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Abstract: Six new sterols (1-6), together with seven known sterols (7—13), were isolated
from the CCl, extract of the marine bryozoan Cryptosula pallasiana, four (3—6) of which
have already been reported as synthetic sterols. This is the first time that these compounds
(3-6) are reported as natural sterols. The structures of the new compounds were determined
on the basis of the extensive spectroscopic analysis, including two-dimensional (2D) NMR
and HR-ESI-MS data. Compounds 1-4, 7 and 10-13 were evaluated for their cytotoxicity
against HL-60 human myeloid leukemia cell line, and all of the evaluated compounds
exhibited moderate cytotoxicity to HL-60 cells with a range of ICs values from 14.73 to
22.11 g/mL except for compounds 12 and 13.
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1. Introduction

Marine bryozoans are well known producers of bioactive secondary metabolites and important
marine drug sources due to their remarkable antineoplastic activity [1]. Bryostatins isolated from the
marine bryozoans Bugula neritina are a well known example [2]. Other bioactive secondary
metabolities from marine bryozoans include alkaloids, sterols, as well as heteratom-containing
compounds, which showed remarkable activities on tumor cell lines, such as murine lymphocytic
leukemia P388, human myeloid leukemia HL-60, human leukemia U937, human hepatocellular liver
carcinoma HepG2, etc. [3-6]. In our previous studies focused on B. neritina, a new antineoplastic
macrolide, bryostatin 19, two ceramides and four cerebrosides, as well as a series of sterols were
isolated from this bryozoan [5-8]. In the course of our ongoing investigations toward the isolation of
biologically active secondary metabolites from marine bryozoans, Cryptosula pallasiana was
investigated, another genus of marine bryozoans, collected from the coast of Huang Island in Qingdao
City, Shandong Province of China. Herein, we report the isolation and structure identification of six
new sterols (1-6) and seven known sterols (7-13), four (3-6) of which have already been reported as
synthetic sterols [9-11]. This is the first time that these compounds (3-6) are reported as natural
sterols. In addition, the cytotoxicity of the oxygenated sterols 1-4, 7 and 10-13 against HL-60 human
myeloid leukemia cell line is also described.

Figure 1. Chemical structures of compounds 1-13 from the marine bryozoan Cryptosula

pallasiana.
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2. Results and Discussion

The CCl, extract (12.9 g) of the marine bryozoan C. pallasiana was fractionated by Sephadex
LH-20 chromatography to afford three major fractions (Frs. A—C). Fr. A (5.66 g) was further subjected
to column chromatography (CC) over reversed-phase silica gel column (RP-18) and normal silica gel
column, respectively, and then further purified by reverse semi-preparation HPLC to yield compounds
1-13 (Figure 1).

Table 1. *H NMR (500 MHz) and *C NMR (125 MHz) data of compounds 1 and 2 in CDCl5 2.

1 2

Position &, mult. S, (int., mult., J in Hz) &, mult. Su, (int., mult., J in Hz)

1 374t 0 1.84 (1H, m), # 1.14 (1H, m) 36.9t 0 1.82 (1H, m), #1.16 (1H, m)

2 318t o 1.83 (1H, m), 5 1.49 (1H, m) 316t a 1.84 (1H, m), # 1.51 (1H, m)

3 71.9d 3.52 (1H, m) 71.6d 3.61 (1H, m)

4 42.41 o 2.28 (1H, m), £ 2.23 (1H, m) 4251 o 2.33 (1H, m), £ 2.29 (1H, m)

5 140.9s - 146.2 s -

6 121.8d 5.35 (1H, t, 2.8) 120.9d 573 (1H, dd, 5.0, 1.7)

7 320t o 1.48 (1H, m), £ 1.97 (1H, m) 74.1d 3.27 (1H, m)

8 32.0d 1.46 (1H, m) 37.3d 1.50 (1H, m)

9 50.2d 0.93 (1H, m) 429d 1.31 (1H, m)

10 36.6s - 3765 -

11 21.2t o 1.00 (1H, m), # 1.47 (1H, m) 209t o 1.02 (1H, m), £ 1.49 (1H, m)

12 399t a 1.15 (1H, m),  1.99 (1H, m) 39.1t a 1.19 (1H, m),  1.94 (1H, dt, 12.6, 3.6)

