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Abstract: Eight new cembranoids, crassarines A–H (1–8) were isolated from the Formosan 
soft coral Sinularia crassa. Compounds 1–3 represent the rare cembranoids with a 
1,12-oxa-bridged tetrahydrofuran ring, while 4 and 5 are the firstly discovered 
1,11-oxa-bridged tetrahydropyranocembranoids. The absolute configuration of 6 was 
determined using the Mosher’s method. Compounds 6 and 8 were found to significantly 
inhibit the expression of both pro-inflammatory iNOS and COX-2 proteins at 10 µM, 
respectively, while compounds 4–8 were found to be non-cytotoxic toward the selected 
human liver cancer cells. 
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1. Introduction 

Soft corals were proven to be a rich source of terpenoids [1]. We previously have isolated a series of 
bioactive cembrane- [2–4] and norcembrane- [5–8] diterpenoids from the Formosan soft corals of the 
genus Sinularia. Although this genus has been well studied regarding bioactive constituents, previous 
investigations on an Indian soft coral Sinularia crassa (Tixier-Durivault, 1951) had resulted in the 
isolation of only a sphingosine and a steroid possessing anti-inflammatory [9,10] and 5α-reductase 
inhibitiory activities [11], respectively. This prompted us to investigate the bioactive compounds from 
the Formosan soft coral S. crassa and the present study has led to the isolation of eight new cembranoids, 
crassarines A–H (1–8, see Chart 1) from the ethanolic extract of this organism. The structures of these 
compounds have been established by extensive spectroscopic analysis and chemical method. The 
anti-inflammatory activity of 1–8 to inhibit up-regulation of the pro-inflammatory iNOS (inducible 
nitric oxide synthase) and COX-2 (cyclooxygenase-2) proteins in LPS (lipopolysaccharide)-stimulated 
RAW264.7 macrophage cells and the cytotoxicity of compounds 4–8 against a panel of cancer cell lines 
including human liver carcinoma (HepG2 and HepG3), human breast carcinoma (MCF-7 and 
MDA-MB-231), and human lung carcinoma (A-549) were evaluated in order to discover bioactive 
natural products. 

Chart 1. The structures of crassarines A–H (1–8). 

 

2. Results and Discussion 

The HRESIMS of crassarine A (1) exhibited a pseudomolecular ion peak at m/z 361.2353 [M + Na]+, 
consistent with a molecular formula of C20H34O4, appropriate for four degrees of unsaturation. The IR 
spectrum of 1 showed a broad absorption band at 3461 cm−1 and a strong absorption band at  
1698 cm−1, implying the presence of hydroxy and carbonyl groups. The latter was identified as a 
ketone functionality from the carbon resonance at δ 211.8 (Table 1). In addition, carbon resonances at  
δ 133.3 (CH) and 134.3 (CH) were attributed to the presence of an 1,2-disubstituted double bond. The 
above functionalities accounted for two of the four degrees of unsaturation, suggesting a bicyclic 
structure in 1. By interpretation of 1H−1H COSY correlations, it was possible to establish three partial 
structures from both H-7 and H3-19 to H-8, H-8 to H-11, H2-13 to H2-14, and both H3-16 and H3-17 to 
H-15. Subsequently, these partial structures were connected by the HMBC correlations (Figure 1). 
According to the downfield-shifted carbon chemical shifts at δ 88.1 (C-1, C), 75.0 (C-11, CH), and 
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85.7 (C-12, C) [12] as well as the HMBC correlations from H3-20 to C-11, C-12, and C-13 and H3-16 
(or H3-17) to C-17 (or C-16), C-15, and C-1, an ether linkage between C-1 and C-12 forming a 
tetrahydrofuran (THF) ring and a hydroxy group at C-11 were assigned for 1. The location of C-6 
ketone was suggested from the carbon resonances of the adjacent methylenes at δ 53.3 (C-5) and 51.6 
(C-7). This was further confirmed by the HMBC correlations from both H2-7 and H2-5 to C-6. In 
addition, the HMBC correlations from H3-18 to C-3, C-4, and C-5 helped to locate the C-2/C-3 double 
bond and a hydroxy group at quaternary C-4 (δ 71.4). Hence, the planar structure of 1, a cembranoid 
possessing a 1,12-bridged tetrahydrofuran ring, was established as shown in Figure 1. 

Table 1. 13C NMR spectroscopic data of compounds 1−8. 

