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Abstract: The cyanobacteria community dynamics in two eutrophic freshwater bodies 

(Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic 

counting method and a PCR-DGGE genotyping method. Results showed that 

cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria 

species were identified in water samples collected from the two reservoirs, among which 

fourteen were identified with the morphological method and sixteen with the PCR-DGGE 

method. The cyanobacteria community composition analysis showed a seasonal fluctuation 

from July to December. The cyanobacteria population peaked in August in both reservoirs, 

with cell abundances of 3.78 × 108 cells L-1 and 1.92 × 108 cells L-1 in the Tiegang and 

Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to 

further investigate the correlation between cyanobacteria community dynamics and 

environmental factors. The result indicated that the cyanobacteria community dynamics was 

mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data 
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obtained from PCR-DGGE combined with a traditional morphological method could reflect 

cyanobacteria community dynamics and its correlation with environmental factors in 

eutrophic freshwater bodies. 

Keywords: eutrophication; cyanobacteria community composition; PCR-DGGE; 

freshwater lakes 

 

1. Introduction 

Eutrophication of water bodies and subsequent cyanobacteria blooms have become a worldwide 

environmental problem since last century. Toxins produced by some cyanobacteria species pose  

a threat to public health [1]. In China, a survey done in 2000 showed that around 37.8 % of its 

reservoirs were eutrophic, representing 13.4 % of total water supply capacity [2]. The situation is 

worse in Guangdong Province in South China. As shown in a survey done in 132 Guangdong reservoirs 

during 2002–2003, two reservoirs were hyper-eutrophic, 12 reservoirs were meso-eutrophic, and most 

studied reservoirs (111 out of 132) were eutrophic (total phosphorus concentration around 0.01 to  

0.05 mg L-1) [3]. The city of Shenzhen is located in south Guangdong, and its tropical weather and fast 

economic development increase the chances of reservoir eutrophication and cyanobacteria blooms. It is 

necessary to develop a fast and reliable assessment method to evaluate the phytoplankton community 

composition and predict the occurrence of cyanobacteria blooms, which is of economic, health and 

environmental importance to Shenzhen City. 

Shiyan Reservoir (longitude 99°8’ E, latitude 37°6’ N) is located in Shiyan Town, in the Bao’an 

District of Shenzhen. The mean water depth is 36.0 m and the capacity is 31,200,000 m3. Tiegang 

Reservoir (longitude 98°8’ E, latitude 30°0’ N) is located in Xixiang Town of Shenzhen. Its capacity is 

68,400,000 m3. The two reservoirs are connected by an open channel. Shiyan Reservoir is the major 

urban water supply for Bao’an District, providing drinking water for surrounding towns since 1994 [4]. 

Water quality in both reservoirs was eutrophic [3,5] with visible algal blooms in some areas [4]. 

However, little study has been done on the phytoplankton community dynamics in these reservoirs.  

Currently the traditional morphological observation method using a light microscope is still 

commonly used to study the population dynamics of phytoplankton communities in eutrophic water 

bodies. It is time consuming and easily influenced by personal error. Some researchers also use high 

performance liquid chromatography methods to analyze toxic cyanobacteria blooms, but these 

methods needs commercial toxin standards, which are expensive and not easily available [6].  

PCR- based denaturing gradient gel electrophoresis (DGGE) is now being used often in cyanobacteria 

ecology studies. The PCR-DGGE technique was invented to detect site mutations [7] and incorporated 

a microbial ecology method [8]. In the last decade, this technique has been used widely in 

environmental microorganism studies [9–12]. Worldwide cyanobacteria bloom events have attracted 

researchers to apply PCR-DGGE to study cyanobacteria community composition [13–15]. It is crucial 

to choose the most typical gene clusters for PCR amplification and subsequent DGGE analysis.  

The most commonly used gene sequences are conservative genes on rRNA, especially on 16S rRNA. 

As the intergenic transcribed spacer (ITS) region between 16S-23S rRNA gene is non-coding and 
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variable, the ITS sequence has become more commonly used in this area [16–18]. In this study, we 

applied both an ITS-based PCR-DGGE method and the traditional morphological method to 

investigate the cyanobacteria communities in the Tiegang and Shiyan reservoirs of Shenzhen. We also 

used Canonical Correspondence Analysis (CCA) to study the relationship between cyanobacteria 

community dynamics and environmental factors. 

2. Experimental Section  

2.1. Sample Collection and Determination of Water Quality 

In 2007, surface water samples were collected with a water sampler from the center and outlet of the 

Shiyan and Tiegang reservoirs at the beginning of each month. Center and outlet samples were combined 

to perform physical-chemical analysis. Transparency was measured with a Secchi disk. Dissolved 

oxygen (DO), pH, and temperature were measured in the field with a YSI ProPlus multiparmameter (YSI 

Inc., Yellow Springs, OH, USA). Chemical parameters including permanganate index (CODMn), total 

nitrogen (TN), ammonia (NH4
+-N) and total phosphorus (TP) were determined in the laboratory 

according to the National Environmental Quality Standards for Surface Water (GB3838-2002) [19]. 

Chlorophyll a concentration was measured using an ethanol extraction method modified from  

Lorenzen [20]. 

Phytoplankton samples were collected at the above-mentioned sampling sites and put into 1 L 

sample bottles. Lugol’s solution (15 mL) was added to each bottle, and set overnight. Supernatant was 

carefully removed, and the final concentrated sample volume was 50 mL. Each sample was vortexed 

and one drop of sample was placed on a haemocytometer to be examined under an Olympus-BX51 

compound microscope (Olympus, Tokyo, Japan) with 400× magnification. For each sample, five fields 

in the haemocytometer were counted and the mean value was used to calculate the biomass.  

For colonies or filaments, only the parts within the fields were counted. The phytoplankton biomass  

was expressed as cell numbers per liter. For qualitative examination, phytoplankton net #25  

(0.064-mm-diameter) tow samples fixed with formaldehyde solution (final concentration 5%) were put 

in counting chamber to identify genus or species of bacterium under inverted microscope (Olympus, 

Tokyo, Japan) [21].  