13 4255 - 4225 -

14 56.9d 0.98 (1H, m) 49.3d 1.51 (1H, m)

15 2451 o 1.59 (1H, m), £ 1.08 (1H, m) 24.4 1 o 1.59 (1H, m), £ 1.07 (1H, m)

16 28.41 o 1.84 (1H, m),  1.28 (1H, m) 28.8t a 1.74 (1H, m),  1.26 (1H, m)

17 56.0d 1.10 (1H, m) 55.8d 1.21 (1H, m)

18 12.1q 0.69 (3H, s) 11.8q 0.67 (3H, s)

19 195q 1.00 (3H, s) 18.4q 0.98 (3H, s)

20 36.2d 1.47 (1H, m) 40.3d 2.05 (1H, m)

21 18.9q 0.91 (3H, d, 6.6) 21.0q 1.01 (3H, d, 6.6)

22 39.3t a2.17 (1H, m), b 1.78 (1H, m) 138.4d 5.22 (1H, dd, 15.2, 8.1)

23 128.8d 5.50 (1H, m) 126.3d 5.27 (1H, m)

24 136.8d 5.38 (1H, d, 15.8) 421t 1.83 (2H, m)

25 75.0s - 28.7d 1.58 (1H, m)

26 25.9¢ 1.25(3H, s) 22.4q 0.86 (3H, d, 1.9)

27 26.3q 1.25 (3H, s) 22.5q 0.83(3H,d, 1.9)
7—-OCHj, - - 56.9 q 3.35(3H,s)
25-OCH; 50.4q 3.15(3H, s) - -

& Assignments aided by the DEPT, COSY, TOCSY, HSQC, HMBC, and NOESY experiments.
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Compound 1 was obtained as a white amorphous powder and was positive to Liebermann-Burchard
test. The positive ion mode HR-ESI-MS spectrum showed a pseudomolecular ion peak at m/z
437.3398 [M + Na]* (CosH4s02Na, calculated for 437.3396), which, together with the molecular ion
peak at m/z 414 [M]" in the positive ion mode EI-MS, enabled the determination of the molecular
formula C3gH4602, with the help of NMR data (Table 1).

An extensive examination of *H NMR and *C NMR spectra data, to draw assistance from the data
of *H-'H COSY, HSQC and HMBC spectra, allowed the establishment of a sterol skeleton with a
5(6)-double bond (Jc 140.9 and 121.8), which was consistent with the literature [12]. The *H NMR
spectrum showed five methyl resonance signals at o4 0.69 (3H, s), 0.91 (3H, d, J = 6.6 Hz),
1.00 (3H, s), and 1.25 (6H, s), which were ascribed to the methyl groups 18, 21, 19 and 26/27,
respectively. The resonances at dy 3.52 (1H, m) and 5.35 (1H, t, J = 2.9 Hz) assigned for H-3 and the
olefinic proton H-6, respectively, were indicative for A°> mon-hydroxylated steroidal nucleus, which
was confirmed by HMBC correlations from H-6 to C-4 (dc 42.4), C-7 (oc 32.0), C-8 (J¢c 32.0) and
C-10 (¢ 36.6) (Figure 2), as well as *H-'H COSY correlations from H-3 to H,-2 and H-4. The partial
structure of C-17 side chain in compound 1 was established based on EI-MS, 1D and 2D NMR data.
The double bond of C-23 (6c 128.8) and C-24 (dc 136.8) was confirmed by the cross peaks of H-23
(0w 5.50, m) to C-22 (dc 39.3), C-24 and C-25 (dc 75.0); H-24 (o4 5.38, d, J = 15.8 Hz) to C-22 and
C-23 in the HMBC spectrum, and was determined to be trans-disubstituted due to the large coupling
constant (Jp324 = 15.8 Hz). The methoxy group (dy 3.15 (3H, s), dc 50.4) at C-25 position was
confirmed by the HMBC spectrum data (Figure 2) and fragment ion at m/z 382 [M — OCH; — H]"
in the EI-MS spectrum of 1. Based on the above analysis, the plane structure of 1 was determined
(Figure 1).

