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Abstract: Total nitrogen (TN) and total phosphorus (TP) concentrations are important 

parameters to assess the quality of water bodies and are used as criteria to regulate the 

water quality of the effluent from a wastewater treatment plant (WWTP) in Korea. 

Therefore, continuous monitoring of TN and TP using in situ instruments is conducted 

nationwide in Korea. However, most in situ instruments in the market are expensive and 

require a time-consuming sample pretreatment step, which hinders the widespread use of  

in situ TN and TP monitoring. In this study, therefore, software sensors based on  

multiple-regression with a few easily in situ measurable water quality parameters were 

applied to estimate the TN and TP concentrations in a stream, a lake, combined sewer 

overflows (CSOs), and WWTP effluent. In general, the developed software sensors 

predicted TN and TP concentrations of the WWTP effluent and CSOs reasonably well. 

However, they showed relatively lower predictability for TN and TP concentrations of 

stream and lake waters, possibly because the water quality of stream and lake waters is 

more variable than that of WWTP effluent or CSOs.  
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1. Introduction 

The Korean Ministry of Environment has recently imposed stricter permit requirement on the 

outflow of domestic wastewater treatment plants (WWTPs) to improve the water quality of receiving 

water bodies such as rivers and lakes. Therefore, the water quality monitoring program has become an 

important social issue.  

At present, there are a total of 61 in situ monitoring stations along the banks of major streams and 

lakes to measure the status of the water quality on-site. In addition, since 2008, a total of 653 tele-metering 

systems have been installed at the discharge point of each of medium to large size WWTP for 

monitoring effluent water quality continuously. The water quality parameters monitored by the 

systems include pH, dissolved oxygen (DO), electrical conductivity (EC), turbidity (Turb), chemical 

oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). Among these parameters,  

TN and TP are the most important ones and obligatory parameters, and are monitored using automated 

laboratory instruments, which are as expensive as 100,000 USD each. Moreover, these instruments 

require time-consuming sample pretreatment before water TN and TP are determined (usually more 

than 1 h), which hinders the widespread use of in situ monitoring of TN and TP.  

A software sensor is a common name for the software in which a given set of water quality data 

obtainable by easy and reliable methods are processed to estimate the quantities of other water quality 

variables using a model [1,2]. In general, a variable that cannot be easily measurable is selected as the 

one estimated by the software sensor. It is normally developed in a form of statistical models such as a 

multiple linear regression (MLR) model. 

The basic concept of the software sensor is illustrated in Figure 1. Measurement values for water 

quality parameters that can be relatively easily measurable are fed into a software sensor (called an 

estimator) and are processed to provide other water quality parameters, for examples, TN or TP [3,4]. 

Using software sensors, it is possible to create continuous time series of TP and TN data that can be 

utilized for better understanding the timing and magnitude of TP and TN fluxes to streams or lakes. 

Figure 1. Concept of software sensor. 

 

In fact, the software sensor concept has been applied in a few studies. Christensen et al. [5,6] developed 

MLR based software sensors to predict total suspended solids (TSS), fecal coliforms, and nutrients for 

several streams in Kansas, USA, using real-time measured Turb, specific conductance, water temperature, 

and discharge. Data from the software sensor was applied to calculate total maximum loads of the TSS 

on the streams. Uhrich et al. [7] derived power regression equations for estimating suspended-sediment 

concentrations from instream real-time Turb-monitor data in the upper North Santian river basin, 

Oregon, USA. Zhu et al. [8] also applied an MLR-based software sensor for the prediction of stream 

flow and runoff in Pennsylvania, USA, using geographic information system.  
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The software sensor concept also has been applied in WWTPs. Alastair et al. [9] estimated 

bicarbonate alkalinity using a MLR model based on pH, redox and conductivity data to control 

actuators in the anaerobic digestion process. In a study carried out by Alcaraz-González et al. [10], 

flow rate, CO2 exhaust flow rate, fatty acid concentration and total inorganic carbon were utilized to 

estimate microbial concentrations, alkalinity and COD in each unit processes of a WWTP. Lastly, 

Feitkenhauer and Meyer [11] estimated substrate and biomass concentrations and controlled aerobic 

cycle of aerobic and anoxic activated sludge process using a titrimetric technique based software sensor. 

