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Abstract: The main object of the present study was to explore the effect on thyroidal 

proteins following mild iodine deficiency (ID)-induced maternal hypothyroxinemia during 

pregnancy and lactation. In the present study, we established a maternal hypothyroxinemia 

model in female Wistar rats by using a mild ID diet. Maternal thyroid iodine content and 

thyroid weight were measured. Expressions of thyroid-associated proteins were analyzed. 

The results showed that the mild ID diet increased thyroid weight, decreased thyroid iodine 

content and increased expressions of thyroid transcription factor 1, paired box gene 8 and 

Na
+
/I

−
 symporter on gestational day (GD) 19 and postpartum days (PN) 21 in the maternal 

thyroid. Moreover, the up-regulated expressions of type 1 iodothyronine deiodinase (DIO1) 

and type 2 iodothyronine deiodinase (DIO2) were detected in the mild ID group on GD19 

and PN21. Taken together, our data indicates that during pregnancy and lactation,  
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a maternal mild ID could induce hypothyroxinemia and increase the thyroidal DIO1 and 

DIO2 levels. 
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1. Introduction 

Iodine is an essential trace element for the thyroid gland to produce triiodothyronine (T3) and  

thyroxine (T4), which are the only iodine-containing hormones in vertebrates [1]. An adequate supply 

of iodine is important for the thyroid to exert its widespread effects [2]. Over 1.9 billion people around 

the World are affected by inadequate iodine nutrition [3]. Iodine deficiency (ID) can lead to 

hypothyroidism [4]. Maternal ID-induced clinical and subclinical hypothyroidism during pregnancy 

and lactation results in a decrease in IQ of the child [4–6]. 

Besides hypothyroidism, ID can also cause hypothyroxinemia, characterized by a condition of 

subnormal T4 concentrations in the blood, where circulating free thyroxine (FT4) is low, but with no change 

in free triiodothyronine (FT3) or thyroid stimulating hormone (TSH). Different from hypothyroidism, 

hypothyroxinemia does not necessarily result in clinical or even “subclinical” hypothyroidism. 

Globally, mild ID is recognized as the most common reason causing hypothyroxinemia [7,8]. 

Epidemiology studies show that the possibility of neurodevelopmental impairment of children due to 

early maternal hypothyroxinemia is greater than in adequately-treated congenital hypothyroidism [9,10]. 

During pregnant and lactation, more dietary iodine is necessary to maintain the normal state of  

the maternal thyroid. Moreover, the brain development of the fetus depends on maternal thyroid 

function [7,11]. However, relatively little is known about the effect on thyroidal proteins following 

mild ID-induced maternal hypothyroxinemia in gestational and lactational dams. 

Thyroid transcription factor 1 (TTF1), alternatively known as Nkx2-1 (homeobox protein Nkx2-1), 

and paired box gene 8 (PAX8) play pivotal roles, both in the development of the thyroid and in 

maintaining normal thyroid function [12,13]. The transcription factors TTF1 and PAX8 are expressed 

in the developing thyroid to adulthood [14,15]. TTF1 and PAX8 have been shown to regulate 

expression of thyroid-specific genes, such as Na
+
/I

−
 symporter (NIS) [16,17]. As the thyroid iodide 

transporter, NIS plays a key role in iodide concentration that is an essential step in thyroid hormone (TH) 

synthesis [18]. Many kinds of thyroid disorders and ID are implicated in the alterations of the NIS 

gene [19,20]. Given that the TTF1, PAX8 and NIS are pivotal regulators of transporting iodine in the 

thyroid, we speculated that mild ID diet may induce mild ID by impacting the expressions of thyroidal 

TTF1, PAX8 and NIS. Moreover, type 1 iodothyronine deiodinase (DIO1) and type 2 iodothyronine 

deiodinase (DIO2) activate TH by catalyzing the outer ring deiodination of the T4 to bioactive T3, 

thereby they play a role in TH activation. Therefore, we also hypothesized that, in the gestational and 

lactational dams, mild ID may induce hypothyroxinemia and disturb thyroidal DIO1 and DIO2 

expressions. To test the hypothesis, we tried to use a mild ID diet to establish a maternal 

hypothyroxinemia model in Wistar rats. In addition to the negative control group, a maternal 

hypothyroidism model was induced by a severe ID diet. Maternal mild ID was monitored by detecting 

thyroid weight, thyroid iodine content and the expression levels of thyroidal TTF1, PAX8 and NIS on 
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gestational day (GD) 19 and postpartum days (PN) 21. Moreover, the expressions of DIO1 and DIO2 

on GD19 and PN21 were detected. 

