t

iC , and judge 

the covered jA s of each ( )t

iC (i.e., 
( )iC t

N ); output ( )t

iC , )(tU , )(tJ  and 
( )iC t

N . 

3.3. Stage II: Arranging Delivery Routes 

After selecting the locations of TDCs and assigning MAPs to each TDC in Stage I, the intermodal 

transportation network could be determined. Then, we need to plan the delivery routes in Stage II.  

In the work, we assume that each TDC is served by one helicopter in one delivery interval,  

so the helicopter routes are determined after we select the locations of TDCs. In this section,  

we develop an integer-programming model to arrange the vehicle delivery routes from TDCs to  

their covered MAPs. 

As mentioned in Section 3.1, the objective is to minimize the total duration time of all intermodal 

routes. Because the volumes of medical supplies are often small and the allocated medical supplies to 

each TDC are often limited, the loading and uploading time at TDCs is often so short that it could be 

ignored. Thus, in this work we mainly consider helicopter travel time and vehicle travel time.  

Then, the helicopter arrival time at one TDC is the starting time of all the used vehicles at the TDC,  

so the duration time of each intermodal route should be equal to the sum of helicopter travel time and 

vehicle travel time. Thus, both helicopter travel time and the number of used vehicles at TDCs have 

impact on the total duration time of all intermodal routes.  

Figure 2 gives a simple example where the numbers represent helicopter and vehicle travel time. 

Let us set helicopter starting time as 0. The helicopter travel time is 3, so the two vehicles have to 

leave from the TDC at 3. The duration times of the two intermodal routes are respectively equal to  

17 (3 + 8 + 6) and 21 (3 + 10 + 8). The total duration time considered in the work is equal to  

38 (17 + 21), which could be divided into two parts: helicopter travel time multiplied by the number of 

used vehicles (3 × 2) and vehicle travel time (8 + 6 + 10 + 8). 
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Figure 2. The duration time of intermodal routes. 
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Thus, the optimization objective of arranging delivery routes, that is, to minimize the total duration 

time of all intermodal routes, is formulated as: 

0 0

0

1 ,

min ( )
i

i i i

C C C Ci i i i

Cm
LC jlC C

k jlk

i k K k Kh vj N l j l N

d d
y x

V V     

      (9) 

In the above formulation, 0
i

Ci

C

k

k K

y


  denotes the number of used vehicles starting from the i th TDC, 

which is also equal to the number of vehicle routes from the i th TDC, so 0
i i

Ci

LC C

k

k Kh

d
y

V 

  denotes 

helicopter travel time considered in the intermodal duration time for MAPs covered by the i th TDC; 

0 0,

i

i

C C Ci i i

C

jl C

jlk

k K vj N l j l N

d
x

V   

    denotes vehicle travel time considered in the intermodal duration time for 

MAPs covered by the i th TDC.  

The constraints of the optimization objective Equation (9) are as follows: 

1,  {1,2,..., },i i

Ci

C C

jk

k K

y i m j N


      
(10) 

0 0 , {1,2,..., }i i

C Ci i

C C

k k

k K k K

y y i m
 

     
(11) 

0 , {1,2,..., }i i

Ci

C C

k

k K

y k i m


    
(12) 

0 0, ,

, {1,2,..., },i i i

C Ci i

C C C

hjk jlk

h N j h l N j l

x x i m k K
   

       
(13) 

0 ,

, {1,2,..., },i i i

Ci

C C C

jlk jk

l N j l

x y i m k K
 

      
(14) 

0( ) , {1,2,..., },i i i

C Ci i

C C C

j jk lk

j N l N

R y q i m k K
 

         
(15) 

0, {1,2,..., }, , ,i i i iC C C C

jlk v jlkq Q x i m j l N k K         (16) 

{0,1}iC

jlkx  , {0,1}iC

jky  , {1,2,..., }i m , H m , 0, , ,i iC C
h j l N k K   (17) 

Constraint Equation (10) ensures each MAP is served only once by one of the vehicles in the 

delivery interval, where i

Ci

C

jk

k K

y


  represents the number of vehicles visiting the j th MAP.  
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Constraint Equation (11) ensures the number of vehicles leaving from the i th TDC (that is, 0
i

Ci

C

k

k K

y


 ) 

is equal to the number of vehicles returning to the i th TDC (that is, 0
i

Ci

C

k

k K

y


 ).  