Total nitrogen and TP in streams or wastewater have been measured using software sensors by a 

few researchers. Jeong et al. [12] tried to measure TN and TP in wastewater in situ using UV 

absorbance and an artificial neural network (ANN)-based model. da Costa et al. [13] used an ANN 

model to predict TN and PO4
3−

 concentrations of streams. In their study, however, the ANN model was 

fed with data from in situ surrogate sensors, i.e., temperature, pH, DO, and EC sensors. Ryberg [14] 

and Christensen et al. [15] applied MLR models fed with data from in situ stream flow, EC, pH, 

temperature, Turb, and DO sensors for predicting TN and TP of streams. Even with the data from 

surrogate sensors, their models could reasonably predict the TN and TP of their streams; R
2
s of the 

MLR models for TN and TP were 0.70, and 0.77, respectively.  

In this study, software sensors (or regression models) were developed to estimate TN and TP of 

different waters (i.e., streams, lakes, WWTP effluents, and CSOs) by performing MLR with water 

quality parameters including pH, EC, DO, Turb, NO2–N, NO3–N, NH4–N, and PO4–P. This study was 

intended to evaluate the feasibility of the software sensor concept in indirect measurement of TN and 

TP in waters. Moreover, in this study, ionic nutrient species data were also included in the MLR 

models, so a better model performance was expected. 

2. Materials and Methods 

2.1. Study Area and Data Acquisition 

Water samples for the current study were collected from the Daejeon area in the middle of  

South Korea (Figure 2). Water samples were collected from a total of 22 points; 15 points for stream 

water samples, three for lake water, three for CSOs, and one for WWTP effluent. The predictability of 

a software sensor may be improved if water qualities are measured at other points in a WWTP. 

However, the water quality of only the outflow from a WWTP is under surveillance in Korea. 

Therefore, in this study, we just focused on the outflow site only. The WWTP is treating domestic 

wastewater and is consisted of a conventional activated sludge process and a subsequent coagulation 

process for phosphorus removal. The stream under study is flowing along the urban area and receiving 

treated wastewater from the WWTP. Finally, the lake is located in the upstream of the agricultural and 

forestry area. The lake water samples were collected from about 0.5 m depth from the surface. 

Water samples were collected weekly from March, 2011 to June, 2012. In Tables 1 and 2,  

the number of water samples collected for each water type and the water quality parameters analyzed 

in the laboratory are summarized, respectively. For the study, the whole observation data were divided 

into two sets; one for calibration (or training) and the other for validation. 
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Figure 2. Water sampling locations.  

 
( : WWTP effluent; : CSOs; : Stream; : Lake)  

Namely, water quality data collected from March 2011 to August 2011 were used for model 

development, and the data from September 2011 to June 2012 were used for model validation. 

Table 1. Conditions of water quality analysis. 

Water Type Sampling points Number of samples 

WWTP effluent 

CSOs 

Streams 

Lakes 

1 

3 

15 

3 

77 

239 

228 

1,183 

All the water quality parameters except TP and TN in Table 2 were used as independent variables in 

the MLR analysis: input data for a software sensor (or a regression model). The manually measured 

TN and TP concentrations were compared with the ones predicted by the developed software sensors. 

DO, pH, EC, and Turb were measured using a sensor (YSI6600EDS SONDE, YSI Inc., Yellow Springs, 

OH, USA), while NO2–N, NO3–N, NH4–N, and PO4–P were done with ion chromatography (IC; 

DIONEX-ICS-1100, Thermo-Fisher Inc., Seoul, Korea). 

China

Korea

Japan

2 mi  

2 km 
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Table 2. Water quality parameters monitored in this study. 