2. Materials and Methods 

2.1. Animals 

Female Wistar rats (130–150 g) were obtained from the Center for Experimental Animals at China 

Medical University (Shenyang, China) with a National Animal Use License number of  

SCXK-LN2003-0009. Animal use has been approved by Animal Use and Care Committee at China 

Medical University. Rats were housed at temperature 24 ± 1 °C with a 12/12 h light/dark cycles. Food 

and water were provided ad libitum. Animals were kept for 1 week. The female Wistar rats were 

randomly assigned into three groups: control group, mild ID group and severe ID group. Every group 

received an ID diet (iodine content: 60 ± 1.5 ng/g) and drunk different iodine concentration deionized 

water supplemented with KI. The rats’ iodine intake of the whole day was estimated as follows:  

7.0 μg/d, 3.0 μg/d and 1.5 μg/d. The female rats were fed the diet for three months. At the end of  

the three months, blood was obtained from from the jugular vein of the rats under slight ether 

anesthesia for subsequent measurement of TH and TSH by a supersensitive chemiluminescence 

immunoassay (IMMULITE; Diagnostic Products Corporation, Los Angeles, CA, USA). The female 

rats were then mated with normal male rats (♀:♂ = 2:1). The day of the vaginal plug was taken as 

GD0. Until PN21, the dams of control, mild ID and severe ID groups were fed with the former 

methods. On GD19 and PN21, five dams were randomly taken per group. After ether anesthesia, heart 

blood samples were obtained for TH and TSH analysis. The sensitivity of detection for FT3 was  

1.5–61 pmol/L, FT4 was 3.9–77.2 pmol/L and TSH was 0.02–75 mIU/L. 

2.2. Iodine Deficient Diet 

The ID diet was obtained from the ID area. To prevent contamination with small amounts of T4 and 

T3, the ID diet we used does not contain any component of animal origin. It is nutritionally inadequate, 

even when supplemented with KI, which maybe lead to poor growth of dams that are fed this diet.  

To avoid this possible confounding factor in this study, each kilogram of the basic iodine-deficient diet 

(corn (30%), rice (30%), soybean (40%)) was fortified with 35 g of mineral mixture, and 10 g of the 

vitamin mixture described following the AIN-93G purified rodent diet guidelines [21], KI excluded, 

and with 13 g of L-lysine, 2.1 g of L-tryptophane, 4.6 g of L-methione, 6.7 g of L-threonine, and 1 g of 

L-choline [21]. In addition, 10 mL of corn oil was added to each kg of diet to ensure an adequate 

supply of essential fatty acids. With this supplemented ID diet dams grew normally when also 

supplemented with KI (7.0 μg/d). 

2.3. Measurement of Thyroid Iodine Content 

Thyroid glands were collected from five dams on GD19 and PN21 for measurement of thyroid 

iodine content by the ammonium persulfate-arsenic cerium catalytic spectrophotometry [22]. 
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2.4. Western Blotting 

On GD19 and PN21, rats in each group, were deeply anesthetized and euthanized by ether. The thyroid 

glands of the five selected dams per group at each measured day were rapidly dissected. A tissue 

sample of each rat was homogenized in 250 μL of buffered isotonic cocktail containing protease and 

phosphatase inhibitors. The sample was sonicated and incubated on ice for 30 min and then 

centrifuged at 13,000× g for 10 min at 4 °C. The resulting supernatant was re-centrifuged and saved. 

The protein was estimated by Pierce BCA Protein Assay Kit (Thermo Scientific, Waltham, MA, 

USA). Samples were stored at −70 °C until analyzed. 

Tissue lysates of each rat sample were diluted to the protein concentration of 3 μg/μL and were 

boiled for 5 min. Ten μL aliquots of each sample (30 μg total protein) were loaded onto  

10% SDS-acrylamide gels. Proteins were separated by application of a constant voltage of 100 V for 

1.5 h and then transferred onto PVDF membranes at a constant voltage of 10 V for 45 min. After 

blocking the nonspecific sites with PBS containing 0.1% Tween 20 (PBST) and 5% defatted dried 

milk, membranes were washed and incubated with primary antibody (rabbit anti-TTF1, 1:200 dilution;  

rabbit anti-PAX8, 1:200 dilution; rabbit anti-NIS, 1:200 dilution; rabbit anti-DIO1, 1:200 dilution; 

rabbit anti-DIO2, 1:200 dilution; rabbit anti-β-actin, 1:2,000 dilution. All the antibodies were produced 

by Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 2 h at room temperature, then incubated with 

horseradish peroxidase-conjugated secondary antibody (goat anti-rabbit, 1:3,000 dilution, Zhongshan 

Biotechnology, Beijing, China). Blots were developed with the Easy Enhanced Chemiluminescence 

Western Blot Kit (Transgen Biotech, Beijing, China). Initial control experiments determined the 

optimal time for exposing the blot to film, which was maintained throughout the experimental procedure. 