Constraint Equation (12) guarantees the number of used vehicles does not exceed the number of 

available vehicles at each TDC.  

Constraint Equations (13) and (14) ensure the vehicle which arrives at one MAP should leave from 

the MAP, where 

0 ,

i

Ci

C

hjk

h N j h

x
 

  represents the number of vehicles arriving at the j th MAP and 

0 ,

i

Ci

C

jlk

l N j l

x
 

  represents the number of vehicles leaving from the j th MAP.  

Constraint Equation (15) guarantees any vehicle loads the equivalent quantity of medical supplies 

allocated to MAPs served by the vehicle, where ( )i

Ci

C

j jk

j N

R y


  represents the total quantity of medical 

supplies allocated to MAPs served by vehicle k  and 0
i

Ci

C

lk

l N

q


  represents the total load of vehicle  

k  when leaving from the i th TDC. 

Constraint Equation (16) guarantees that the available load of vehicle k  between the j th MAP  

(or the i th TDC) and the l th MAP (or the i th TDC) does not exceed the maximum capacity of vehicle 

k  if traveling from the former to the later. Constraint Equations (15) and (16) together guarantee that 

the overall available capacity of a given vehicle does not exceed its maximum capacity. 

Constraint Equation (17) defines the ranges of variables.  

Meanwhile, we also formulate two performance metrics for the intermodal transportation.  

(1) Average arrival time (AAT) 

The optimization objective (9) mainly reflects the total duration time, but it does not specifically 

consider the utility of medical supplies. The utility of received relief supplies is different for each MAP 

if the arrival time is different [18,19,25]. The earlier the arrival time at one MAP is, the higher the 

utility for the MAP is. Then, in order to increase the utility of all medical supplies, the average arrival 

time (AAT) for all the MAPs should be shortened as much as possible, which is formulated as follows: 

1

( )i i

Ci

m
LC C

j

i j N h

d
ariv

V
AAT

n

 





 
 

(18) 

where iC

jariv  represents the elapsed time from the i th TDC to the j th MAP. Note that the vehicle 

return time at TDCs is not included.  

(2) Biggest traveling time (BTT) 

In emergency practices, the deadline policy is usually adopted, that is, the needed supplies must be 

transported to affected areas in some regulated period (e.g., 24 h) after the occurrence of disasters. 

Motivated by this observation, we formulate the biggest traveling time as one performance metric of 

the intermodal transportation: 

0 0

1
,

max( max )
i

i i

Ci
C Ci i

C
m

LC jl C

jlk
i k K

h vj N l j l N

d d
BTT x

V V 
  

     (19) 

As we can see, if only in terms of BTT, the shorter it is, the better the transportation performance is. 
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4. Numerical Experiments 

In this section, we conduct numerical experiments to verify the effectiveness of the developed 

approach, and observe several insights for real-world emergency responses.  

4.1. Data Generation 

Assume that some area is infected by an infectious disease, and sixty hospitals are set as medical 

aid points (MAPs) for providing medical service to victims. Considering the generality, we randomly 

generate the coordinates of the sixty MAPs from 0 to 200, as Figure 3 and Table 1 show. A batch of 

vaccines is received at the large collecting and distributing hub (LCDH) whose coordinate is set as 

(100, 100) and should be transported to the sixty MAPs as soon as possible. The allocated vaccines for 

these MAPs are as the 
jR  columns in Table 1 show. 

Figure 3. Locations of MAPs (labeled by asterisks) and the LCDH (labeled by the square). 
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Table 1. The original data. 