 

Water quality 

Parameters 
Unit 

Measurement 

Method 

Variables 

measured  

by sensors 

DO 

pH 

EC 

Turb 

mg·L−1 

- 

μS·cm−1 

NTU 

Electrode Method 

(YSI6600EDS SONDE) 

Variables 

measured  

by chemical 

analysis 

PO4–P 

NO2–N 

NO3–N 

NH4–N 

mg·L−1 

mg·L−1 

mg·L−1 

mg·L−1 

IC 

(DIONEX-ICS-1100) 

TP 

TN 

mg·L−1 

mg·L−1 

Ascorbic Acid Method 

Persulfate Method 

2.2. Data Processing 

2.2.1. Scatter Diagram Analysis 

Initially, the correlation between different water quality parameters was analyzed. For better 

understanding the relationship, a scatter diagram was first drawn for pairs between TN or TP and each 

of the other water quality parameters. A scatter diagram can visually show the relative strength of the 

relationship between each pair of variables; the direction (i.e., positively or negatively correlated) and 

shape (i.e., linear or non-linear) of the correlation can be shown. The scatter diagram shows to what 

extent each water quality parameter correlates with TN and TP. The correlation coefficient between 

two variables is defined as the covariance of the two variables divided by the product of their standard 

deviations. Out of the scatter diagram analysis, dominant or important parameters can be derived from 

all the variables; if any parameter is highly correlated with TN or TP, it can be regarded as an 

important parameter.  

2.2.2. Multiple Linear Regression Analysis 

Dominant variables, which were derived as the result of a scatter diagram analysis, were utilized to 

develop a software sensor to predict TN and TP through the MLR analysis as a next step. An MLR is 

an analytical method used to develop an equation to relate a dependent variable y and one or more 

independent variables. In fact, an MLR is still used extensively in practical applications. A linear 

regression model or equation depends on the linear relation between its known and unknown variables, 

and it is easier to fit than a non-linear model. It is also easier to determine the statistical properties of 

the resulting estimators (i.e., software sensors or linear models).  

A general MLR equation (or the software sensor in this study) is provided below (Equation (1)): 

 (1) iippiii xxxy   2211
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where yi is a dependent variable (TN or TP concentration in this study), 𝑥i  represents independent 

variables (water quality parameters other than TN and TP in this study), β is a regression coefficient,  

p is the number of independent variables, n is number of datasets, and ε is an error term [16].  

In this study, we applied the stepwise regression based on forward selection. Namely, we started 

with a model with one explanatory variable that had been identified as the most significant, and added 

variables one by one until we could not improve the model significantly by adding another variable [17]. 

However, each time a new variable was added, the significance of each variable in the model was 

tested. The p-value for inclusion of a new variable was set at 0.05 in this study. In addition, if the  

p-value of a variable in the model was higher than a preset threshold (in this study, p < 0.1), it was 

eliminated. The model was then refitted to the data set, before the next forward selection procedure 

was performed. This procedure was repeated until the model was not further improved by the addition 

of any variable. We used the Statistical Package for the Social Sciences (SPSS; IBM, Armonk, NY, 

USA) for a stepwise MLR analysis to derive significant independent variables among all water quality 

parameters listed in Table 2 [18]. The predictability of the developed models or software sensors was 

evaluated using the mean square error (MSE), and the adjusted coefficient of determination (𝑅𝑎
2).  

The MSE is used to assess the variance between measured and estimated values, and the 𝑅𝑎
2 is the 

variance fraction of measured values explained by a regression model.  

3. Results and Discussion  

3.1. Water Quality Measurement Data 

Figure 3 compares TN and TP levels of WWTP effluents, CSOs, stream waters, and lake waters; 

the statistics of the measurements are summarized in Table 3.  

Figure 3. Comparison of water TN and TP concentrations for different water types (circles 

and stars indicate outliers). 
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Table 3. TN and TP of water samples from different locations. 

Parameters Type Min Max Mean Median 
Standard 

deviation 

TN 

WWTP 1.36 23.01 9.179 7.897 4.188 

CSOs 10.08 41.31 27.415 28.250 6.450 

Stream 0.32 17.30 4.112 3.297 2.747 

Lake 0.19 7.44 1.739 1.549 1.021 

TP 

WWTP 0.052 1.646 0.445 0.374 0.334 

CSOs 0.274 9.700 3.051 2.855 1.495 

Stream 0.007 0.950 0.176 0.145 0.132 

Lake 0.005 0.350 0.097 0.088 0.062 

 

Both box plots for the TN and TP concentrations of the CSOs have long whiskers indicating the 

widespread data. Another notable feature is that water quality data for the streams and lakes have a few 

outliers exceeding 1.5× inter-quartile range, compared with those for other water types [19].  

