
Supplementary Information 

A Method for Estimating Urban Background Concentrations in 
Support of Hybrid Air Pollution Modeling for Environmental 
Health Studies 

 

1. The 64 Unique Monitoring Locations Used in This Study for Estimating Background 

Concentrations 

Table S1. AQS sites used in the STOK estimation, along with monitor objective  

(background sites shown in red). 

Name State AIRS-ID NOx PM2.5 Both Monitor Objective 

Pittsboro Elementary School IN 180630002 ✔     Highest Concentration 

Old Ammunition Bunker IN 180890022 ✔     Highest Concentration 

Naval Avionics Center IN 180970073 ✔     Population Exposure 

Washington Park IN 180970078   ✔   Population Exposure 

Ernie Pyle School IN 180970081   ✔   Population Exposure 

South Bend - Shields Dr. IN 181410015 ✔     Population Exposure 

Fire Station #17 IN 181630012 ✔     Highest Concentration 

Evansville- Buena Vista IN 181630021 ✔     Highest Concentration 

McLean High School IN 181670018   ✔   Unknown 

Bay City MI 260170014   ✔   Unknown 

Whaley Park MI 260490021   ✔   General Background 

Lansing MI 260650012     ✔ Unknown 

Kalamazoo Fairgrounds MI 260770008   ✔   Population Exposure 

GR-Monroe MI 260810020   ✔   Population Exposure 

Tecumseh MI 260910007   ✔   General Background 

Houghton Lake MI 261130001 
   ✔ Unknown/General 

Background 

Port Huron MI 261470005   ✔   General Background 

Seney MI 261530001   ✔   General Background 

Ypsilanti MI 261610008   ✔   Population Exposure 

Allen Park MI 261630001   ✔   Population Exposure 

East 7 Mile MI 261630019 ✔     Unknown 

Dearborn Public Schools MI 261630033   ✔   Unknown 

Newberry School MI 261630038   ✔   Unknown 

FIA/Lafayette MI 261630039   ✔   Unknown 

Adams OH 390010001   ✔   Unknown 

Lima Bath OH 390030009 ✔ Unknown 

Athens OH 390090004 ✔ Regional Transport 

Hook Field Airport OH 390171004 ✔ Population Exposure 

Springfield Firehouse OH 390230005 ✔ Unknown 

GT CRAIG OH 390350060 ✔ Population Exposure 

New Albany OH 390490029 ✔ Unknown 
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Table S1. Cont. 

Name State AIRS-ID NOx PM2.5 Both Monitor Objective 

Columbus State Fairgrounds OH 390490034 ✔ Unknown 

Yellow Springs OH 390570005 ✔ Unknown 

Sycamore OH 390610006 ✔ Unknown 

Steuben OH 390810017 ✔ Source Oriented 

Odot OH 390870012 ✔ Population Exposure 

Erie OH 390950024 ✔ Unknown 

Youngstown OH 390990014 ✔ General Background 

Chippewa OH 391030004 ✔ Upwind Background 

Dayton Public Library OH 391130032 ✔ Population Exposure 

National Trail School OH 391351001 ✔ Regional Transport 

Health Dept. OH 391510020 ✔ Population Exposure 

Laird OH 391550005 ✔ Unknown 

Lebanon OH 391650007 ✔ Unknown 

Narsto Site Arendtsville PA 420010001 ✔ Extreme Downwind 

Lawrenceville PA 420030008 ✔ Population Exposure 

Carnegie Science Center PA 420030010 ✔ Population Exposure 

South Allegheny School PA 420030064 ✔ Population Exposure 

Harrison PA 420031005 ✔ Population Exposure 

Kittanning PA 420050001 ✔ Unknown 

Beaver Falls PA 420070014 ✔ Population Exposure 

Reading Airport PA 420110011 ✔ Population Exposure 

Bristol PA 420170012 ✔ Population Exposure 

Johnstown PA 420210011 ✔ Population Exposure 

State College (PSU) PA 420270100 ✔ Population Exposure 

Harrisburg PA 420430401 ✔ Population Exposure 

Chester PA 420450002 ✔ Population Exposure 

Marne PA 420490003 ✔ Population Exposure 

Scranton PA 420692006 ✔ Population Exposure 

Lancaster PA 420710007 ✔ Population Exposure 

Freemansburg PA 420950025 ✔ Population Exposure 

Perry County PA 420990301 ✔ General Background 

Charleroi PA 421250005 ✔ Population Exposure 

York PA 421330008 ✔ Population Exposure 

Note: * Houghton Lake is designated background for PM2.5 but not for NOx. 