Membranes were exposed to film for the optimal time for each antibody and developed. Protein bands 

were subsequently quantified with an image analysis program (Gel mage System Version 4.00) and the 

data were recorded, with the net optical density corrected for background chemiluminescence.  

For each blot, the β-actin lanes were analyzed as a quality control. The signals from target bands on a 

gel were normalized to the average signal for the quality control sample bands to simplify comparison 

across gels and reduce inter-gel variability. 

2.5. Statistics 

All analyses were carried out using SPSS software, version 16.0 (SPSS Inc., Chicago, IL, USA). 

Data are presented as the mean ±SD. p < 0.05 was considered statistically significant. A one-way 

analysis of variance followed by Student-Newman-Keuls test was used to compare the treated groups 

with the control. 

3. Results 

3.1. Animal Model 

On GD19 and PN21, the serum FT4 concentration in the mild ID and severe ID treatment groups 

was significantly lower than the controls (p < 0.05). Compared with the control groups, FT3 and TSH 

concentration in the mild ID group had no significant difference on GD19 and PN21. However, we did 
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obtain the significant decrease in TH and increase in TSH on GD19 and PN21 (p < 0.05). Alterations 

in circulating levels of TH and TSH confirmed hypothyroxinemia in the mild ID dams and 

hypothyroidism in the severe ID dams [23]. 

3.2. Increased Thyroid Gland Weight and Decreased Thyroid Iodine Content 

To examine whether the mild ID diet can cause mild ID in the thyroid, the thyroid gland weight and 

thyroid iodine content were measured. Compared with the control group, we observed significantly 

increased thyroid weights in the mild ID and severe ID groups on GD19 and PN21 (p < 0.05, Figure 1). 

Moreover, thyroid weight in the mild ID group had a significant decrease relative to the severe ID 

group on GD19 and PN21 (p < 0.05, Figure 1). Thyroidal iodine content showed that a significant 

reduction in the mild ID and severe ID groups relative to the controls on GD19 and PN21 (p < 0.05, 

Figure 2). Thyroid iodine content in the mild ID group was significantly increased relative to the 

severe ID group on GD19 and PN21 (p < 0.05, Figure 2). 

Figure 1. The increased thyroid weight in the thyroid in all groups on GD19 and PN21  

(n = 5). * compared to the control, p < 0.05; # compared to the mild ID, p < 0.05. 

 

Figure 2. The decreased thyroid iodine content in the thyroid in all groups on GD19 and 

PN21 (n = 5). * compared to the control, p < 0.05; # compared to the mild ID, p < 0.05. 

 

3.3. Up-Regulated Protein Levels of TTF1 and PAX8 in the Thyroid 

Transcription factors TTF1 and PAX8 are implicated in thyroid-specific gene transcription [15,24,25]. 

Compared with the control group, significant up-regulations of thyroidal TTF1 and PAX8 were 

observed in rats belonging to the mild ID and severe ID groups on GD19 and PN21 (p < 0.05,  

Figures 3(B) and 4(B)). 
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Figure 3. Up-regulated protein levels of TTF1 in the thyroid. The upper bands (A) depict 

representative findings for rats subjected to mild ID and severe ID, respectively. The lower 

bar graphs show the results of the semi-quantitative measurement of TTF1 (B) following 

mild ID and severe ID treatment. The height of each bar represents the mean ±SD for the 

groups. At each time point, * compared to the control, p < 0.05; # compared to the mild ID,  

p < 0.05 (n = 5). 

 

Figure 4. Up-regulated protein levels of PAX8 in the thyroid. The upper bands (A) depict 

representative findings for rats subjected to mild ID and severe ID. The lower bar graphs 

show the results of the semi-quantitative measurement of PAX8 (B) following mild ID and 

severe ID treatment. The height of each bar represents the mean ±SD for the groups. At each 

time point, * compared to the control, p < 0.05; # compared to the mild ID, p < 0.05 (n = 5). 

 

In addition, the expressions of thyroidal TTF1 and PAX8 in the mild ID group were significantly 

down-regulated relative to the severe ID group on GD19 (p < 0.05, Figures 3(B) and 4(B)). 