This indicates that natural water (i.e., stream or lake water) is quite variable and vulnerable to weather 

conditions or other external nutrient sources. These water quality changes of a river and a lake were 

expected to affect the model performance. 

3.2. Result of Scatter Diagram Analysis 

The scatter plots constructed for all data measured from March, 2011 to August, 2011 in this study are 

shown in Figure 4. The scatter plots visualize the correlation of each pair between TN or TP and one of 

other water quality parameters. The data of the WWTP effluent show that the TN concentration had a 

positive correlation with NH4–N (r = 0.94) and that the TP concentration also had a good positive 

correlation with PO4–P (r = 0.96). The water quality data for CSOs also show that the TN 

concentration had a positive correlation with NH4–N (r = 0.92) and the TP concentration with PO4–P  

(r = 0.94). In the case of the stream, the TN concentration was positively correlated with NH4–N  

(r = 0.80) and the TP concentration was with PO4–P (r = 0.82). However, the data obtained by 

analyzing lake waters did not show a good correlation between TN or TP and other water quality 

parameters. Nonetheless, Turb (r = 0.42) and NO3–N (r = 0.35) concentrations had a slightly better 

correlation with the TN of the lake waters. Only PO4–P had a good correlation with TP (r = 0.73). 

In fact, the relatively lower correlation between TN or TP and other water quality parameters for 

stream and lake waters was expected. The water qualities of the lake and the stream are often affected 

by the external pollutant sources, internal reactions, or weather conditions. 

Typically, DO, pH and EC data did not show significant correlation with the TN (r = −0.18 − 0.18 

for DO, r = −0.37 − 0.02 for pH and r = −0.42 − 0.48 for EC) or the TP concentrations (r = −0.52 − 0.01 

for DO, r = −0.28 − 0.44 for pH and r = −0.42 − 0.21 for EC) for all water types.  
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Figure 4. Scatter plots of water quality parameters for four water types. 

 
(A: WWTP effluent, B: CSOs water, C: stream water, D: lake water). 

3.3. Multiple Linear Regression Analysis for Each Water Types 

3.3.1. MLR Analysis for WWTP Effluent 

With the datasets for the WWTP effluent, the stepwise MLR analysis was conducted. The result of 

the regression analysis is summarized in Table 4. For the MRL analysis, the TN and TP concentrations 

were set as dependent variables, and the most dominant parameters were initially considered as the 

only independent variable for each regression model, with other significant independent variables 
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added one by one. As the number of independent variables increased from 1 to 3 in the model for the 

TN estimation, the 𝑅𝑎
2 value also increased gradually. However, if one of the other variables which did 

not have a good correlation with the TN was added, the 𝑅𝑎
2 value of the regression was deteriorated. 

ModelN-3 for estimating TN in Table 4 showed the best fit to the measured TN data (𝑅𝑎
2 = 0.978), 

while ModelP-1 for estimating TP, which included only PO4
3−

–P data as independent variable showed 

the best fit to the measured TP data (𝑅𝑎
2  = 0.936). In short, as a result of these analyses, it was 

concluded that the TN and TP concentrations of the WWTP effluent are feasible parameters that can 

be estimated using a software sensor. This is mainly due to the fact that the water quality of the 

WWTP discharge is relatively stable, compared with natural waters. In fact, the effluent water quality 

of a WWTP does not change much as long as the WWTP is operated at steady state. In addition, the 

high degree of correlation between PO4–P and TP in the WWTP effluent indicates that most of the 

phosphorus species in the effluent were in the dissolved form rather than in particulate ones. 

Table 4. Variance analysis of models predicting TN and TP of WWTP effluent. 