In the NOESY experiment, both H-3 and H-6 correlated with H-4a (o4 2.28, m), indicating the
p-orientation of the hydroxyl group on C-3 (Figure 2), which was confirmed by the chemical shift of
C-3 (oc 71.9 > 70.0) [13]. After mapping all of the signals for each moiety by careful inspection of the
1D and 2D NMR spectra, compound 1 was unambiguously assigned as (23E)-25-methoxy-cholesta-
5,23-dien-34-ol. Sterol 1, not reported previously in the literature, is a new sterol with trans-double
bonds between C-23 and C-24, together with a methoxy group at C-25 in the side chain.

Figure 2. Key HMBC and NOESY correlations of compounds 1 and 2.

HMBC /1 NOESY #~ "«

Compound 2 was isolated as an isomer of 1, due to the same formula of CygHs60, from EI-MS
(m/z 414 [M]") and HR-ESI-MS (m/z 437.3394 [M + Na]" (CsH4602Na, calculated for 437.3396)),
with the help of 1D NMR spectral data. Fragment at m/z 382 [M — OCH; — H]" due to loss of a
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methoxy group, as well as the two ion fragments at m/z 271 [M — CgHis — OCH3 — H]* and 253
[M — CgHis — OCHs — H — H,0]", suggested the presence of the mono-hydroxylated and
mono-methoxylated steroid with a mono-unsaturated side chain. The presence of a strong peak in the
EI-MS at m/z 111 confirmed the presence of the CgHis side chain. The partial structure of a A%
mono-unsaturated side chain was established from the HMBC spectrum of 2 (Figure 2), which showed
correlations of H3-27/C-25, H3-26/C-25, H3-26/C-24, H-23/C-24, H-23/C-20, H-22/C-23, H-22/C-20,
H3-21/C-17, H3-21/C-20 and H3-21/C-22. The position of the methoxy group was assigned as C-7
(0c 74.1) due to a strong broad singlet at oy 3.35 (3H, s) correlated to C-7 in the HMBC spectrum, and
the partial structure of the steroidal nucleus was confirmed by the observation of the HMBC cross
peaks from H,-4 to C-3, C-5 and C-6; H-6 to C-4, C-8 and C-10; H3-18 to C-13, C-14 and C-17, and
H3-19 to C-1 and C-10 (Figure 2). The configuration of the double bond between C-22 and C-23 was
determined to be trans-disubstituted due to the large coupling constant (J2223 = 15.2 Hz) between H-22
and H-23. The p-orientation of the hydroxyl group on C-3 was deduced also from the NOESY
correlations of H-3/H-4a and H-40/H-6, and the p-orientation of the methoxy group on C-7 was
deduced by observation of correlations of H-7a/H-6 and H-7a/H-14 in the NOESY experiment
(Figure 2). Accordingly, compound 2 can be defined as (22E)-74-methoxy-cholesta-5,22-dien-34-ol.

Compound 3 was isolated as a white amorphous powder and was also positive to the Libermann-
Burchard test. Its molecular formula was established as CogH40, by observation of the molecular ion
peak at m/z 439.3550 [M + Na]® (C,sHss02Na, calculated for 439.3552) in the HR-ESI-MS spectrum
and ion peak at m/z 416 [M]" in the EI-MS spectrum. Comparison of the *H NMR and *C NMR
spectra of 3 with those of 2 revealed that they shared the same 34-hydroxy, 74-methoxy A°-steroid
nucleus but differed in the side chain. Compound 3 was finally assigned as 7/-methoxy-cholest-5-en-
3-ol due to the missing trans-double bonds between C-22 and C-23 in the *C NMR spectrum by
comparison with 2. Compound 3 has been reported as a synthetic sterol with effective inhibition of
cholesterol acyltransferase (ACAT) [9] and is reported here as a natural product for the first time.