2. The Covariance Model, and the Two Components for Each of NOx and PM2.5 

In this work, we developed the geostatistical framework for the space/time estimation of ambient 

concentration of air pollutants. Because of its ability to produce not only the estimate at unmonitored 

locations but also the uncertainty associated with the estimate, the geostatistical method known as 

kriging has been widely used in air quality studies. Here, we employed the method of space/time 

ordinary kriging (STOK) with measurement error to estimate the ambient concentration at any 

unmonitored location in the study area. 
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The space/time dependency of each air quality parameter was characterized by the means of its 

covariance function (covariogram). We assumed that each air quality parameter had a constant global 

offset given by the simple arithmetic average of all the observations in the study domain, and that the 

residuals obtained by subtracting this constant global offset from the observations were isotropic and 

homogeneous-stationary. The latter assumption implies that the space/time covariance function of the 

residuals depends solely on the spatial and temporal distance between two space/time points. 

The space/time sample covariance function of the residual concentrations was modeled by the 

method-of-moments estimator ܥመ at various spatial lag ݎ and temporal lag ߬. The sample covariance 

function was then used to fit a positive-definite covariance model. In this work, we used the space/time 

separable two-component exponential covariance model defined as ܥሺݎ, ߬ሻ ൌ ଵܥ exp ൬െ ௥ଵ൰ܽݎ3 exp ൬െ 3߬ܽఛଵ൰ ൅ ଶܥ exp ൬െ ௥ଶ൰ܽݎ3 exp ൬െ 3߬ܽఛଶ൰ 

where ܥଵ and ܥଶ are the sill parameters quantifying the variability of observations, ܽ௥ଵ and ܽ௥ଶ are 

spatial ranges, and ܽఛଵ  and ܽఛଶ  are temporal ranges for the 1st and 2nd components. The range 

parameter characterizes the extent of the influence of spatial and temporal autocorrelation and is given 

by the separation distance at which the covariance decreases to 5% of the sill. First we obtained the 

spatial component of the sample covariance function at temporal lag ߬ ൌ 0 and the temporal component 

at spatial lag ݎ ൌ 0. These sample covariance functions were then used to fit the model. All covariance 

model parameters were estimated by an automated weighted least squares procedure. Table S2 shows 

the estimated parameters of the space/time separable two-component exponential covariance model 

defined by the above equation.  

Table S2. Covariance model parameter for PM2.5 and NOx obtained by the weighted least 

squares method. ܥଵ and ܥଶ are the sill parameter, ܽ௥ଵ and ܽ௥ଶ are spatial range, and ܽఛଵ 

and ܽఛଶ are temporal range for the 1st and 2nd component, respectively. 

Pollutant 
1st Component 2nd Component ܥଵ ܽ௥ଵ ܽఛଵ ܥଶ ܽ௥ଶ ܽఛଶ 

PM2.5 69.2728 1.2044 0.83387 34.5523 62.5145 24.3498 
NOx 214.1213 1.3139 0.73731 48.5727 693.0062 765.778 

The STOK with measurement error method was employed to obtain the estimate and associated 

estimation variance at each estimation point. The STOK estimate is given by the linear combination of 

nearby samples. The kriging weights are obtained by minimizing the estimation mean square error 

subject to the unbiasedness constraint. In this study, we used 50 nearby samples that were observed 

within five temporal units (days or hours) from the estimation time. Nearby samples were selected based 

on the space/time distance defined as  

(space/time distance) = (spatial distance) + ((space/time metric) × (temporal distance)) 

where (space/time metric) is the ratio of the spatial covariance range and temporal covariance range.  

The STOK with measurement error method was implemented in the Matlab R2012a (MathWorks Inc., 

Natick, MA, USA) and BMElib libraries for modern spatiotemporal geostatistics.  
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3. Background Concentrations for NEXUS 

Figure S1. Distribution of observations with background monitor objectives, soft data mean 

from nonbackground monitors, and STOK estimation for NOx (left) and PM2.5 (right) for Detroit 

30-km × 20-km grid of receptors with outliers removed (showing median as red line, 25th and 

75th percentiles as ends of the boxes, and 5th and 95th percentiles as whiskers). 

NOx (ppb) PM2.5 (μg/m3) 

Figure S2. Estimated NOx and PM2.5 background concentrations using STOK for the 

NEXUS study locations. 

4. STOK Method Validation  

A challenging aspect of our work is that urban background concentrations can seldom be measured 

directly, because it would require shutting down the urban local sources so that the background 

concentration with local sources zeroed out could be measured. As a result the hard data on background 

concentrations are usually only available away from the local sources, which lack the specificity needed 

to conduct a traditional validation analysis within the urban area of interest. 
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To examine this issue, we attempted to perform a validation analysis using a validation dataset 

consisting of measurements obtained at sites located outside of Detroit and with a background 

monitoring objective (two sites for NOx and six sites for PM2.5, as identified in Table S1, and shown in 

Figure 2). We implemented two methods, where we exclude the validation background sites and only 

utilize non-background sites as the training dataset for estimation.  