MAPs 
x

jA  
y

jA  j
R  MAPs 

x

jA  
y

jA  j
R  

1 139 198 1136 31 44 156 880 

2 57 91 1011 32 156 39 722 

3 9 130 719 33 129 132 632 

4 126 12 1026 34 170 131 737 

5 144 173 721 35 94 66 1013 

6 101 122 1055 36 167 111 880 

7 157 3 1014 37 125 88 765 

8 25 130 828 38 182 64 786 

9 186 191 1039 39 6 187 495 

10 72 106 974 40 110 176 753 

11 112 162 654 41 100 79 832 

12 159 45 831 42 44 7 1148 

13 36 74 616 43 159 91 766 

14 198 17 672 44 138 1 776 

15 191 192 870 45 58 195 941 

16 62 119 667 46 178 55 854 

17 65 45 798 47 86 78 583 

18 105 163 794 48 74 5 1129 

19 131 87 886 49 8 42 1021 

20 150 0 822 50 6 68 907 

21 89 174 583 51 133 140 723 

22 150 116 841 52 178 142 850 

23 57 147 787 53 186 172 803 

24 166 137 676 54 187 69 775 

25 82 175 807 55 45 158 817 

26 107 198 1119 56 98 29 926 

27 9 38 808 57 133 43 824 

28 64 18 882 58 145 31 1107 

29 127 16 599 59 81 146 816 

30 27 2 790 60 64 171 712 

4.2. Results of Selected TDCs 

Using the proposed method for selecting TDCs and assigning MAPs in Section 3.2, we implemented 

the heuristic algorithm in Matlab R2012a. The related parameters of the algorithm are as follows: 

2 , -5101 , and the maximum number of iterations is set as 100.  

To show the details, we present the results when the number of TDCs is set as four. After 43 iterations, 

the algorithm reached its termination criterion, with the objective value (2) being 62,411.0128.  

The detailed results are as shown in Figure 4 where the four circles represent the locations of selected 

TDCs. The assigned MAPs for each TDC are grouped in different shapes and colors.  
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Figure 4. The selected TDCs and assigned MAPs with four TDCs. 

 

Similarly, we obtained the detailed results with the number of TDCs ranging from two to 15,  

as Table 2 shows (For the limitation of space, the results of assigned MAPs are not given). From the 

results in Table 2, we can get the following observations:  

(1) As the number of TDCs increases from two to 15, the value of objective function (2) definitely 

decreases. This means the sum of distances among TDCs and MAPs will be shortened with the 

increase in the number of TDCs. 

(2) The decrease of the value of objective function (2) is diminishing as more TDCs are selected.  

In particularly, when the number of TDCs increases to 60 (the number of MAPs), the sum of distances 

among TDCs and MAPs will decrease to 0, as Figure 5 shows. 

(3) The number of termination iterations is not in obvious relevance to the number of TDCs.  

All the termination iterations are within 100 (that is, the maximum number of iterations),  

and the longest running time of all the iterations is 5.61 Sec. 

Table 2. Results with different numbers of the selected TDCs. 

The Number 

of TDCs 
The Selected Locations of TDCs Iterations 

The Value of Objective 

Equation (2) 

2 (115.1215, 44.9284) (99.7824, 150.9591) 41 172,532.3624 

3 (116.3484, 161.1088) (47.9796, 73.6059) (147.7658, 41.5159) 91 100,417.3994 

4 
(155.5038, 147.4673) (65.1837, 156.4479)  

(149.0295, 34.1258) (44.7962, 41.9201) 
43 62,411.0128 

5 
(44.0622, 34.2492) (147.8524, 29.6506) (48.0010, 144.1700) 

(161.7073, 130.1246) (108.2454, 169.5621) 
80 47,221.8533 
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Table 2. Cont. 

The Number 

of TDCs 
The Selected Locations of TDCs Iterations 

The Value of Objective 

Equation (2) 

6 
(96.5021, 78.7748) (45.4646, 151.4802) (167.2060, 139.0513) 

(150.3087, 27.2637) (107.2651, 170.9193) (34.6524, 28.9273) 
62 36,831.0511 

7 

(169.8822, 150.8263) (173.5107, 60.7168) (90.2298, 79.5935) 

(103.9641, 170.3261) (137.6201, 14.8587)  

(44.7909, 152.3732) (27.7608, 31.9316) 

78 29,522.1085 

8 

(181.6705, 181.8142) (62.4966, 15.5558) (101.0444, 170.4035) 

(149.7739, 24.8483) (159.1980, 116.1517) (13.5109, 51.6327) 

(95.1028, 79.5795) (45.3501, 153.3287) 

57 24,550.5521 

9 

(99.8256, 171.1113) (59.2840, 14.6074) (91.8373, 80.4970) 

(12.5390, 51.5439) (139.9251, 12.9395) (182.7777, 184.1032) 

(158.5230, 126.3868) (44.9873, 153.6155) (175.5131, 57.1305) 

53 19,631.8894 

10 

(119.6735, 85.2224) (65.3041, 106.4243) (45.7608, 157.6658) 

(139.8517, 11.9312) (60.4220, 14.8274) (101.9682, 171.8361) 