2.2. DNA Extraction and PCR-DGGE Analysis 

Water samples collected from Shiyan and Tiegang reservoirs during July and December 2007 were used 

for the ITS based PCR-DGGE analysis. Samples were first filtered through 0.45 μm filter paper and the 

filters were then used for DNA extraction with the Wizard Genomic DNA Purification Kit (Promega, 

Madison, WI, USA). PCR primers used for this study were CSIF/373R [22] that designed for ITS sequence 

of cyanobacteria genome. The sequences of primers were GC-CSIF (5′-G(T/C)C ACG CCC GAA GTC 

(G/A)TT AC-3′) and 373R(5′-CTA ACC ACC TGA GCT AAT-3′) with a 40 bp hairpin sequence on 

the 5′ (5′-CGC CCG CCG CGC CCC GCG CCC GGCCCG CCG CCC CCG CCC C-3′), size of  

the amplification sequence is around 250 bp. 

PCR reactions were performed in microcentrifuge tube with total volume of 50 μL containing 8 μL 

of 10× buffer (with MgCl2), 1 μL each of reverse and forward primers, 8 μL of dNTP, 0.5 μL of Taq 



Int. J. Environ. Res. Public 2014, 11 1144 

 

 

DNA polymerase, 28.5 μL of double distilled water, 5 μL of BSA, and 1μL of template DNA. 

Touchdown PCR amplification performed with 1 cycle of pre-denaturation at 94 °C for 5 min,  

23 cycles of touchdown (94 °C for 40 s, 58–55 °C for 30 s with decreasing annealing temperature by  

1 °C each consecutive cycle, 72 °C for 30 s), 26 cycles of amplification (94 °C for 40 s, 55 °C for 30 s 

and 72 °C for 30 s) and a final extension at 72 °C for 10 min. It was then incubate at 12 °C for 30 min. 

DGGE was performed following the protocol provided in the manual for Bio-Rad DCode Universal 

Mutation Detection System (Bio-Rad Laboratories, Hercules, CA, USA). Denaturing gradient gel was 

8% (wt/vol) polyacrylamide gels in 1× TAE buffer (20 mM Tris-acetate (pH 7.4), 10 mM acetate,  

0.5 mM disodium EDTA). The gradient range was 25–45%. Electrophoresis was carried out at 50 V 

for 30 min and 120 V for 7 h. Gel was stained for 1 h with 3× GelRed TM Nucleic Acid Gel Stain 

(containing 0.1 M NaCl and 30 μL GelRed TM Nucleic Acid Gel Stain, 10,000× in water per100 mL 

H2O). Bands on gel were captured using gel image system. A band was considered to be a band when 

it provided a signal to noise ratio of over 3:1. After image capture, the gel plug containing a PCR 

product was removed with 10 μL pipette tips and placed in 1.5 mL microcentrifuge tube. The gel plug 

was then submerged in 50 μL of deionized water and sat at 4 °C overnight. Another DGGE was 

performed using excised band and original sample to verify the band. The next day, the solution was 

diluted 100× and 1 μL of the diluted extract was used for second PCR amplification (30 cycles,  

Ta = 57 °C). The PCR product was directly sequenced. When direct sequencing failed, sequencing was 

done after cloning with pUC57 T-vector system according to the manufacturer’s instructions (Takara, 

Dalian, China). Again, another DGGE was performed to verify the clone product by running the clone 

product with the original sample on one gel. The sequences were compared with GenBank database with 

BLAST search. Species was assigned based on the top BLAST hit. DGGE images were analyzed using 

software Quantity One (Bio-Rad). After recognition of each band, Un-weighted Pair Group Method 

with Arithmetic Averages (UPGMA) analysis was performed. Bands were also quantified and entered 

in Excel and used with physical-chemical indices in Canonical Correspondence Analysis (CCA) using 

CANOCO (version 4.5), as described in previously published reports [23,24].  

3. Results and Discussion 

3.1. Eutrophication Levels of Two Reservoirs 

Tiegang Reservoir and Shiyan Reservoir are both important drinking water source for Shenzhen. 

The rapid economic development and continuous population growth have accelerated eutrophication in 

the two reservoirs during the last five years. In this study, nine water quality indices (TN, DO, NH4
+-N, 

TP, CODMn, pH, temperature, transparency and chlorophyll a) of both reservoirs were monitored 

monthly in 2007 and the mean values were shown in Table 1.  
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Table 1. Mean value of water quality parameters in Tiegang and Shiyan Reservoirs in 

2007 (standard deviations in parentheses). 

Water Quality Parameters Tiegang Reservoir Shiyan Reservoir 
Water temperature (℃) 25.4 (5.56) 24.9 (5.52) 

DO (mg L-1) 8.38 (1.26) 8.16 (1.42) 
Chlorophyll a (μg L-1) 45.3 (31.2) 53.0 (26.9) 

CODMn (mg L-1) 2.75 (0.745) 3.04 (0.674) 
Ammonia (mg L-1) 0.147 (0.087) 0.566 (0.359) 

Total nitrogen (mg L-1) 0.934 (0.242) 1.508 (0.387) 
Total phosphorus (mg L-1) 0.034 (0.009) 0.043 (0.004) 

pH  8.237 (0.566) 7.871 (0.657) 
Transparency (cm) 64.8 (5.59) 58.3 (6.68) 

3.2. Phytoplankton and Cyanobacteria Community Structure and Dynamics in Two Reservoirs 

Cyanobacteria, green algae (Scenedesmus sp. and Cosmarium sp.) and diatoms (Synedra spp, 

Melosira spp.) were the main phytoplankton groups in the tested water samples. Cyanobacteria were 

the most dominant phytoplankton in Tiegang Reservoir and were also abundant in Shiyan Reservoir, 

except for the winter, during which diatoms were dominant. The cyanobacterium Phormidium tenue 

was found consistently in all of the water samples, and other common cyanobacterial species including 

Raphidiopsis sinensia and species belonging to Chroococcales sp. and Merismopedia sp. 

Cyanobacteria abundance varied monthly. Winter showed the lowest cell density, with 1.40 × 107 cells 

L-1 in December for Tiegang and 2.50 × 107 cells L-1 for Shiyan (Figure 1). The highest phytoplankton 

cell density appeared in August where 2.48 × 109 cells L-1 and 1.39 × 109 cells L-1 were found in 

samples collected from Tiegang and Shiyan, respectively. For the rest of the year, the cyanobacteria 

abundance was around 108 cells L-1 in both reservoirs. As the cyanobacteria abundance did not vary 

much from January to June (Figure 1), we only used samples from July to December to analyze  

the cyanobacteria abundance and population composition with both the traditional microscopic 

counting method and a PCR-DGGE genotyping method. Results from microscopic investigation are 

listed in Table 2. 