1. The “Old Method” consists of using non-background sites as hard data, thus not employing the 

CMAQ-based RZeroOut/Total, and  

2. The “New Method” which consists of using soft data at the non-background site locations. The 

latter method employs both observations at non-background sites and the CMAQ-based 

RZeroOut/Total.  

Both methods estimate hourly background concentrations for 2010 for PM2.5 and NOx. Table S3 

shows statistical metrics that compare both methods to observations. 

Table S3. Statistical metrics comparing observed measurements at background sites 

against STOK estimates using only non-background sites as hard data points (Old Method) 

and using only soft data from non-background sites (New Method) for NOx and PM2.5 for 

2010 (Units are in ppb for NOx and μg/m3 for PM2.5 for means and % for all error statistics). 

Metric 
NOX PM2.5 

Old Method New Method Old Method New Method 

Observed Mean 4.41 4.41 8.96 8.96 
Model Mean 28.38 12.14 10.25 9.71 
Mean Error 23.97 7.73 1.29 0.74 

Mean Absolute 
Error 

24.02 8.52 3.14 3.17 

Root Mean Squared 
Error 

37.23 11.93 4.81 4.92 

FAC2 * 6% 22% 83% 83% 

Note: * FAC2 represents the percent of concentrations estimates within a factor of two of observations. 

NOx results show ~60% reduction of the model mean from the old to the new method. This translates 

to a general improvement of NOx model performance as seen by our metrics shown in Table S3. For 

instance we see that the Old Method has a large positive Mean Error +23.97%, and this Mean Error 

reduces to +7.73% for the New Method, which demonstrates that the large over prediction of the  

Old Method (which does not correct for double counting) is reduced in the New Method (which corrects 

for double counting). Likewise we see a reduction of the Mean Absolute Error and a reduction in the 

Root Mean Square Error between the Old and New Methods, demonstrating that on average the  

New Method is successful at reducing the absolute and the squared error compared to the Old Method. 

Another measure of goodness is the FAC2, which is the coverage of observed values by a factor of  

2 around the estimated values. The FAC2 increases from 6% to 22%, demonstrating a substantial 

improvement from the Old to the New Method. 
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PM2.5, on the other hand, shows a model mean reduction of only ~5%, and even though model 

performance is far better for PM2.5 (compared to NOx), the same improvement is not seen when 

comparing the two methods. It shows a negligible model performance difference between methods 

across most metrics. Hence overall, our validation analysis shows that the New Method is better than the 

Old Method for NOx, but in the case of PM2.5 the difference is too close to be conclusive. 

This behavior confirms that, in the case of PM2.5, our validation dataset lacks the specificity needed to 

conduct a traditional validation analysis within the urban area of interest. The difference in the 

specificity of the validation data between NOx and PM2.5 can be attributed to the difference in the spatial 

ranges of their covariance models. As shown in Table S2, PM2.5 has spatial range components (ܽ௥ଵ, ܽ௥ଶ) of 1.2 km and 62 km. This means that the PM2.5 validation background stations need to be within 

62 km of Detroit if they are to see an influence from the training data points located in Detroit. These 

training data points are treated as hard by the Old Method (thereby not correcting for double counting), 

whereas in the New Method they are treated as soft data with a CMAQ-based correction factor of 

RZeroOut/Total. Since the PM2.5 validation background stations are outside the range of influence of the 

local sources, they lack the specificity needed to distinguish between the New and Old Methods. NOx, 

on the other hand, has spatial range components of 1.3 km and 693 km. Since there are NOx  

validation background stations that fall within 693 km of Detroit, these validation stations provide data 

with the specificity needed to distinguish between the new and old methods.  

In conclusion, our validation shows how method 2 (New Method) improves NOx estimation 

compared to method 1 (Old Method) because the NOx validation background stations were specific 

enough to Detroit (e.g., within the NOx covariance range of 693 km). On the other hand a limitation of 

our study is that it lacks PM2.5 background stations that are specific enough to Detroit to distinguish 

method 1 from method 2 (i.e., the PM2.5 background stations were all outside the covariance range of  

62 km around Detroit). As a result the validation is not able to assess what would be the improvement 

in estimation accuracy for PM2.5 background concentrations if we were able to measure PM2.5 background 

concentrations close to Detroit. To truly measure background at Detroit we would have to shut down 

local sources in the city, which would be a difficult, and in many cases, unethical task. Thus, we 

choose the path of comparing hybrid estimation (by combining local-scale dispersion model results 

with estimated background) against observations in the urban monitors in Detroit. 
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