Compound 4 was obtained as a white amorphous powder and was positive to Liebermann-Burchard
test. The HR-ESI-MS spectrum showed the molecular ion peak at m/z 407.2928 [M + Na]’
(C26H4002Na, calculated for 407.2926) and EI-MS spectrum showed the molecular ion peak at m/z 384
[M]" corresponding to the molecular formula CasH400>, with the help of NMR data. Compound 4 was
assumed to have the same typical nucleus of 34-hydroxy A°-steroid by comparing the 1D NMR data
with those of 1, but differed in the side chain. The protons of trans-olefinic bonds in the side chain
appeared at oy 6.07 (1H, d, J = 15.5 Hz) and 6.78 (1H, m). The HSQC spectral data indicated that the
proton H-24 (o4 6.07) was connected to the carbon at dc 132.8 (C-24) and H-23 (o4 6.78) was
connected to the carbon at dc 147.6 (C-23), while the protons H,-22 (dy 2.34, 1.98) were connected to
the carbon at dc 39.5 (C-22). The correlation of H-23 with H,-22 and H-24 in the 'H-'H COSY
spectrum indicated that the double bonds were in C-23 and C-24. This was also supported by the key
cross-peaks H-24 with C-22 and H-23 with C-22 in the HMBC experiment. Similarly, the downfield
singlet methyl protons at oy 2.25 (H3-26) exhibited HMBC correlations with C-25 (d¢c 198.7) and C-24,
and upfield methyl proton signals at o4 0.95 (H3-21) with C-17 (J¢c 55.9), C-20 (oc 36.0) and C-22,
suggesting the remnant connectivities of the side chain in compound 4. Accordingly, 4 was finally
assigned as (23E)-34-hydroxy-27-norcholesta-5,23-dien-25-one, which had been obtained by synthesis
[10], but was reported as a natural product for the first time.
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Another two stereoisomeric sterols, 5 and 6, were isolated as white amorphous powder, and were
analyzed to share the same molecular formula of C,7H0; using EI-MS (m/z 400 [M]") and
HR-ESI-MS data. The *H NMR and **C NMR data of 5 and 6 agreed with those of cholesta-5,25-
diene-34,24£-diol from red alga Galaxaura marginata [14]. Although, the configuration at C-24 was
hard to determine due to the small difference in the chemical shift of C-24 in the **C NMR spectrum
between S and R epimers (Table 2), compound 5 was finally assigned as 24(R)-cholesta-5,25-diene-
34,24-diol due to no correlation between H-24 and H-204 in the NOESY experiment, whereas, the
presence of H-24 correlated with H-204 in 6 confirmed the correct configuration of C-24 in 5.
Furthermore, the results were confirmed by the *H NMR data of 5 and 6, consistent with the same
synthetic sterols reported earlier [11]. Accordingly, 6 was assigned to be 24(S)-cholesta-5,25-diene-
3p,24-diol. 5 and 6 as stereoisomeric sterols were isolated from a natural origin for the first time.

Table 2. *C NMR data of compounds 3-6 (CDCls, 125 MHz) %,

3 4 5 6
Position oc, mult. oc, mult. oc, mult. oc, mult.
1 36.9t 3741 3741 374t
2 316t 31.8t 31.8t 31.8t
3 71.6d 71.9d 71.9d 719d
4 4251 425t 42.4¢ 424t
5 146.2 s 1409 s 1409 s 140.9s
6 120.9d 121.8d 121.8d 121.9d
7 7411 320t 320t 321t
8 37.3d 32.1d 32.0d 32.1d
9 42.9d 50.2d 50.3d 50.3d
10 3765 36.6s 36.7s 36.7s
11 2091 212t 212t 212t
12 39.2t 39.81 39.9t 3991
13 42.2s 42.6s 4255 4255
14 49.2d 56.8 d 56.9d 56.9d
15 244 1 2441 2441 244 1
16 28.81 285t 28.3t 28.41
17 55.9d 55.9d 56.0d 56.0 d
18 11.6q 12.0q 12.0q 12.0q
19 18.4q 195¢q 19.8q 19.6 q
20 36.0d 36.0d 35.7d 35.7d
21 18.9q 19.2q 189¢ 18.9¢
22 36.3t 395t 31.8t 31.8t
23 239t 147.6d 314t 315t
24 39.7t 132.8d 76.9d 76.5d
25 28.2d 198.7 s 147.6d 147.9d
26 22.7q 27.1q 1115t 1110t
27 23.0¢ - 17.4q 17.8q
7-OCHj; 56.9 q - - -