TN (Dependent variable) TP (Dependent variable) 

Model Mean square 𝑹𝒂
𝟐 p-value Model Mean square 𝑹𝒂

𝟐 p-value 

ModelN-1 a 

ModelN-2 b 

ModelN-3 c 

552.371 

305.321 

204.081 

0.882 

0.975 

0.978 

<0.01 

<0.01 

<0.01 ModelP-1 a 4.582 0.936 <0.01 

Independent variables 

a NH4–N 

b NH4–N, NO3–N 

c NH4–N, NO3–N, PO4–P 

Independent variables 

a PO4–P 

3.3.2. MLR Analysis for CSOs Water 

With the water quality parameters measured for CSOs waters, the stepwise MLR analysis was 

conducted. The result of the analysis is summarized in Table 5.  

Table 5. Variance analysis of models predicting TN and TP of CSOs. 

TN (Dependent variable) TP (Dependent variable) 

Model Mean square 𝑹𝒂
𝟐 p-value Model Mean square 𝑹𝒂

𝟐 p-value 

ModelN-1 a 

ModelN-2 b 

3518.589 

1781.741 

0.858 

0.869 

<0.01 

<0.01 

ModelP-1 a 

ModelP-2 b 

325.279 

165.252 

0.902 

0.917 

<0.01 

<0.01 

Independent variables 

a NH4–N 

b NH4–N, PO4–P  

Independent variables 

a PO4–P 

b PO4–P, NH4–N 

From the scatter plots for the CSOs water, five variables (i.e., NH4–N, PO4–P, Turb, NO3–N, and 

DO) were found to have significant correlation with the measured TN concentration, while three 

variables (i.e., PO4–P, DO, NO3–N) were significantly correlated with the TP concentration. However, 

the MLR analysis showed that the models with one independent variable (i.e., NH4–N) and two (i.e., 

NH4–N and PO4–P) showed the best fit to the measured TN. ModelN-1 with one dependent variable 

showed the 𝑅𝑎
2 of 0.858 while ModelN-2 did the 𝑅𝑎

2 of 0.869. In the case of models for the prediction of 
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TP, PO4–P was identified as the most important variable. The ModelP-2 which has two variables (i.e., 

NH4–N and PO4–P) showed the highest 𝑅𝑎
2 value (= 0.917). The result showed that the contribution of 

other variables to the prediction of the TP of CSOs might not be significant.  

3.3.3. MRL Analysis for Stream Water 

Using the water quality data for stream waters, a stepwise MRL analysis was carried out.  

The summary of the analysis is provided in Table 6. Since NH4–N was identified as the dominant 

variable in the estimation of TN concentration, the regression model was expanded from the one with 

NH4-N as the only independent variable to the ones with NO3–N, Turb, PO4–P, pH, NO2–N, and EC in 

a stepwise manner. In short, ModelN-7 with NH4–N, NO3–N, Turb, PO4–P, pH, NO2–N, and EC as 

independent variables showed the best fit to the measured TN concentration. Therefore, the model was 

chosen as the software sensor to estimate TN in stream waters. For the TP concentration, ModelP-6 

showed the best fit to the measured TP data, although the 𝑅𝑎
2 value was only 0.746; over 70% of the 

measured data could be explained by the model. One of the major reasons that low 𝑅𝑎
2  value was 

obtained might be the low TP concentration of the stream waters; the TP of all the stream water 

samples was below 1.0 mg·L
−1

 with the majority below 0.5 mg·L
−1

 (Figure 3). At such a low 

concentration, errors from manual measurements also may contribute to the error from the model 

predictions.  

Table 6. Variance analysis of models predicting TN and TP of stream water. 

TN (Dependent variable) TP (Dependent variable) 

