Supplementary Material

Article

Identification of the Antibacterial Compound Produced by the Marine Epiphytic Bacterium *Pseudovibrio* sp. D323 and Related Sponge-Associated Bacteria

Anahit Penesyan ^{1,†}, Jan Tebben ², Matthew Lee ¹, Torsten Thomas ¹, Staffan Kjelleberg ^{1,3}, Tilmann Harder ² and Suhelen Egan ^{1,*}

- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: anahit.penesyan@mq.edu.au (A.P.); mattlee@unsw.edu.au (M.L.); t.thomas@unsw.edu.au (T.T.); s.kjelleberg@unsw.edu.au (S.K.)
- School of Biological, Earth and Environmental Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: jan.tebben@student.unsw.edu.au (J.T.); t.harder@unsw.edu.au (T.H.)
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01n-42, 637551, Singapore
- [†] Current address: Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.
- * Author to whom correspondence should be addressed; E-Mail: s.egan@unsw.edu.au; Tel.: +61-2-9385-8569; Fax: +61-2-9385-1779.

Purification and Chemical Characterisation of TDA

To further purify the antibacterial compound, the spent culture medium of overnight liquid culture of Pseudovibrio sp. D323 was exhaustively extracted, concentrated under vacuum, yielding an orange-red residue. The residue was partitioned in acidified 60% aqueous methanol (0.05% trifluoroacetic acid, TFA). The remaining residue was dissolved in acetonitrile and purified by high-performance liquid chromatography on an Alliance 2695 module (Waters) with photodiode array detection on a Phenomenex Prodigy ODS3 (150 × 4.6 mm, 5 µm). The column was run with a linear gradient of 30-80% acidified methanol (0.05% TFA) over 15 min at 0.9 mL/min. In total, 6 peak fractions were collected, concentrated and tested in the TCL-BOA. A dominant bioactive peak fraction eluted at 6.957 min. This fraction was re-chromatographed on a LCQ Deca-XP LC-UV-MS system (Thermo Finnigan) using a Phenomenex Gemini C18 column (50 × 4.6 mm, 5 µm) and a linear gradient of acidified acetonitrile (0.05% TFA) ranging from 30 to 60% in 10 min. The peak representing the antibacterial compound 1 (Figure 4) was detected both, in positive electrospray ionization mode (ESI⁺) and atmospheric pressure chemical ionization mode (APCI⁺). Data were collected from m/z 100 to 220. The UV spectrum of 1 was in accordance with literature data for tropodithietic acid (TDA) [1]. The ESI⁺-mass spectrum showed a molecular ion [M + H]⁺ of 212.88 Da and a dominant fragment ion [M + H - H₂O]⁺ at 194.89 Da. The APCI⁺ mass spectrum showed a Mar. Drugs 2011, 9

dominant molecular ion $[M + H]^+$ of 212.94 Da and a dominant fragment ion $[M + H - CO2]^+$ at 169.15 Da. Collision induced MS^2 of the molecular ion in ESI^+ did not result in further fragmentation. These data were in direct accordance with the LC-MS data of TDA reported by Bruhn *et al.* [2].

For NMR analysis **1** was dissolved in DMSO-d6 (¹³C) or benzene-d6 (¹H). Samples were analysed on a Bruker DPX 300 MHz system. The ¹³C-NMR spectra in DMSO displayed eight carbon signals with one α, β-unsaturated enolic carbon, one carboxylic carbon, six aromatic carbons including two carbons connected with heteroatoms. The ¹H-NMR spectrum in benzene displayed three adjacent proton signals in a A,B,C spin pattern. Measured shifts of proton and carbon signals of **1** were in accordance with the data previously obtained for TDA [1].

References

- 1. Liang, I. Investigation of secondary metabolites of North Sea bacteria: Fermentation, isolation, structure elucidation and bioactivity. Ph.D. Thesis, University of Gottingen, Germany, 2003.
- 2. Bruhn, J.B.; Nielsen, K.F.; Hjelm, M.; Hansen, M.; Bresciani, J.; Schulz, S.; Gram, L. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the *Roseobacter* clade. *Appl. Environ. Microbiol.* **2005**, *71*, 7263–7270.
- © 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).