& Assignments aided by the DEPT, COSY, TOCSY, HSQC, HMBC, and NOESY experiments.
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Comparing their MS and NMR data with those reported in the literature, the known sterols were
identified as (23Z)-cholesta-5,23-diene-34,25-diol (7) [15], cholest-5-ene-34,75-diol (8) [16],
cholest-5-ene-34,7a-diol  (9) [16], (22E)-3f4-hydroxy-24-norcholesta-5,22-dien-7-one (10) [16],
(22E)-3p-hydroxycholesta-5,22-dien-7-one (11) [16], 3f-hydroxycholest-5-en-7-one (12) [16] and
(4E,22E)-12p-hydroxy-24-norcholesta-1,4,22-trien-3-one (13) [17], respectively. The cis-double bonds
between C-23 and C-24, together with an oxygenated hydroxyl group at C-25 in the side chain of 7 is
scarce in natural sterols. Sterols 8-12 were previously isolated from two marine sponges Cliona
copiosa [16] and Stelodoryx chlorophylla [18], and sterols 8-9 were also isolated from a soft coral
Dendronephthya gigantean [19] and a marine bryozoan Biflustra grandicella [20]. Compound 13 was
a highly functionalized Cyg steroid A**-dien-3-one with 128 oxygen function, which is a rare structural
feature among sterols and has been isolated from soft coral Gersemia rubiformis [17]. However, all of
the known sterols were isolated for the first time from this species.

Compounds 1-4, 7 and 10-13 were evaluated for their cytotoxicity against HL-60 human myeloid
leukemia cells in vitro, using a MTT assay method. The results of their cytotoxicity are shown in Table
3. Although 12 and 13 did not show any apparent cytotoxicity, sterols 1-4, 7, 10 and 11 displayed
moderate cytotoxicity to HL-60 cells with ICs values of 17.91, 21.30, 22.11, 15.05, 18.28, 15.12 and
14.73 ng/mL, respectively. It appears that the cytotoxicity against HL-60 human myeloid leukemia
cells of these sterols has a correlation with their structure.

Table 3. Cytotoxic activities of compounds 1-4, 7 and 10-13 on HL-60 tumor cells ®.

Compound 1Cs (lg/mL) Compound ICx (lg/mL)
1 1791 10 15.12
2 21.30 11 14.73
3 22.11 12 NA
4 15.05 13 NA
7 18.28 Adriamycin 2.50

#1Cso: 50% inhibitory concentration, HL-60: human myeloid leukemia cell line, NA: no activity.

The present chemical study of the marine bryozoan C. pallasiana resulted in the isolation and
characterization of six new sterols (1-6) and seven known sterols (7-13), four (3-6) of which have
already been reported as synthetic sterols [9-11]. This is the first time that they (3-6) are reported as
natural sterols. The structures of these new compounds are notable for the following viewpoints of
natural product chemistry. Sterol 1, not reported previously in the literature, is characterized by an
oxygenated methoxy group at C-25 in the side chain. In the nucleus of 2 and 3, the 7 methoxy group
is a rare feature and first encountered among natural sterols. Compound 4 is specific in carbonylation
at C-25 accompanied by a loss of a methyl group in the side chain. Sterols 5 and 6 are stereoisomeric
with the C-24 with hydroxyl group in the side chain, which are reported as a natural source for the
first time.
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3. Experimental Section
3.1. General Experimental Procedures

Optical rotations were measured on a Perkin-Elmer 343 polarimeter. 1D and 2D NMR spectra
experiments were measured in CDCI; on a Bruker AVANCE-500 spectrometer, with TMS as an
internal standard. Chemical shifts (0) were expressed in ppm and coupling constants in Hz. EI-MS
spectra were obtained on a MAT212 mass spectrometer; ESI-MS and HR-ESI-MS spectra were taken
on a Micromass Quattro mass spectrometer. Separation and purification were performed by CC on
silica gel H (10-40 um, Qingdao Marine Chemical Inc., Qingdao, China), Sephadex LH-20
(Pharmacia Inc., New Jersey, USA), reversed-phase Si gel (Lichroprep RP-18, 40-63 um, Merck Inc.,
Darmstadt, Germany). HPLC was carried out on a Dionex P680 liquid chromatograph equipped with a
UV 170 UV/Vis detector at 206 nm using a YMC-Pack R & D ODS-A column (250 x 20 mm i.d.,
5 um, YMC, Kyoto, Japan) for semi-preparation and a Thermo ODS-2 column (250 x 4.6 mm i.d.,
5 um, Thermo Hypersi-Keystone Inc., Bellefonte, U.S.A.) for analysis. TLC detection was achieved by
spraying the silica gel plates (Qingdao Marine Chemical Inc., Qingdao, China) with 20% H,SO,
followed by heating.