Model Mean square 𝑹𝒂
𝟐 p-value Model Mean square 𝑹𝒂

𝟐 p-value 

ModelN-1 a 

ModelN-2 b 

ModelN-3 c 

ModelN-4 d 

ModelN-5 e 

ModelN-6 f 

3135.004 

2001.062 

1361.633 

1026.397 

827.979 

693.635 

0. 633 

0.808 

0.825 

0.829 

0.836 

0.840 

<0.01 

<0.01 

<0.01 

<0.01 

<0.01 

<0.01 

ModelP-1 a 

ModelP-2 b 

ModelP-3 c 

ModelP-4 d 

ModelP-5 e 

ModelP-6 f 

8.892 

4.759 

3.244 

2.440 

1.957 

1.636 

0.675 

0.723 

0.739 

0.741 

0.743 

0.746 

<0.01 

<0.01 

<0.01 

<0.01 

<0.01 

<0.01 

Independent variables 

a NH4–N 

b NH4–N, NO3–N 

c NH4–N, NO3–N, Turb 

d NH4–N, NO3–N, Turb ,EC,  

e NH4–N, NO3–N, Turb, EC, NO2–N, 

f NH4–N, NO3–N, Turb, EC, NO2–N, pH, 

Independent variables 

a PO4–P 

b PO4–P, Turb 

c PO4–P, Turb, NH4–N 

d PO4–P, Turb, NH4–N, NO2–N 

e PO4–P, Turb, NH4–N, NO2–N, NO3–N 

f PO4–P, Turb, NH4–N, NO2–N, NO3–N, pH 

3.3.4. MLR Analysis for Lake Water 

Using the water quality data for water samples collected from the lake of interest, the stepwise 

MLR analysis was conducted. The summary of the results is provided in Table 7. Unlike the other 

cases, any of the models developed through the MRL analyses did not show a good fit to the measured 

TN. It is because the TN concentration of the lake water was not well correlated with any other water 

quality parameters (Figure 4). The best fit model for the TN estimation was identified ModelN-2 with 

Turb, and NO3-N as independent variables (𝑅𝑎
2 = 0.417).  
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The case for predicting TP concentration was similar to the one for TN. The model with PO4–P, 

EC, and NO3-N as independent variables (i.e., Model-3) showed the best fit to the measured TP with 

the 𝑅𝑎
2  

of 0.612. One thing of interest is that the model with EC as the only independent variable 

showed a comparable 𝑅𝑎
2  value with the ModelP-3, indicating the EC data correlated with the TP 

concentration. 

Again, as the case with the stream waters, the TP concentrations of lake waters was too low; all the 

data was below 0.5 mg·L
−1

. Therefore, it was hypothesized that errors from manual measurements 

might affect the overall predictability of the models.  

Table 7. Variance analysis of models predicting TN and TP of lake water.  

TN(Dependent Variable) TP(Dependent Variable) 

Model Mean square 𝑹𝒂
𝟐 p-value Model Mean square 𝑹𝒂

𝟐 p-value 

ModelN-1 a 

ModelN-2 b 

 

64.883 

38.921 

 

0.348 

0.417 

 

<0.01 

<0.01 

ModelP-1 a 

ModelP-2 b 

ModelP-3 c 

.305 

.160 

.109 

0.572 

0.599 

0.612 

<0.01 

<0.01 

<0.01 

Independent variables 

a Turb  

b Turb, NO3–N  

 

Independent variables 

a PO4–P 

b PO4–P, EC 

c PO4–P, EC, NO3–N 

3.3.5. Summary of MRL Analyses for Different Water Types 

The best regression models for TN and TP derived from each MLR analysis for each water type are 

listed in Table 8.  

Table 8. Software sensors obtained from MLR analysis. 

Sites Estimated parameters Correlation equations 𝑅𝑎
2 

WWTP effluent 
TN 0.881 + 0.986 × NH4–N + 1.092 × NO3–N + 0.631 × PO4–P 0.978 

TP 0.148 + 0.946 × PO4–P 0.936 

CSOs 
TN 5.918 + 0.857 × NH4–N + 0.405 × PO4–P 0.869 

TP 0.500 + 0.851 × PO4–P + 0.04 × NH4–N 0.917 

Stream water 

TN 
4.569 + 1.025 × NH4–N + 0.838 × NO3–N + 0.018 × Turb − 

0.004 × EC + 5.432 × NO2–N − 0.336 × pH 
0.840 

TP 
0.171 + 0.964 × PO4–P + 0.002 × Turb + 0.008 × NH4–N + 

0.190 × NO2–N − 0.01 × NO3–N − 0.013 × pH 
0.746 

Lake water 
TN 0.361 + 0.158 × Turb + 0.693 × NO3–N 0.417 

TP 0.158 + 0.962 × PO4–P − 0.001 × EC − 0.017×NO3–N 0.612 

These regression equations can be used as a software sensor. As stated above, the equations for the 