Figure 1. The annual changes of cyanobacteria abundance in Tiegang and Shiyan Reservoir. 
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Table 2. Monthly abundance of main cyanobacteria species in Tiegang and Shiyan Reservoirs from July to December, 2007. 

Cyanobacteria species T7 T8 T9 T10 T11 T12 S7 S8 S9 S10 S11 S12 

Phormidium tenue 1.2 × 108 4.8 × 108 2.1 × 108 5.4× 107 1.2 × 107 9.0 × 106 3.0 × 107 1.2 × 108 2.7 × 107 8.4 × 107 6.0 × 106 3.0 × 106 
Raphidiopsis sinensia 7.5 × 107 5.3 × 108 4.4 × 108 8.3 × 107 N 5.0 × 106 2.0 × 108 2.8 × 108 1.1 × 108 5.0 × 107 2.5 × 106 1.0 × 107 

Microcystis aeruginosa N N 3.8 × 107  N N 2.5 × 107 N 2.0 × 107 5.0 × 106 N N 
Chroococcus giganteus N N 2.5 × 107 N N N N N 3.8 × 107 N N N 

Chroococcus westii N 1.3 × 108 N N N N N 6.5 × 107 N N N 8.0 × 106 
Chroococcus limneticus N N N 1.6 × 107 N N N N N 3.8 × 107 N N 

Cylindrospermum sp. 4.3 × 108 1.3 × 109 N N N N 4.5 × 108 6.8 × 108 N N N N 
Spirunila major N N N N N N N N N N N N 

T1–T6: Samples from July to December in Tiegang Reservoir; S1–S6: Samples from July to December in Shiyan Reservoir; N means not detectable, cell numbers  <5.0 × 
105cells L-1. 
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Figure 2 shows PCR-DGGE results of water samples collected from Tiegang and Shiyan Reservoirs 

from July to December (more details are shown in Figure A1 and Tables A1 and A2 in Appendix). As 

summarized in Table 3 (e-value of each comparison was under 0.001), 16 cyanobacteria genotypes 

corresponding to 16 species were identified in each reservoir, including Microcystis, Phormidium, 

Synechocystis, Cylindrospermopsis, Spirulina, Arthrospira, Raphidiopsis, Lynghya and Anabeana. For 

these 16 species, each species had one specific band, except for Cylindrospermopsis raciborskii (bands 

11 and 13) (Table 3). The brightness of the band was used as an indicator of cyanobacteria density. For 

example, band 16 in Figure 2 was very bright, and the corresponding Phormidium sp. was also shown 

to be dominant genera under microscope investigation (Table 2). However, it should be noted that  

the PCR step could favor the amplification of particular DNA segments, which may cause  

an underestimation of certain strains of bacteria. In the current study, the comparison of dominant 

species between PCR-DGGE and microscopic analyses seemed to be compatible.  

Figure 2. The PCR-DGGE fingerprint map of water samples from July to December 2007 

in Tiegang and Shiyan Reservoir. T7-T12: samples from July to December in Tiegang 

Reservoir; S7-S12: samples from July to December in Shiyan Reservoir. 

 

Band numbers of DGGE products were compared among samples using Quantity One (Bio-Rad). 

T10 was designated as the standard for relative quantification. Bands at the same position were 

considered as the same species. The relative biomass was represented by the DNA amounts from the 

bands. The Cs (Dice coefficient) correlation between relative biomass of each band ranged from 38.1% 

(T8 and S12) to 78.8% (T11 and S11), which means cyanobacteria community in December of Shiyan 

and August of Tiegang were mostly different, while the two reservoirs had similar cyanobacteria 

communities in November. Based on similarity analysis, results were converted into UPGMA diagram 

(Figure 3) using Quantity One. The tree had three major clades. Clade I consisted of cyanobacteria 

species in August and September (Lanes T8, S8, T9 and S9). Clade II consisted of cyanobacteria 

species in November (Lanes T11, S11). Clade III consisted of samples collected in December (Lanes 
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T12, S12), October and July (Lanes T7, S10, S7, and T10). Overall, the cyanobacteria community 

structure was very similar between the two reservoirs in the same month while it showed seasonal 

changes in the same reservoir.  

Table 3. The sequencing result of bands in Figure 2. 

DGGE Band 
No. 

Similarity 
Number 

Closest Matching Organism 
Base Pairs 
Compared 

Similarity 
(%) 

1 AF363949.1 Microcoleus steenstrupii 171 81 
2 EF583859.1 Anabaena sp. 139 97 
3 X75045.1 Spirulina sp. 130 92 
4 AM398947.1 Phormidium sp. 222 97 
5 EF583859.1 Anabaena sp. 150 98 
6 AJ605201.1 Microcystis sp. 244 98 
7 EF150986.1 Microcystis sp. 214 97 
8 EU183353.1 Arthrospira sp. 204 94 
9 DQ351315.1 Synechococcus sp. UW140 209 91 

10 AM398973.1 Phormidium sp 211 96 
11 AM502073.1 Cylindrospermopsis raciborskii  346 98 
12 DQ786166.1 Leptolyngbya sp. LLi18 145 94 
13 AJ582284.1 Cylindrospermopsis raciborskii  379 94 
14 BA000022.2 Synechocystis sp 158 89 
15 X75045.1 Spirulina sp 130 92 
16 AM398960.1 Phormidium persicinum SAG 80.79 135 98 
17 DQ351315.1 Synechococcus sp. UW140 16S  209 91 

Figure 3. The cyanobacteria community structure system tree map of Tiegang and Shiyan 

reservoir water samples from July to December in 2007. T7–T12: Samples from July to 

December in Tiegang Reservoir; S7–S12: Samples from July to December in Shiyan 

Reservoir. The purpose of the tree is to show the clades. 
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3.3. Relationship between Cyanobacteria Community Dynamics and Environment Factors 

The cell number of each cyanobacteria species in water samples of two reservoirs was counted 

under a microscope. These numbers were analyzed for correlations with environmental factors using 

CCA. Results are shown in Figure 4. The cyanobacteria community structure correlated mainly with 

temperature, pH, COD, NH4
+-N and TN, with coefficients around 0.7. 

Figure 4. Canonical correspondence analysis (CCA) ordination diagram of the 

cyanobacteria community dynamics data (from traditional morphological method) in 

relation to the environmental variables. 1–6: samples from July to December in Tiegang 

Reservoir: 7–12: samples from July to December in Shiyan Reservoir. 