3.2. Animal Material

The samples of marine bryozoan Cryptosula pallasiana were collected in March 2009 from Huang
Island, Qingdao City, Shandong Province of China, and were identified by one of the authors
(Prof. H.-W. Lin). A voucher specimen (No: QD-0903-1) was deposited in Marine Laboratory,
Changzheng Hospital, Second Military Medical University.

3.3. Extraction and Isolation

Fresh samples of Cryptosula pallasiana (about 20 kg) were extracted with 95% EtOH at ambient
temperature. The concentrated aqueous solution was extracted with EtOAc. Then, the extract was
partitioned between 90% aqueous MeOH and petroleum ether. The MeOH solution was adjusted to
80% aqueous MeOH and extracted with CCl,. The CCl, fraction (12.9 g) was subjected to column
chromatography (CC) on Sephadex LH-20 with CHCI3/MeOH (1:1) as eluting solvent to afford three
fractions (Frs. A—C) based on TLC analysis (developed by petroleum ether/EtOH, 5:1). Fr. A (5.66 @)
was subjected to CC on reversed-phase silica gel column eluting with MeOH/H,0 (80:20 to 100:0)
gradient to give two major fractions A; (2.44 g) and A, (3.18 g). Fr. A, was submitted to CC over silica
gel eluting with petroleum ether/EtOAc (15:1, 10:1, 5:1, 1:1) gradient to give 12 major fractions (Frs.
Ar-1-Ar-12). Fr. A,-7 (238.9 mg) was eluted with CHCI3/MeOH (1:1) on Sephadex LH-20 and then
further purified by semi-preparative HPLC to afford 1 (6.0 mg, tr = 97.7 min), 5 (12.0 mg,
tr = 34.0 min), 6 (11.2 mg, tg = 35.6 min) and 7 (11.4 mg, tg = 38.4 min), using MeOH/H,0 (87:13)
as the mobile phase at a flow rate of 8.0 mL/min. Fr. A,-6 was purified by semi-preparative HPLC
(MeOH/H,0 90:10, flow rate of 8.0 mL/min) to yield 2 (3.5 mg, tg = 40.7 min), 3 (10.5 mg,
tr = 50.5 min) and 4 (2.0 mg, tg = 16.8 min). Fr. A,-9 (577.0 mg) was firstly purified by
semi-preparative HPLC (MeOH/H,O 90:10, flow rate of 8.0 mL/min) to give 12 fractions
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(Frs. Ax-9-1-A,-9-12), and then the Fr. A,-9-12 (47.4 mg) was further purified by analytic HPLC to
afford 8 (14.8 mg, tg = 32.1 min) and 9 (18.2 mg, tg = 35.4 min), using MeOH/H,0 (87:13) as the
mobile phase at a flow rate of 1.0 mL/min. Fr. A,-8 (147.5 mg) was eluted with CHCI3/MeOH (1:1) on
Sephadex LH-20 and then further purified by semi-preparative HPLC to give 10 (3.4 mg,
tr = 71.8 min), 11 (4.1 mg, tg = 98.3 min) and 12 (8.9 mg, tr = 130.5 min), 13 (4.0 mg, tg = 36.5 min),
using MeOH/H,0 (90:10) as the mobile phase at a flow rate of 8.0 mL/min.

3.3.1. Liebermann-Burchard Test

Each sample (1-2 mg) was dissolved in a mixture of 2 mL CHCI; and anhydrous acetic acid (1:1),
then a few drops of concentrated sulfuric acid was added and mixed cautiously. The appearance of a
green color indicated the presence of sterol.