(183.9530, 185.0312) (162.9210, 129.8682)  

(176.7298, 56.7747) (11.2449, 47.9950) 

100 16,907.0872 

11 

(180.6445, 62.8425) (139.6802, 6.7262) (184.9137, 185.0973) 

(58.2463, 13.7295) (11.4684, 49.2855) (162.2845, 128.1690) 

(149.7515, 39.3025) (91.3246, 78.8456) (110.2706, 167.3838) 

(74.2499, 172.9312) (41.1820, 149.2225) 

73 14,917.4491 

12 

(98.5393, 173.5782) (10.3469, 47.0838) (185.3382, 186.1472) 

(181.1156, 62.5890) (140.3170, 6.1505) (94.2870, 74.8852) 

(150.4305, 38.7289) (167.5805, 131.8681) (58.1328, 12.9601) 

(62.8250, 111.7601) (45.0970, 157.4632) (129.7547, 135.5699) 

79 12,977.8993 

13 

(110.8082, 168.4445) (10.0571, 46.2019) (63.9118, 110.4021) 

(151.0760, 37.9474) (78.9164, 174.7529) (57.8343, 12.5276) 

(42.5859, 154.6934) (181.7441, 62.2657)  

(185.7684, 186.0645) (166.5562, 132.7123)  

(91.5287, 73.6481) (129.3355, 89.5669) (140.8238, 5.6172) 

58 11,382.4811 

14 

(63.7141, 110.9293) (186.1755, 186.7686)  

(178.7301, 57.9741) (149.8187, 116.4298) (98.2565, 28.2879) 

(9.6585, 46.8682) (42.7754, 154.8233) (109.9915, 169.2300) 

(128.6312, 87.3772) (144.2500, 7.5919) (168.9176, 136.0067) 

(45.7029, 8.7246) (78.1378, 174.8745) (91.8098, 74.1798) 

73 10,761.5505 

15 

(9.2761, 45.3432) (130.2494, 86.9024) (66.8312, 107.4951) 

(131.2589, 135.4988) (46.9954, 157.3454) (169.0423, 133.2947) 

(36.6269, 5.7054) (93.1979, 72.9595) (110.1389, 170.3292)  

(70.9212, 15.7676) (141.7105, 9.3871) (82.2789, 175.1017) 

(186.5786, 186.7270) (17.4716, 131.1668) (178.4745, 57.7653) 

57 9216.5779 
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Figure 5. The value of objective Equation (2) with different numbers of TDCs. 

 

In the following section, we will generate different transportation routes with different numbers of 

TDCs, and analyze the performance of the intermodal transportation with these selected TDCs.  

4.3. Results of Delivery Routes 

After selecting TDCs and assigning MAPs in Section 4.2, we use CPLEX 9.0 (with default 

parameters and maximal running time being 3600s) to solve the optimization model in Section 3.3, 

which could produce the delivery routes among TDCs and MAPs. Without loss of generality,  

we set the average vehicle travel speed vV  as 1. 

4.3.1. Results with Different Numbers of TDCs 

In order to observe the impact of the number of TDCs on the performance of the intermodal 

transportation, in this subsection we set the maximum capacity of each delivery vehicle vQ  as 5000 

and helicopter travel speed hV  as 10.  

In order to show the detailed effects of the number of selected TDCs on the intermodal 

transportation routes, we compare the results with two and four TDCs. Figure 6a shows the produced 

delivery routes with two TDCs, and Figure 6b shows the delivery routes with four TDCs (The dotted 

routes are delivered by helicopters and the solid routes are by vehicles). Table 3 and Figure 7 show the 

detailed results with different numbers of TDCs. 
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Figure 6. Intermodal transportation routes with two and four TDCs. (a) m = 2; (b) m = 4. 

  

(a) 

 

(b) 
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Table 3. Results with different numbers of TDCs (Q  = 5000). 