 

The number of bands and their relative quantities from PCR-DGGE results were also analyzed for 

correlation with environmental factors using CCA. Results are shown in Figure 5. The cyanobacteria 

community dynamics in the two reservoirs were mainly correlated with temperature, pH, and TN  

(R > 0.5). Results from both methods indicated that temperature, pH, and TN are important factors 

affecting cyanobacteria community structure, which is consistent with other reports that those are the 

main parameters for cyanobacterial growth [25,26]. This result is also in line with previous data from 

other reservoirs [27]. The increase in Microcystic aeruginosa and Phormidium tenue is an important 

indication of eutrophication [28]. It is necessary to monitor cyanobacteria community dynamics of 

reservoirs, and study its relationship with the environmental factors for the estimation and evaluation 

of eutrophication level of water bodies. Either or both of the methods employed in this study can serve 

as a useful environmental monitoring tool, and the correlation between cyanobacteria community and 

environmental factors can be used to predict and prevent cyanobacteria bloom.  
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Figure 5. CCA ordination diagram of the cyanobacteria community dynamics data (from 

PCR-DGGE approach) in relation to the environmental variables. 1–6: samples from July to 

December in Tiegang Reservoir: 7–12: samples from July to December in Shiyan Reservoir. 

 

3.4. Comparison between Morphological Identification and PCR-Dgge Identification to Determine 

Cyanobacteria Community of Two Reservoirs 

This study employed both microscopic observation and PCR-DGGE analysis to identify cyanobacteria 

species in water bodies and compared the results. In this particular study, it was found that the number 

of cyanobacteria species observed in PCR-DGGE was much larger than the number of species 

identified by microscopy. In October 2007, for example, five species were identified by  

the microscopic method in Tiegang Reservoir (Table 2, T10); while sixteen species were identified by 

PCR-DGGE analysis in the same sample (Figure 2, T10). The cyanobacteria community of two 

reservoirs depicted in Figure 2 (data from PCR-DGGE analysis) also showed better diversity than in 

Table 2 (data from microscopic observation) in other months of 2007. When comparing Tables 2 and 3, 

we can see the main cyanobacteria species identified were also different. Band 5 in Table 2, for 

example, was identifies as Anabaena sp. and detected in most samples (Figure 2), while no Anabaena 

was found through microscopic method (Table 2). Chroococcus sp., on the other hand, was found in 

many samples with high density in Table 2, but no band in PCR-DGGE was identified as Chroococcus 

sp. Both methods have their disadvantage and may cause false results. Microscopic analysis requires 

professional experience and skills for morphological identification, and it is prone to human error. For 

example, Synechococcus spp. is a very small unicelluar genera and the biomass could probably be 

overestimated under microscope. For PCR-DGGE, the primer set (CSIF/373R) used in this study was 

good for broadly scan dominated cyanobacteria isolates, but different cyanobacteria isolates might 

show as a same band on the gel [22]. However, the most dominated cyanobacteria genera were 

consistently identified as Phormidium sp. through both methods, which indicated that PCR-DGGE 
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could objectively reflect main cyanobacteria community dynamics compared with morphological 

identification. Pyrosequencing is another tool to perform similar analysis. With the steady decrease of  

the cost, this technique may be an alternative or complementary tool for environmental analysis, such 

as the one described here. It will certainly improve the reliability of the data.  

3.4. Reliability of CCA Based on PCR-DGGE Data 

In most microbiology studies, it is common to use relative quantity data of PCR-DGGE bands to 

perform CCA [24,29,30]. However, it is not always possible to confirm the correlation between  

the relative quantity of DNA bands with the exact number of bacteria because large number of bacteria 

exists in water samples and not all of them could be isolated and identified with morphological 

methods. It is relatively easier to quantify and identify cyanobacteria species with morphological 

methods, so in this study we used data from both PCR-DGGE analysis and a morphological method to 

perform CCA in relation to environmental factors. This provides a good chance to check  

the reliability of CCA based on PCR-DGGE data of cyanobacteria. Results suggested that  

the cyanobacteria community dynamics determined by traditional morphological method showed 

better correlation coefficients with temperature, pH, TN and other environmental factors, such as COD 

and NH4
+-N (Figure 4). Results of CCA from PCR-DGGE data was largely in accordance with  

Figure 4 in terms of the correlation with temperature and TN. However, there were also obvious 

differences when comparing Figure 4 with Figure 5. For example, CCA results from PCR-DGGE 

could not identify the close correlation between cyanobacteria community and COD and NH4
+-N.  

The lower correlation coefficient from PCR-DGGE data might be due to the DNA band intensity 

cannot accurately reflect the quantity of the relevant species. Moreover, the sample distribution in  

the CCA analysis was also different (Figures 4 and 5). In general, the relative quantification of 

cyanobacteria with PCR-DGGE method using CSIF/373R primers can be applied in CCA as  

a reference tool to seek the correlation with environmental factors of water bodies in reservoir. 

However, results need be calibrated and verified by traditional morphological methods. 

4. Conclusions 

We investigated the cyanobacteria community composition in eutrophic water samples with both 

the PCR-DGGE method and the traditional microscopic examination method. Both methods provided 

useful information and most results were comparable. Both reservoirs were dominated with 

cyanobacteria during the summer months, with temperature, precipitation, TN and pH as the main 

factors correlated with cyanobacteria abundance. As a tool to study cyanobacteria communities,  

PCR-DGGE does have its drawbacks, for example, no primers could amplify specific DNA bands 

from all cyanobacterial species, and cyanobacteria DNA sequences in GenBank are limited. Currently, 

PCR-DGGE analysis can be used as a semi-quantitative tool to identify algal species, and with the 

combination of traditional morphological methods, it could effectively monitor community dynamics of 

cyanobacteria in reservoirs.  
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Appendix 

Figure A1. Larger PCR-DGGE fingerprint map for sequencing. Lanes 1-6: samples from 

July to December in Tiegang Reservoir; Lanes 7-12: samples from July to December in 

Shiyan Reservoir. 

 

Table A1. List of sequencing results from DGGE bands on Figure A1. 