3.4. Up-Regulated Protein Levels of NIS in the Thyroid 

NIS plays key roles in transporting iodide to the gland [18]. Compared with the control group,  

the significant up-regulations of thyroidal NIS were observed in rats exposed to the mild ID and severe 

ID groups on GD19 and PN21 (p < 0.05, Figure 5(B)). In addition, the expressions of thyroidal TTF1, 

PAX8 and NIS in the mild ID group were significantly down-regulated relative to the severe ID group 

on the GD19 (p < 0.05, Figure 5(B)). 
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Figure 5. Up-regulated protein levels of NIS in the thyroid. The upper bands (A) depict 

representative findings for rats subjected to mild ID and severe ID. The lower bar graphs 

show the results of the semi-quantitative measurement of NIS (B) following mild ID and 

severe ID treatment. The height of each bar represents the mean ±SD for the groups. At each 

time point, * compared to the control, p < 0.05; # compared to the mild ID, p < 0.05 (n = 5). 

 

3.5. Up-Regulated Protein Levels of DIO1 and DIO2 in the Thyroid 

DIO1 and DIO2 can regulate TH concentration by determining T3 content in tissues. Compared 

with the control group, the expressions of thyroidal DIO1 and DIO2 (p < 0.05, Figures 6(B) and 7(B)) 

were significantly increased in rats exposed to the mild ID and severe ID groups on GD19 and PN21. 

Moreover, the expressions of thyroidal DIO1 and DIO2 in the mild ID group significantly decreased 

relative to the severe ID group on GD19 and PN21 (p < 0.05, Figures 6(B) and 7(B)). 

Figure 6. Up-regulated protein levels of DIO1 in the thyroid. The upper bands (A) depict 

representative findings for rats subjected to mild ID and severe ID. The lower bar graphs 

show the results of the semi-quantitative measurement of DIO1 (B) following mild ID and 

severe ID treatment. The height of each bar represents the mean ±SD for the groups. At each 

time point, * compared to the control, p < 0.05; # compared to the mild ID, p < 0.05 (n = 5). 
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Figure 7. Up-regulated protein levels of DIO2 in the thyroid. The upper bands (A) depict 

representative findings for rats subjected to mild ID and severe ID. The lower bar graphs 

show the results of the semi-quantitative measurement of DIO2 (B) following mild ID and 

severe ID treatment. The height of each bar represents the mean ±SD for the groups. At each 

time point, * compared to the control, p < 0.05; # compared to the mild ID, p < 0.05 (n = 5). 

 

4. Discussion 

The major findings of this study with that the gestational and lactational dams exposed to mild ID 

diet were increased thyroid weights, decreased thyroid iodine contents and the up-regulated 

expressions of thyroidal TTF1, PAX8 and NIS. Moreover, we detected the up-regulation of thyroidal 

DIO1 and DIO2 in the mild ID group. 

ID, the main reason of endemic goiter and hypothyroidism, has historically been a serious public 

health problem in China [2,26,27]. Due to global iodine screening programs, hypothyroidism induced 

by severe ID is not very common worldwide, but hypothyroxinemia, a relatively subtle form of  

TH-deficiency, is still prevalent in developing and developed countries alike [7,8,28]. Maternal 

hypothyroxinemia may lead to irreversible CNS damage of the posterity in human [9,10]. Therefore, 

the purpose of present experiment is to explore the effect on thyroidal proteins following mild  

ID-induced maternal hypothyroxinemia during pregnancy and lactation. 

ID causes goiter and several thyroidal changes in rats [29,30]. In the mild ID and severe ID groups, 

our data showed that the increased thyroid weight and thyroid iodine content declined with the 

decreasing iodine content in the diet on GD19 and PN21. Therefore, it appeared logical that mild ID 

diet could induce mild ID in the maternal thyroid during pregnancy and lactation. 

To fully understand the impact on thyroid iodine content following mild ID diet, it is necessary to 

study the expressions of thyroidal TTF1, PAX8 and NIS. In recent years, thyroid transcription factors 

TTF1 and PAX8 have been shown to be responsible for the expressions of thyroid specific genes,  

the representative ones being those encoding thyroglobulin, thyroperoxidase and NIS [15,28,31]. It has 

been demonstrated that TTF1 co-operates with another transcription factor PAX8, which exerts a 

dominant role in the control of the transcriptional genes in rats and human [32,33]. It has been showed 

that using the TTF1 antagonist could significantly down-regulate the genes encoding the transcription 

factors PAX8 in rat thyroid cell line [34]. On the contrary, PAX8 has been reported to control TTF1 
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gene expression in human thyroid cells [35]. In addition, TTF1 and PAX8-controlled genes expressed 

in the thyroid gland, as well as the elevated levels of TSH and the thyroidal responsiveness to 

exogenous TSH [36,37]. NIS could mediate the active iodide uptake to regulate iodide concentration in 

the mouse thyroid [18]. Endo et al. has shown that the promoter activity of rat NIS gene is activated by 