The Number 

of TDCs 

Total  

Duration Time 

Average 

Arrival Time 

Biggest 

Traveling Time 

Number of Used 

Helicopters 

Number of 

Used Vehicles 

2 2236.33 101.69 286.75 2 12 

3 2020.92 85.71 264.60 3 12 

4 1896.19 93.79 226.22 4 12 

5 1884.80 87.89 228.44 5 13 

6 1759.45 80.78 217.16 6 13 

7 1772.82 75.94 260.95 7 14 

8 1746.35 80.62 260.51 8 15 

9 1687.84 64.63 261.04 9 15 

10 1681.97 73.04 232.67 10 16 

11 1643.27 61.73 215.38 11 16 

12 1615.44 63.80 233.26 12 15 

13 1536.92 57.86 186.36 13 16 

14 1512.55 64.16 186.01 14 16 

15 1489.22 54.00 154.69 15 17 

Figure 7. Results with different numbers of TDCs (Q = 5000). (a) Total duration time;  

(b) Average arrival time; (c) Biggest traveling time; (d) The number of used vehicles. 
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(d) 

From the results in Table 3 and Figure 7, we can observe the following findings: 

(1) With the increase of the number of TDCs, the total duration time would be shortened with a 

decreasing extent. This is because more TDCs could divide MAPs into smaller groups, which will 

shorten the vehicle traveling distances, as Figure 6 shows. However, the partitioning effects would be 

weaker as the groups of MAPs become smaller. 

(2) The average arrival time has an approximately fluctuating decrease as the MAPs are assigned to 

more TDCs. As the number of MAPs covered by TDCs decreases, the arrival time at each MAP tends 

to be shortened. The fluctuation is due to the uncertainty of the number of MAPs in the partitioning. 

As analyzed in Section 3.3, the shortened average arrival time will increase the utility of the vaccines. 

(3) As shown in Figure 7c, the biggest traveling time is also not absolutely decreased with the 

increase of the number of TDCs. For example, when the number of TDCs changes from 5 to 12,  

the biggest traveling time is fluctuating. In order to show the cause of the fluctuation, we compare  

the delivery routes when the numbers of TDCs are 6 and 7, as Figure 8 shows. The red routes generate 

the biggest vehicle travel times among all the vehicle delivery routes, which basically determines  

the biggest travel times of the intermodal transportation due to the contrasting speeds of helicopters 

and vehicles. 
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Figure 8. Intermodal transportation routes with six and seven TDCs (Q = 5000).  

(a) m = 6; (b) m = 7. 

  

(a) 

 

(b) 

(4) Although the number of total MAPs is not changed, the intermodal transportation with increased 

TDCs will use more medical vehicles, as Figure 7d shows. Compared with the transportation routes in 

Figure 6 and Figure 8, we can find that medical vehicles tend to deliver to fewer MAPs because of the 

decreased number of MAPs covered by more TDCs. Thus, the vehicle capacity may be not used to the 

largest extent (as the pink routes in Figure 8 show), which certainly increases the total number of used 

medical vehicles. 
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4.3.2. Results with Different Vehicle Maximum Capacities 

In above subsection, we set the maximum capacity of medical vehicles as 5000, but the setting may 

affect the maximum delivery number of MAPs by each medical vehicle. In this subsection,  

we will investigate the impact of different vehicle maximum capacities on the performance of the 

intermodal transportation. In order to keep the comparability, we set the number of selected TDCs as 4, 

and then increase the vehicle maximum capacity from 2000 to 15,000 by 1000. Results are Table 4  

and Figure 9 show. 

Table 4. Results with four TDCs and different vehicle maximum capacities. 

Vehicle Maximum 

Capacity 

Total Duration 

Time 

Average 

Arrival Time 

Biggest 

Traveling Time 

Number of 

Helicopters 

Number of 

Vehicles 

2000 3191.10 62.00 175.09 4 31 

3000 2406.51 64.96 220.32 4 20 

4000 1893.31 93.58 226.89 4 13 

5000 1900.70 89.71 226.89 4 12 

6000 1798.74 96.05 233.14 4 10 

7000 1728.03 103.63 266.03 4 9 

8000 1683.76 104.21 261.21 4 8 

9000 1684.34 99.59 261.21 4 8 

10,000 1679.68 113.86 331.20 4 8 

11,000 1636.28 141.39 408.06 4 7 

12,000 1584.49 156.00 422.82 4 6 

13,000 1565.34 160.76 416.06 4 6 

14,000 1529.67 165.57 455.03 4 5 

15,000 1515.92 166.57 455.03 4 4 

Figure 9. Results with four TDCs and different vehicle maximum capacities.  