DGGE 
band no. 

similarity 
number 

closest matching organism 
base pairs 
compared 

similarity(%)

1-1 X75045.1 Spirulina sp. 130 92 

1-2 AM398960.1 
Phormidium persicinum SAG 

80.79  
135 98 

2-1 BA000022.2 Synechocystis sp. 158 89 

4-1 AF363949.1 Microcoleus steenstrupii 171 81 

4-2 EF583859.1 Anabaena sp. 139 97 

4-3 X75045.1 Spirulina sp. 130 92 

4-4 AM398947.1 Phormidium sp. 222 97 
4-5 EF583859.1 Anabaena sp. 150 98 

4-6 AJ605201.1 Microcystis sp. 244 98 

4-7 EF150986.1 Microcystis sp. 214 97 

4-8 EU183353.1 Arthrospira sp. 204 94 

4-9 DQ351315.1 Synechococcus sp. UW140 209 91 
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Table A1. Cont. 

DGGE 
band no. 

similarity 
number 

closest matching organism 
base 
pairs 

compared 
similarity(%)

4-10 AM398973.1 Phormidium sp. 211 96 

4-11 AM502073.1 Cylindrospermopsis raciborskii  346 98 

4-12 DQ786166.1 Leptolyngbya sp. LLi18 145 94 

4-13 AJ582284.1 Cylindrospermopsis raciborskii  379 94 
4-14 BA000022.2 Synechocystis sp. 158 89 
4-15 X75045.1 Spirulina sp. 130 92 
4-16 AM398960.1 Phormidium persicinum SAG 80.79 135 98 
4-17 DQ351315.1 Synechococcus sp. UW140 16S  209 91 
5-1 EU183353.1 Arthrospira sp. 204 94 
5-2 EF583859.1 Anabaena sp. 150 98 
5-3 EF150986.1 Microcystis sp. 214 97 
6-1 AY672727.1 Microcystis sp. 394 98 
6-2 AJ582275.1 Raphidiopsis sp. 368 96 
7-1 EF583859.1 Anabaena sp. 150 98 
7-2 EU183353.1 Arthrospira sp. 204 94 
7-3 AM502073.1 Cylindrospermopsis raciborskii  220 98 
7-4 AM398960.1 Phormidium persicinum  135 98 
8-1 EF442201.1 Synechococcus sp.  89.8 92 

10-1 EF583859.1 Anabaena sp. 150 98 
10-2 EF150986.1 Microcystis sp. 214 97 
10-3 EU183353.1 Arthrospira sp. 204 94 
10-4 AM398960.1 Phormidium persicinum  135 98 
11-1 EF429298.1 Leptolyngbya badia  130 98 
12-1 EF150986.1 Microcystis sp. 214 97 

12-2 AM398960.1 Phormidium persicinum SAG  135 98 

Table A2. List of DNA sequences of bands in Table A1. 

DGGE Band 
No. 

Similarity 
Number 

Closest Matching Organism 
Base Pairs 
Compared 

Similarity 
(%) 

1-1 X75045.1 Spirulina sp. 130 92 
CCCGTTACGCTGCGACGAATGCGTGGCTAGATGACAGGGGTGAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACAGATAGTGTACGAATGAATGTA
AGCTATCAGTTGGTCATCTCAAGGTCGAGGGTTTCGAGTATGGTATTCTTCAGGCTAGGGTCTAGG
GGCTATTAGCTCAGGTGGTTAGA 

1-2 AM398960.1 
Phormidium persicinum SAG 

80.79  
135 98 

TTCCCTCAGGGGGGGGTGCGACGCAGGTCTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACGGATAGTTTACGAATAGATG
TAAGGTATCAGTTGGTCATCTCGAGGTCGAGGGTTGGGAGTATGGTATTCTTCAGGCTAGGGTCTA
GGGGCTATTAGCTAGGTGGTTAGA 
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Table A2. Cont. 

DGGE Band No. Similarity Number 
Closest Matching 

Organism 
Base Pairs Compared 

Similarity 
(%) 

2-1 BA000022.2 Synechocystis sp. 158 89 
CGGATAGGAAGGAAGAGCTAACGTAGGACTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCTAATCCACTTAGAAATGTTAAGGAAAC
TACCATAACAACCTAAATTGGTCTAACCTAGGTCGGTCGCAGACTTGAAGTAAGTCTTTCAAACTA
TGATTTGGTTCGATAAGGGCTATTAACTCAGGTGGTTAGA 

4-2 EF583859.1 Anabaena sp. 139 97 
TTTTTGGGGGAGGCGCGACGCACGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGA
AGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCCAATCCGTAGAAGTTATGAGTTATGAGTTTTG
AATGTTGAGTTTAAGACTTGTGACCTAAATCTAAACATTACAACTTCTATGAGATTCAATCCCGAG
GTCGTACCGAGGTTGTGAACTTTCAAGCTAAGTCAGGTTTGTAAATGGGCTATTAGCTCAGGTGGT
TAGA 

4-3 X75045.1 Spirulina sp. 130 92 
CCCGTTACGCTGCGACGAATGCGTGGCTAGATGACAGGGGTGAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACAGATAGTGTACGAATGAATGTA
AGCTATCAGTTGGTCATCTCAAGGTCGAGGGTTTCGAGTATGGTATTCTTCAGGCTAGGGTCTAGG
GGCTATTAGCTCAGGTGGTTAGA 

4-4 AM398947.1 Phormidium sp. 222 97 
TTCCCTCAGGGGGGGGTGCGACGCAGGTCTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACGGATAGTTTACGAATAGATG
TAAGGTATCAGTTGGTCATCTCGAGGTCGAGGGTTGGGAGTATGGTATTCTTCAGGCTAGGGTCTA
GGGGCTATTAGCTAGGTGGTTAGA 

4-5 EF583859.1 Anabaena sp. 150 98 
TTTTTGGGGGAGGCGCGACGCACGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGA
AGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCCAATCCGTAGAAGTTATGAGTTATGAGTTTTG
AATGTTGAGTTTAAGACTTGTGACCTAAATCTAAACATTACAACTTCTATGAGATTCAATCCCGAG
GTCGTACCGAGGTTGTGAACTTTCAAGCTAAGTCAGGTTTGTAAATGGGCTATTAGCTCAGGTGGT
TAGA 

4-6 AJ605201.1 Microcystis sp. 244 98 
CCAGTAGGGAGGGGGAGCTAGTAGGACTGGTGACTGGGGTGAGTCGTACAAGGTAGCCGTACCGG
AAGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCTACCCATTGAAGAATCGAAAGCCGAAGGCG
AATAGAGAATCAAATGGTCTACTCTAGGTCGATGACGTGAGATTGTGAAGTCTTTCAAACTAATAT
TTGGTTCGCGGGCTATTAGCTATGTGGTTAGA 