TTF1 [17]. Moreover, PAX8 has two binding sites of rNIS upstream enhancer and it has an important 

role in the expression of NIS gene in rat and human [16,38]. PAX8-binding sites also have been 

described in the promoters of human NIS gene [39,40]. Moreover, it has been showed that NIS activity 

was increased by TSH in primary cultured human thyroid cells [41]. In line with these literatures, our 

data clearly showed that mild ID and severe ID groups had the significant up-regulation of thyroidal 

TTF1, PAX8 and NIS expressions on GD19 and PN21. Moreover, the extent of the increased thyroidal 

TTF1, PAX8 and NIS levels in mild ID group is less than the severe ID group on GD19 and PN21.  

It has been demonstrated that re-expression of PAX8 was associated with the recovery of the NIS 

mRNA expression in a rat thyroid cell line [42]. Furthermore, re-expression of PAX8 could promote 

iodine accumulation in human tumor cells [35,43]. The PAX8 and TTF1 are necessary to elevate levels 

of TSH [36]. Because TTF1 and PAX8 synergistically controlled the expression of NIS in rats and  

human [32,33], we detected both increased thyroid TTF1 and PAX8. Consistent with thyroid iodine 

content result, we speculated that the synergistically up-regulation of TTF1 and PAX8 increased NIS 

level to collect iodine for TH synthesis. NIS up-regulation was found in rats following the increased 

TSH circulating levels induced by propylthiouracil treatment (which inhibits I organification) or an  

ID diet [1,44]. NIS expression was diminished by hypophysectomy, which exhibited markedly lower 

TSH levels a rat thyroid cell line [44]. It has been reported that NIS could be increased in the thyroid of 

fetuses of rats following hypothyroxinemia [45]. Therefore, it is conceivable that the up-regulation 

TTF1 and PAX8 in our data may increase NIS level and mild ID may up-regulated the levels of TTF1, 

PAX8 and NIS in the gestational and lactational dams. 

In order to further study the effect on thyroidal proteins following mild ID-induced 

hypothyroxinemia in gestational and lactational dams, we investigated the expressions of thyroidal 

DIO1 and DIO2. DIO1 and DIO2, the iodothyronine deiodinases, catalyze the deiodination of T4 to T3 

occurring in the phenolic (outer or 5′) -ring of the T4 molecule that is a critical step in the TH 

metabolic process and play a central role in important physiological processes such as maintenance of 

adequate intracellular T3 levels in the different tissues [46]. In the thyroid of non-pregnant female rats 

following low circulating T4 and normal T3, it has been shown that thyroidal DIO1 and DIO2 mRNA 

increased [47]. Since mRNA has to be translated into protein to play functional roles, so further 

researches on protein levels are needed, especially during pregnancy and lactation. Therefore, in the 

present study, the significantly increased thyroidal DIO1 and DIO2 levels were detected in the mild ID 

and severe ID groups on GD19 and PN21. ID leads to a series of physiological adaptations in the 

hypothalamic-pituitary-thyroid axis, which is an attempt to maintain plasma and tissue T3 in the 

normal range of rat [45]. The up-regulation of rat DIO1 expression contributed to a possible 

preferential T3 secretion [45]. Decreases in peripheral DIO2 might play a role in the fall of serum T3 by 

reducing T4 to T3 conversion. The rat thyroid preferentially synthesizes and secretes T3 according to 

FT4 and FT3 thyroidal content [47]. Therefore, on the surface, hypothyroxinemia exposed to the mild 

ID diet seemed able to maintain normal T3 level, but only the decrease of T4. However, in order to 

maintain the levels of the T3, thyroidal DIO1 and DIO2 expressions had been up-regulated to promote 
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T4 to T3 conversion. We speculated that up-regulation of DIO1 and DIO2 expressions were attributed 

to mild ID and may aggravate hypothyroxinemia in the gestational and lactational dams. 

5. Conclusions 

Our results showed that, in the gestational and lactational dams, the maternal mild ID diet could 

cause mild ID by impacting thyroidal TTF1, PAX8, NIS. Furthermore, hypothyroxinemia induced by 

mild ID increased the levels of DIO1 and DIO2. 
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