3.3.2. (23E)-25-Methoxy-cholesta-5,23-dien-34-ol (1)

White amorphous powder; [OL]?,2 — 40.7° (c 0.05, CHCIl5); *H NMR and *C NMR data, see Table 1;
EI-MS m/z: 414 [M]" (16), 399 [M — CH3]" (100), 382 [M — OCHs;— H]" (26), 367 (18), 349 (11), 301
[M — CsH100CH3]" (25), 300 (30), 283 [M — CgH100OCHs— H,0]" (37), 271 (46), 241 (12), 227 (10),
215 (24), 183 (19), 159 (27), 133 (31), 113 [CeH100CH3]" (28), 99 (47), 85 (61), 55 (42); HR-ESI-MS
(positive) m/z: 437.3398 [M + Na]" (C2sH4602Na, calcd. for 437.3396).

3.3.3. (22E)-7-Methoxy-cholesta-5,22-dien-34-ol (2)

White amorphous powder; [oc]zD2 — 67.5° (¢ 0.05, CHCI5); *H NMR and *C NMR data, see Table 1;
EI-MS m/z: 414 [M]" (38), 396 [M — H,0]" (42), 382 [M — OCH3— H]" (100), 367 (8), 349 (12), 303
[M — CgHas]* (10), 298 (15), 271 [M — CgHis — OCH3z — H]* (22), 253 (21), 211 (13), 197 (9), 175 (14),
159 (17), 145 (19), 135 (17), 119 (16), 111 [CgH1s]" (22), 69 (30), 55 (37); HR-ESI-MS (positive) m/z:
437.3394 [M + Na]" (C2sH4602Na, calcd. for 437.3396).

3.3.4. 7-Methoxy-cholest-5-en-34-ol (3)

White amorphous powder; [a]z,f —72.4° (¢ 0.10, CHCls); *H NMR (500 MHz, CDCls) §: 0.66 (3H, s,
Hs-18), 0.86 (3H, d, J = 2.3 Hz, H3-27), 0.87 (3H, d, J = 2.3 Hz, H3-26), 0.91 (3H, d, J = 6.5 Hz,
Hs-21), 0.98 (3H, s, H3-19), 2.34 (1H, m, H,-4), 2.29 (1H, m, Hg-4), 3.29 (1H, t, J = 3.3 Hz, H-7), 3.36
(3H, s, H3-7-OCHj), 3.62 (1H, m, H-3), 5.73 (1H, dd, J = 4.9, 1.6 Hz, H-6); *C NMR data, see Table
2; EI-MS m/z: 416 [M]" (26), 398 [M — H,0]" (37), 384 [M — OCHs— H]" (100), 369 (11), 351 (12),
271 [M — CgHy7— OCHs— H]" (7), 253 (5), 213 (6), 211 (7), 185 (5), 175 (9),159 (12), 145 (12), 119
(12), 95 (15), 81 (14), 69 (11), 55 (15); HR-ESI-MS (positive) m/z: 439.3550 [M + Na]* (C2sH1s02Na,
calcd. 439.3552).

3.3.5. (23E)-34-Hydroxy-27-norcholesta-5,23-dien-25-one (4)

White amorphous powder; [a]zs —46.7° (c 0.02, CHCI53); *H NMR (500 MHz, CDCl5) §: 0.70 (3H, s,
Hs-18), 0.95 (3H, d, J = 6.6 Hz, H3-21), 1.01 (3H, s, H3-19), 2.25 (3H, s, H3-26), 3.52 (1H, m, H-3),
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5.35 (1H, t, J = 2.8 Hz, H-6), 6.07 (1H, d, J = 15.5 Hz, H-24 ), 6.78 (1H, m, H-23); **C NMR data, see
Table 2; EI-MS m/z: 384 [M]" (100), 366 [M — H,0]" (66), 351 [M — CHs— H,0]" (40), 324 (9), 299
(29), 283 (32), 273 [M — Side Chain]* (41), 255 [M — H,0 — Side Chain]" (23), 213 (45), 199 (19),
189 (29), 173 (24), 159 (48), 145 (54), 133 (44), 119 (46), 107 (62), 95 (52), 81 (54), 67 (38);
HR-ESI-MS (positive) m/z: 407.2928 [M + Na]" (C2sH4002Na, calcd. for 407.2926)

3.3.6. 24(R)-Cholesta-5,25-diene-34,24-diol (5)