4-7 EF150986.1 Microcystis sp. 214 97 
CCGTAGCCAAGGGAGAGCTAGCATGACTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTCAGGGAGACCTTACCCACCTCAACTCCAAAGCACAAAG
CGAATAGAGAGAGGATTGGTCAACCTAAGTCGGTCGAGGAATTGTGTGGCTCTCAAACTTGTCTG
GGTTTACTTCTAAGAAGAAGGGAAACGAGGGCTATTAGCTAAGGTGGTTAGAGACATTACCTCAG
GTGGTTAGA 

4-8 EU183353.1 Arthrospira sp. 204 94 
AGGATCCGAATCAGGTCTTTTATGACCCCAGAACCTAGTTTGAAAGCCACATACCTCGTTCCGACC
TTTTGGGATTGATTCTTGGTTTCGACTACTATTTTTTCGTCTTATACCCGAATTAGGTCTCCCTTTAA
GGAGGTGATCCAGCCACACCTTCCGGTACGGCTACCTTGTTACGACTTCACCCCAGTCACTAGCCC
TGCCTTAGGCATCCCCCTCCTTGCGGTTGAGGTAACGACTTCGGGCGTGACA 
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DGGE Band 
No. 

Similarity Number Closest Matching Organism
Base Pairs 
Compared 

Similarity (%)

4-9 DQ351315.1 Synechococcus sp. UW140 209 91 
CAATGAAGAGAGAGCGTATGTGGGGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGG
AAGGTGCGGCTGGATCACCTCCTAACAGGGAGACACAACTGATTTTGATGTTTGGTTCATTTTGAA
ATCAAGCCGAAATCCTGTCACCTTAGGTCGATCGGTACCTCAGATGGTTGAATGCAATGGGAGCG
GAAACGCGACCAAAGCATCTGCCACCTCAGTTCCTAAACTTCTGTCTAGGTCACCCCTCCGAGCCC
ATCTGGGCCATTAGCTCAGGTGGTTAGA 

4-10 AM398973.1 Phormidium sp. 211 96 
ACATTAAAGGGTAGAGCGACGCACGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGG
AAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACAGATAGTGTACGAATGAATGTAAG
CTATCAGTTGGTCATCTCAAGGTCGAGGGTTTCGAGTATGGTATTCTTCAGGCTAGGGTCTAGGGG
CTATTAGCTAGGTGGTTAGA 

4-11 AM502073.1 Cylindrospermopsis raciborskii 346 98 
CGTAAGGTAGCAGCCGATAGCGCGAGTAGAGACTAGACGTGAGTCGTAACAAGGTAGCCGTACCG
GAAGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCTACCCATTGAAGAATCCAAAGCCGCAGGC
GAATAGAGAATCAAATGGTCTACTCTAGGTCGATGACGTGAGATTGTGAAGTCTTTCAAACTAATA
TTTGGTTCGCGGGCTATTAGCTCAGGTGGTTAGAACACACCATGGGACCAGACCTTGTCCAAGACC
CCTTTTGCTTTACTTAATGACAAAAAACAAAGATCTACCAAACTTTTTACCCAATAAAAATATCCC
GGGTCCCCAGCACCCCTTGTTCCCTCAAAAATTTCCCCAAAAAAACCCGACCCCCCTATTATCTCA
AAGCGCTTCCTTTTGTTGGGGATGGGGGACAAAAATTGGGGGGGCCACACAAAGTGATCTTATAG
TGCCCTCTGGCTTTTATCTGGGGCATCGGAAAACTCTTAATTCTGTATCGGACCTCCACGCTCGTGT
CTTTGGGGGGGGCTACCATATCGAGAGAACTCTCCGCATGCGGAGCTCTCTCTACAGTGCGCGGGG
GTT 

4-12 DQ786166.1 Leptolyngbya sp. LLi18 145 94 
CCGTAGCCAAGGGAGAGCTAGCATGACTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTCAGGGAGACCTTACCCACCTCAACTCCAAAGCACAAAG
CGAATAGAGAGAGGATTGGTCAACCTAAGTCGGTCGAGGAATTGTGTGGCTCTCAAACTTGTCTG
GGTTTACTTCTAAGAAGAAGGGAAACGAGGGCTATTAGCTAAGGTGGTTAGAGACATTACCTCAG
GTGGTTAGA 

4-13 AJ582284.1 Cylindrospermopsis raciborskii 379 94 
CCCATCAGTGAGCTATGTAGGACTGGTGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGAAG
GTGTGGCTGGATCACCTCCTTTTAGGGAGACCTACCCATTGAGGAATCGAAAGCGGAGAGCGAAT
AGAGAATCAAATGGTCTACTCTAGGTCGGTGACGTGAGATTGTGAAGTCTTTCAAACTAATATTTG
GTTCGCGAGAGGGCTATTAGCTAGGGTGGTTAGAAGCACCCCCGGGGGATAGCCAACCACTGCGG
GCTTAAACCCTGGGGAAAAAACCAAAGTGGTAAGAACAGCTGGGGGCAAAAAAATAATCAAGAC
TCCGAATTTCCTGTGTTCCCTCAAAAATTTCTTTGAGAACCACCGACCCCCCTGTATATCTGACTGC
CGCTCTTTGCCGATCTTTTTTTTAAAATGGTGGCCGGCCCCCCAAATGATGTGTTGTTGGCGCCCCC
CCCCTCTTACTTGGCGTTCGAGAGAATTACTAATACGACATTCATCCACCACGGTTTTATTTAGTGG
GGGGCGCGAACGGAGAGATGGCT 

4-14 BA000022.2 Synechocystis sp. 158 89 
CGGATAGGAAGGAAGAGCTAACGTAGGACTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCTAATCCACTTAGAAATGTTAAGGAAAC
TACCATAACAACCTAAATTGGTCTAACCTAGGTCGGTCGCAGACTTGAAGTAAGTCTTTCAAACTA
TGATTTGGTTCGATAAGGGCTATTAACTCAGGTGGTTAGA 
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4-15 X75045.1 Spirulina sp. 130 92 
CCCGTTACGCTGCGACGAATGCGTGGCTAGATGACAGGGGTGAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACAGATAGTGTACGAATGAATGTA
AGCTATCAGTTGGTCATCTCAAGGTCGAGGGTTTCGAGTATGGTATTCTTCAGGCTAGGGTCTAGG
GGCTATTAGCTCAGGTGGTTAGA 