(a) Total duration time; (b) Average arrival time; (c) Biggest traveling time;  

(d) The number of used vehicles. 
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Figure 9. Cont. 
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From the results in Table 4 and Figure 9, we can observe the following findings: 

(1) As vehicle maximum capacity is enlarged from 2000 to 15,000, the total duration time would 

decrease. Vehicles with bigger capacities can serve more MAPs, which will decrease the total number 

of used vehicles. For the given number of MAPs, the decreased in-service vehicles could reduce the 

total travel distance. However, the decreased extent would become small after the vehicle maximum 

capacity exceeds 4000, as Figure 9a shows. Especially, the total duration time will not change after the 

vehicle maximum capacity exceeds 15000, because the medical vehicle with 15,000 doses of vaccines 

can serve all the MAPs covered by each TDC.  

(2) Both average arrival time and biggest traveling time have an increasing trend with the 

enlargement of vehicle maximum capacity, respectively changing from 62.00 to 166.57 and from 

175.09 to 455.03. As analyzed above, the increased traveling distances will also lengthen the average 

arrival time and biggest traveling time. In details, the two curves increase relatively gently before the 

vehicle maximum capacity exceeds 9000, but then with sharp increases.  

Average arrival time has a direct impact on the availability and utility of medical supplies at MAPs, 

and biggest traveling time to some extent represents the completion time of the delivery task.  

Thus, in emergency responses, it is not definitely true that vehicles should load more and more  

medical supplies. In order to enhance the utility and efficiency of medical supplies, decision makers 

should make use of medical vehicles with small capacities or not load big vehicles to full capacity  

if there are available medical vehicles, especially when TDCs cover less MAPs. 

4.3.3. Results with Different Helicopter Travel Speeds 

We further compare the performance of the intermodal transportation with different helicopter 

traveling speeds. For comparability, we also analyze the results with four TDCs and the vehicle 

maximum capacity is still set at 5000. Changing the helicopter travel speed from one to 10, the results 

are as Table 5 and Figure 10 show.  

Table 5. Results with four TDCs and different helicopter travel speeds. 

Helicopter 

Traveling Speeds 

Total Duration 

Time 

Average 

Arrival Time 

Biggest 

Traveling Time 

Number of 

Helicopters 

Number of 

Vehicles 

1 2710.51 161.40 287.49 4 12 

2 2258.11 123.84 252.75 4 12 

3 2107.31 111.32 241.70 4 12 

4 2031.91 105.06 236.17 4 12 

5 1986.67 101.30 232.85 4 12 

6 1956.51 98.79 230.64 4 12 

7 1934.97 97.01 229.06 4 12 

8 1918.81 95.66 227.88 4 12 

9 1906.24 94.62 226.96 4 12 

10 1896.19 93.79 226.22 4 12 
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Figure 10. Results with four TDCs and different helicopter travel speeds.  

(a) Total duration time; (b) Average arrival time; (c) Biggest traveling time. 
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The results in Table 5 and Figure 10 indicate that the helicopter traveling speed has an impact on 

the performance of the intermodal transportation. As the helicopter traveling speed increases from 1 to 10, 

total duration time, average arrival time and biggest traveling time of the intermodal transportation will 

decrease, that is, higher helicopter traveling speeds can make full use of the advantage of the 

intermodal transportation. More accurately, the more contrasting the traveling speeds of helicopters 

and vehicles are, the more advantageous the intermodal transportation is. However, after the helicopter 

traveling speed exceeds five times bigger than the vehicle traveling speed, the advantage of the 

intermodal transportation will decrease to a small extent. 

5. Conclusions  

In developing a solution to a kind of intermodal transportation problem in emergency responses,  

e have proposed a fuzzy-based method to select the locations of TDCs and assign MAPs to each TDC, 

and an integer-programming model to determine the optimal delivery routes in the intermodal 

transportation network. Experimental results verified the effectiveness of the proposed approach, and 

observed the impacts of the number of selected TDCs, the vehicle maximum capacity and helicopter 

travel speed on the performance of the intermodal transportation. 

There are still further works we will perform. Considerations will be given to reasonably consider 

the loading and unloading time of medical supplies and reduce the uncertainty of the number of 

assigned MAPs. Meanwhile, we will improve and apply the approach into real-world disaster 

responses with more practical considerations such as the geographic situations. 
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Appendix I. The Derivation of Equation (7) 

By Equation (6), we can get: 
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Appendix II. The Derivation of Equation (8) 

By Equation (4), we can get: 

2
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By the above formula, we can get: 
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Substituting Equation (1) into the above formula, we can get: 
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Substituting 
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