White amorphous powder; [a]z; —19.4° (¢ 0.10, CHCI5); *H NMR (500 MHz, CDCl5) §: 0.68 (3H, s,
Hs-18), 0.93 (3H, d, J = 6.6 Hz, H3-21), 1.00 (3H, s, H5-19), 1.72 (3H, s, H3-27), 3.52 (1H, m, H-3),
4.00 (1H, t, J = 6.6 Hz, H-24), 4.83 (1H, t, J = 1.4 Hz, Ha-26), 4.92 (1H, s, Hp-26), 5.35 (1H, d, J = 5.2
Hz, H-6); *C NMR data, see Table 2; EI-MS m/z: 400 [M]" (41), 382 [M — H,0]" (56), 367 [M — CHs
— H,0]" (33), 349 (25), 340 (10), 328 (13), 315 (22), 300 [M — CgH1o— H.0]" (27), 271 [M — CgH15—
H,0]" (100), 255 (36), 243 (17), 229 (31), 213 (46), 199 (23), 187 (26), 173 (30), 161 (49), 145 (52),
133 (46), 119 (46), 107 (58), 95 (56), 81 (60), 71 (65), 55 (63); HR-ESI-MS (positive) m/z: 423.3241
[M + Na]* (C27H4402Na, calcd. for 423.3239).

3.3.7. 24(S)-Cholesta-5,25-diene-3,24-diol (6)

White amorphous powder, [OL]EZ —27.9° (¢ 0.10, CHCl5); *H NMR (500 MHz, CDCls) §: 0.68 (3H, s,
Hs-18), 0.93 (3H, d, J = 6.6 Hz, H3-21), 1.00 (3H, s, H3-19), 1.72 (3H, s, H3-27), 3.52 (1H, m, H-3),
4.00 (1H, t, J = 6.4 Hz, H-24), 4.83 (1H, t, J = 1.4 Hz, H,-26), 4.93 (1H, s, H,-26), 5.35 (1H, d, J =5.3
Hz, H-6); *C NMR data, see Table 2; EI-MS m/z: 400 [M]" (41), other ion fragments identical with 5;
HR-ESI-MS (positive) m/z: 423.3237 [M + Na]* (C27H402Na, calcd. for 423.3239).

3.4. MTT Cytotoxicity Assays

The cytotoxicity of compounds 1-4, 7 and 10-13 were evaluated against HL-60 cancer cell line by
microculture tetrazolium (MTT) assay [21]. The cells were obtained from American Type Culture
Collection (ATCC), and maintained in RPMI 1640 medium (Gibco, Invitrogen Co., USA) containing
10% fetal bovine serum (Gibco, Invitrogen Co., USA) supplemented with 100 U/mL penicillin, and
100 U/mL streptomycin. The leukemia cells were washed and re-suspended in the above medium to
1 % 10° cells/mL. 2 mL of this cell suspension was placed into 96-well microculture plates and allowed
to adhere in 5% CO/air for 24 h at 37 <C before drug addition. 20 pL of DMSO solution containing
the sample was added to give the various concentrations in triplicate for 72 h, with adriamycin (Sigma)
as positive control. After the incubation, 20 pL of MTT solution (5 mg/mL) was added to each well,
and the incubation continued for 4 h at 37 <C. Then, 150 pL of DMSO solution was added to each
well, and the formazan crystals in each well were dissolved by stirring with a pipette. The optical
density (OD) was read on a plate reader on an ELISA reader (MK3, USA) at a wavelength of 570 nm.
Each assay was done in triplicate, and inhibition was expressed as ICso value, which stands for
inhibition of cell growth by 50%.
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S1. HR-ESI-MS of compound 1.
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S3. 'H NMR spectrum of compound 1.
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S5. DEPT spectrum of compound 1.
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S7. HMBC spectrum of compound 1.
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S9. TOCSY spectrum of compound 1.
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$13. *H NMR spectrum of compound 2.
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S14. ¥*C NMR spectrum of compound 2.

R N, “x“%k\\qh//gff/




Mar. Drugs 2011, 9 181

S15. DEPT spectrum of compound 2.
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S16. HSQC spectrum of compound 2.

Lo

1e
— -
— - S
— - -
— - = - E
— - - E a4
— -— = -
— - -
M B0
E 100
E 11




Mar. Drugs 2011, 9 182

S17. HMBC spectrum of compound 2.
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S18. COSY spectrum of compound 2.
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S19. TOCSY spectrum of compound 2.
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S20. NOESY spectrum of compound 2.
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