4-16 AM398960.1 Phormidium persicinum SAG 80.79 135 98 
TTCCCTCAGGGGGGGGTGCGACGCAGGTCTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACGGATAGTTTACGAATAGATG
TAAGGTATCAGTTGGTCATCTCGAGGTCGAGGGTTGGGAGTATGGTATTCTTCAGGCTAGGGTCTA
GGGGCTATTAGCTAGGTGGTTAGA 

4-17 DQ351315.1 Synechococcus sp. UW140 16S  209 91 
CAATGAAGAGAGAGCGTATGTGGGGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGG
AAGGTGCGGCTGGATCACCTCCTAACAGGGAGACACAACTGATTTTGATGTTTGGTTCATTTTGAA
ATCAAGCCGAAATCCTGTCACCTTAGGTCGATCGGTACCTCAGATGGTTGAATGCAATGGGAGCG
GAAACGCGACCAAAGCATCTGCCACCTCAGTTCCTAAACTTCTGTCTAGGTCACCCCTCCGAGCCC
ATCTGGGCCATTAGCTCAGGTGGTTAGA 

5-1 EU183353.1 Arthrospira sp. 204 94 
AGGATCCGAATCAGGTCTTTTATGACCCCAGAACCTAGTTTGAAAGCCACATACCTCGTTCCGACC
TTTTGGGATTGATTCTTGGTTTCGACTACTATTTTTTCGTCTTATACCCGAATTAGGTCTCCCTTTAA
GGAGGTGATCCAGCCACACCTTCCGGTACGGCTACCTTGTTACGACTTCACCCCAGTCACTAGCCC
TGCCTTAGGCATCCCCCTCCTTGCGGTTGAGGTAACGACTTCGGGCGTGACA 

5-2 EF583859.1 Anabaena sp. 150 98 
TTTTTGGGGGAGGCGCGACGCACGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGA
AGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCCAATCCGTAGAAGTTATGAGTTATGAGTTTTG
AATGTTGAGTTTAAGACTTGTGACCTAAATCTAAACATTACAACTTCTATGAGATTCAATCCCGAG
GTCGTACCGAGGTTGTGAACTTTCAAGCTAAGTCAGGTTTGTAAATGGGCTATTAGCTCAGGTGGT
TAGA 

5-3 EF150986.1 Microcystis sp. 214 97 
CCGTAGCCAAGGGAGAGCTAGCATGACTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTCAGGGAGACCTTACCCACCTCAACTCCAAAGCACAAAG
CGAATAGAGAGAGGATTGGTCAACCTAAGTCGGTCGAGGAATTGTGTGGCTCTCAAACTTGTCTG
GGTTTACTTCTAAGAAGAAGGGAAACGAGGGCTATTAGCTAAGGTGGTTAGAGACATTACCTCAG
GTGGTTAGA 

6-1 AY672727.1 Microcystis sp. 394 98 
TCGCCAGTCGAGGTATCCATGCGCGTACTAGTGATGGGGTGCAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTAAAGGGAGACCTAATTCAGGTAGGATACGAAAAAAAGTA
GTCCCTACCAAGAATCAATCCCAAAAGGTCGGAGCGAGGCAAAATTGGCTTTCAAACTAGGTTCT
GGGTTCACATAAGACCTGAATCAGGAACAAGGGCTATTAGCTCAGGTGGTTAGAATTAACTCCTG
GGGTAGTTGGATCCAAGGTGGTTAGATTACCGCGGGTGTATGGGTTTCTAAAGATTCATTAACGAA
GTTCAGGTTCAGCTTCTGTGCCCAAAGACTGAATGTAATTACTTGCAGACTCTGACGATATTTTCCC
CAGAACTTTACCTTTGGGGTTTTTTTTTTGTCCTAAAACGAGCTCCATATGATCAGGGGGGGGGGG
GACCCCCCCCCACCTCGTTCTCCCGGTCCACTCTCATCCATGATGAACCCCACGGACCAATCATAC
TCAGTCTGGATATAATGCATCAAAATACTCATGATTCTCTGGTTTCTCGGTACCACCTGGTACCTCT
CGCACCCC 
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6-2 AJ582275.1 Raphidiopsis sp. 368 96 
CCCATCAGTGAGCTATGTAGGACTGGTGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGAAG
GTGTGGCTGGATCACCTCCTTTTAGGGAGACCTACCCATTGAGGAATCGAAAGCGGAGAGCGAAT
AGAGAATCAAATGGTCTACTCTAGGTCGGTGACGTGAGATTGTGAAGTCTTTCAAACTAATATTTG
GTTCGCGAGAGGGCTATTAGCTAGGGTGGTTAGAAGCACCCCCGGGGGATAGCCAACCACTGCGG
GCTTAAACCCTGGGGAAAAAACCAAAGTGGTAAGAACAGCTGGGGGCAAAAAAATAATCAAGAC
TCCGAATTTCCTGTGTTCCCTCAAAAATTTCTTTGAGAACCACCGACCCCCCTGTATATCTGACTGC
CGCTCTTTGCCGATCTTTTTTTTAAAATGGTGGCCGGCCCCCCAAATGATGTGTTGTTGGCGCCCCC
CCCCTCTTACTTGGCGTTCGAGAGAATTACTAATACGACATTCATCCACCACGGTTTTATTTAGTGG
GGGGCGCGAACGGAGAGATGGCT 

7-1 EF583859.1 Anabaena sp. 150 98 
TTTTTGGGGGAGGCGCGACGCACGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGA
AGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCCAATCCGTAGAAGTTATGAGTTATGAGTTTTG
AATGTTGAGTTTAAGACTTGTGACCTAAATCTAAACATTACAACTTCTATGAGATTCAATCCCGAG
GTCGTACCGAGGTTGTGAACTTTCAAGCTAAGTCAGGTTTGTAAATGGGCTATTAGCTCAGGTGGT
TAGA 

7-2 EU183353.1 Arthrospira sp. 204 94 
AGGATCCGAATCAGGTCTTTTATGACCCCAGAACCTAGTTTGAAAGCCACATACCTCGTTCCGACC
TTTTGGGATTGATTCTTGGTTTCGACTACTATTTTTTCGTCTTATACCCGAATTAGGTCTCCCTTTAA
GGAGGTGATCCAGCCACACCTTCCGGTACGGCTACCTTGTTACGACTTCACCCCAGTCACTAGCCC
TGCCTTAGGCATCCCCCTCCTTGCGGTTGAGGTAACGACTTCGGGCGTGACA 