WWTP effluent and CSOs water have higher 𝑅𝑎
2 values, but the ones for the stream and lake waters 

showed a relatively lower relationship for the measured TN and TP concentrations, probably due to 

their variability in properties of dissolved or particulate fraction. On the other hand, WWTP effluent 

and CSOs have relatively stable water quality compared with natural water; hence, regression models 
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with higher 𝑅𝑎
2  values could be obtained. Figure 5 shows the variations of PO4–P and TP 

concentrations for each water type. While WWTP effluent and CSOs show relatively stable ratios 

between PO4–P and TP, the ratios of PO4–P to TP concentrations vary to some extent in stream and 

lake waters. This might be due to the possibility that particulate phosphorus was introduced from 

external sources into the stream and the lake. 

Figure 5. Comparison of PO4–P and TP concentrations for each water type. 

 

Comparisons between measured TN or TP concentrations and those predicted by the software 

sensors for each water type were made in Figures 6 and 7 for TN and TP, respectively.  

For the validation of the developed models, the regression models were applied to another set of 

measured water quality data for each water type collected from September 2011 to June 2012.  
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As shown in Figures 8 and 9, the regression models developed in this study showed relatively good 

estimation for the WWTP effluent and CSOs. However, the ones for the stream and lake waters did 

relatively lower predictability. For streams and lakes, we would have obtained better results if we had 

calibrated the model for each season. In fact, we did not have enough data to do the seasonal analysis 

for the stream and the lake. In addition, most sampling stations for the stream and the lake had been 

frozen often during the winter season. If the ionic N and P species could be in situ monitored along 

with other physical parameters for river and lake waters in this study, and enough data could be 

obtained to utilize for model calibration within short period of time, we believe better predictions of 

TN and TP could be possible.  

Figures 10 and 11 represent the time series of TN and TP concentrations estimated using the 

software sensors (or regression models) derived in this study along with measured data. As discussed 

above, the models follow the measured data well in the case of the WWTP effluent and the CSOs.  

In fact, the models for TN and TP of the stream and lake waters also reasonably follow the measured 

data except several points. If the time interval for data collection can be shortened, these intermittently 

occurring discrepancies between measured and predicted TN or TP values might be eliminated. 

Figure 6. Comparison of measured and estimated TN concentrations for each water type. 
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Figure 7. Comparison of measured and estimated TP concentrations for each water type.  

 

Figure 8. Validation of TN models for each water type. 
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Figure 9. Validation of TP models for each water type. 

 

Figure 10. Time series of TN concentration predicted by software sensor. 
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Figure 11. Time series of TP concentration predicted by software sensor. 

 

4. Conclusions 

In this study, software sensors (or linear regression models) based on the MLR analysis algorithms 

were developed; they utilized other water quality parameters for predicting TN and TP concentrations 

of WWTP effluent, CSOs, stream water, and lake water. Initially, a few independent variables such as 

pH, DO, EC, Turb, NO2–N, NO3–N, NH4–N, and PO4–P concentrations were evaluated for their 

individual correlation with TN or TP; the variables with higher correlation with TN and TP were 

incorporated in the software sensors (or regression models) as an independent variables.  

In fact, the developed software sensors predicted the TN and TP concentrations for the WWTP 

effluent and CSOs waters reasonably well. In the case of the stream and lake waters, the predictability 

of the software sensors was relatively low, probably due to the low concentration ranges for the 

nutrients (especially for the TP) and variability of the ratios of PO4–P to TP concentrations due to the 

external influence to the water bodies, such as nonpoint source pollution or weather changes.  

From the result, nonetheless, it is expected that the proposed strategy (i.e., application of a software 

sensor to monitor TN or TP) will allow the water researchers to monitor TN and TP in various water 

bodies more easily; especially for WWTP discharges and CSOs. If all the water quality parameters 

used as dependent variables for the regression models are analyzed in situ (as the case in the National 

Automated Water Quality Monitoring Program in Korea [20]), the software sensors for TN and TP can 

be easily realized and the two water quality parameters which are difficult to measure can be estimated 

continuously.  
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