7-3 AM502073.1 Cylindrospermopsis raciborskii 220 98 
CGTAAGGTAGCAGCCGATAGCGCGAGTAGAGACTAGACGTGAGTCGTAACAAGGTAGCCGTACCG
GAAGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCTACCCATTGAAGAATCCAAAGCCGCAGGC
GAATAGAGAATCAAATGGTCTACTCTAGGTCGATGACGTGAGATTGTGAAGTCTTTCAAACTAATA
TTTGGTTCGCGGGCTATTAGCTCAGGTGGTTAGAACACACCATGGGACCAGACCTTGTCCAAGACC
CCTTTTGCTTTACTTAATGACAAAAAACAAAGATCTACCAAACTTTTTACCCAATAAAAATATCCC
GGGTCCCCAGCACCCCTTGTTCCCTCAAAAATTTCCCCAAAAAAACCCGACCCCCCTATTATCTCA
AAGCGCTTCCTTTTGTTGGGGATGGGGGACAAAAATTGGGGGGGCCACACAAAGTGATCTTATAG
TGCCCTCTGGCTTTTATCTGGGGCATCGGAAAACTCTTAATTCTGTATCGGACCTCCACGCTCGTGT
CTTTGGGGGGGGCTACCATATCGAGAGAACTCTCCGCATGCGGAGCTCTCTCTACAGTGCGCGGGG
GTT 

7-4 AM398960.1 Phormidium persicinum  135 98 
TTCCCTCAGGGGGGGGTGCGACGCAGGTCTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACGGATAGTTTACGAATAGATG
TAAGGTATCAGTTGGTCATCTCGAGGTCGAGGGTTGGGAGTATGGTATTCTTCAGGCTAGGGTCTA
GGGGCTATTAGCTAGGTGGTTAGA 

8-1 EF442201.1 Synechococcus sp.  89.8 92 
CAATGAAGAGAGAGCGTATGTGGGGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGG
AAGGTGCGGCTGGATCACCTCCTAACAGGGAGACACAACTGATTTTGATGTTTGGTTCATTTTGAA
ATCAAGCCGAAATCCTGTCACCTTAGGTCGATCGGTACCTCAGATGGTTGAATGCAATGGGAGCG
GAAACGCGACCAAAGCATCTGCCACCTCAGTTCCTAAACTTCTGTCTAGGTCACCCCTCCGAGCCC
ATCTGGGCCATTAGCTCAGGTGGTTAGA 
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10-1 EF583859.1 Anabaena sp. 150 98 
TTTTTGGGGGAGGCGCGACGCACGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGA
AGGTGTGGCTGGATCACCTCCTTTTAGGGAGACCCAATCCGTAGAAGTTATGAGTTATGAGTTTTG
AATGTTGAGTTTAAGACTTGTGACCTAAATCTAAACATTACAACTTCTATGAGATTCAATCCCGAG
GTCGTACCGAGGTTGTGAACTTTCAAGCTAAGTCAGGTTTGTAAATGGGCTATTAGCTCAGGTGGT
TAGA 

10-2 EF150986.1 Microcystis sp. 214 97 
CCGTAGCCAAGGGAGAGCTAGCATGACTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTCAGGGAGACCTTACCCACCTCAACTCCAAAGCACAAAG
CGAATAGAGAGAGGATTGGTCAACCTAAGTCGGTCGAGGAATTGTGTGGCTCTCAAACTTGTCTG
GGTTTACTTCTAAGAAGAAGGGAAACGAGGGCTATTAGCTAAGGTGGTTAGAGACATTACCTCAG
GTGGTTAGA 

10-3 EU183353.1 Arthrospira sp. 204 94 
AGGATCCGAATCAGGTCTTTTATGACCCCAGAACCTAGTTTGAAAGCCACATACCTCGTTCCGACC
TTTTGGGATTGATTCTTGGTTTCGACTACTATTTTTTCGTCTTATACCCGAATTAGGTCTCCCTTTAA
GGAGGTGATCCAGCCACACCTTCCGGTACGGCTACCTTGTTACGACTTCACCCCAGTCACTAGCCC
TGCCTTAGGCATCCCCCTCCTTGCGGTTGAGGTAACGACTTCGGGCGTGACA 

10-4 AM398960.1 Phormidium persicinum  135  
TTCCCTCAGGGGGGGGTGCGACGCAGGTCTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACGGATAGTTTACGAATAGATG
TAAGGTATCAGTTGGTCATCTCGAGGTCGAGGGTTGGGAGTATGGTATTCTTCAGGCTAGGGTCTA
GGGGCTATTAGCTAGGTGGTTAGA 

11-1 EF429298.1 Leptolyngbya badia  130 98 
GACTTTACGGCAGAGCGTCGCATGCTGATGACTGGGGTGAGTCGTAACAAGGTAGCCGTACCGGA
AGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACGGATAGTTTACGAATAGATGTAAGG
TATCAGTTGGTCATCTCGAGGTCGAGGGTTGGGAGTATGGTATTCTTCAGGCTAGGGTCTAGGGGC
TATTAGCTAGGTGGTTAGA 

12-1 EF150986.1 Microcystis sp. 214  
CCGTAGCCAAGGGAGAGCTAGCATGACTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTACC
GGAAGGTGTGGCTGGATCACCTCCTTTCAGGGAGACCTTACCCACCTCAACTCCAAAGCACAAAG
CGAATAGAGAGAGGATTGGTCAACCTAAGTCGGTCGAGGAATTGTGTGGCTCTCAAACTTGTCTG
GGTTTACTTCTAAGAAGAAGGGAAACGAGGGCTATTAGCTAAGGTGGTTAGAGACATTACCTCAG
GTGGTTAGA 

12-2 AM398960.1 Phormidium persicinum SAG  135  
TTCCCTCAGGGGGGGGTGCGACGCAGGTCTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTA
CCGGAAGGTGTGGCTGGATCACCTCCTTTAAGGGAGACCGATGACGGATAGTTTACGAATAGATG
TAAGGTATCAGTTGGTCATCTCGAGGTCGAGGGTTGGGAGTATGGTATTCTTCAGGCTAGGGTCTA
GGGGCTATTAGCTAGGTGGTTAGA 
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