# 1 a 1 b 2 c 3 a 4 a 5 a 6 d 7 d 8 d 
1 88.1 87.6 88.6 88.8 77.5 77.7 147.2 147.7 146.2 
2 133.3 133.8 133.4 133.2 131.6 130.8 119.1 118.6 107.7 
3 134.3 135.1 136.4 136.5 139.0 138.3 121.7 122.9 146.8 
4 71.4 70.7 72.4 72.4 73.4 71.7 135.4 134.8 117.0 
5 53.3 56.4 52.7 52.7 54.0 50.8 38.5 39.4 109.6 
6 211.8 209.5 212.9 213.0 215.2 215.7 25.2 25.5 151.1 
7 51.6 49.4 51.1 51.2 53.1 54.2 126.7 130.1 35.3 
8 28.9 25.8 26.4 26.4 30.8 28.5 136.7 138.0 30.4 
9 32.5 32.7 32.9 33.0 32.4 29.7 75.3 33.7 30.2 
10 29.4 26.5 26.8 26.9 26.0 24.4 32.3 25.5 24.8 
11 75.0 71.1 77.0 77.0 76.2 74.7 57.0 59.1 65.4 
12 85.7 86.4 84.7 84.7 70.0 70.1 59.5 60.3 60.7 
13 35.2 36.7 34.6 34.4 37.1 36.9 36.4 35.4 40.5 
14 30.9 30.4 31.7 31.9 28.4 28.8 24.3 24.1 24.2 
15 37.7 38.0 38.6 38.5 40.2 40.3 34.4 33.5 35.2 
16 18.0 18.3 18.2 18.2 17.3 17.2 22.5 22.3 21.6 
17 17.7 17.8 17.6 17.5 16.8 16.8 22.3 22.7 21.1 
18 28.9 31.1 29.8 29.7 28.9 24.5 17.3 16.8 9.1 
19 22.6 22.1 22.3 22.3 22.0 20.7 11.7 59.4 20.0 
20 23.4 20.8 23.5 24.0 18.8 19.5 18.5 19.0 15.2 
OAc   170.9       
   21.0       
CHO    160.9      

a Spectra were measured in CDCl3 (100 MHz); b Spectra were measured in pyridine-d5 (100 MHz); 
c Spectra were measured in CDCl3 (125 MHz); d Spectra were measured in C6D6 (100 MHz). 

The E geometry for the C-2/C-3 double bond was deduced from a 16.0 Hz coupling constant  
(Table 1) between H-2 and H-3. The relative configuration of 1 was determined by the interpretation of 
NOE correlations (Figure 2). The NOE correlations between H3-20/H3-16 (or H3-17), H-11/H-13a  
(δH 2.61), H-11/H-8, and H3-20/H2-13 suggested the 1S*,8S*,11R*,12S* configuration as depicted in 
Figure 2. In addition, the NOE correlations observed for H-2 with both H-15 and H3-18 and for H3-18 
with H-3 suggested the 4S* configuration. In order to understand the orientation of 4-OH and 11-OH, the 
pyridine-induced solvent shifts were measured [13,14]. The significant differences of chemical shifts 
(Δδ = δ CDCl3 − δ C5D5N ) due to pyridine-induced deshielding effect of hydroxy group were observed 
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for H-7a (Δδ = −0.93 ppm), H3-20 (Δδ = −0.24 ppm), and H-13a (Δδ = −0.63 ppm) (Table 2), suggesting 
that 4-OH is close to H-7a, and the 11-OH is not only close to H-13a but also gauche-oriented to H3-20, 
as shown in Figure 2. To determine the absolute configuration, we applied the Mosher’s method  
on 1. However, we were unable to prepare the corresponding Mosher esters of 1 by usual reaction 
conditions [3,4]. This might be due to the steric hindrance of THF ring adjacent to C-11. 

Figure 1. Selected 1H−1H COSY (▬) and HMBC (→) correlations of 1−8. 
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Figure 2. Selected NOE correlations for compounds 1, 4, 6, and 8. 
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Table 2. 1H NMR Spectroscopic Data of Compounds 1−3 and 8. 

# 1, δH (J in Hz) a 1, δH (J in Hz) b 2, δH (J in Hz) c 3, δH (J in Hz) a 8, δH (J in Hz) d 
2 5.73, s 6.28, d (16.0) 5.75, s 5.74, s 5.95, s 
3 5.73, s 6.04, d (16.0) 5.75, s 5.74, s  
5 a: 2.79, d (15.6) a: 2.98, d (13.0) a: 2.89, d (15.0) a: 2.89, d (15.0) 5.73,s 
 b: 2.61, d (15.6) b: 2.87, d (13.0) b: 2.48, d (15.0) b: 2.48, d (15.0)  

7 a: 2.45, dd 
(15.6, 8.4) 

a: 3.38, dd  
(16.0, 4.0) 

a: 2.52, dd  
(18.0, 8.5) 

a: 2.49, dd  
(18.0, 8.5) a: 2.44, br d (12.4)

 b: 2.23, dd  
(15.6, 5.2) 

b: 2.04, dd  
(16.0, 9.6) 

b: 2.16, dd  
(18.0, 4.0) 

b: 2.18, dd 
(18.0, 4.0) b: 2.02, m 

8 2.02, m 2.41, m 2.29, m 2.29, m 1.96, m 
9 1.46, m 1.30, m 1.37, m 1.38, m 1.30, m 
   0.97, m 0.99, m 0.93, m 
10 a: 1.56, m a: 2.18, m a: 1.44, m a: 1.48, m a: 1.82, m 
 b: 1.25, m b: 1.63, m b: 1.38, m b: 1.37, m b: 1.20, m 

11 3.24, br d (9.6) 3.76, d (10.4) 4.80, br d (10.5) 4.90, br d (8.4) 2.36, dd  
(10.0, 2.0) 

13 a: 1.98, m a: 2.61, ddd  
(12.4, 8.4, 2.4) a: 1.80, m a: 1.84, m a: 2.40, m 

 b: 1.68, m b: 1.75, m b: 1.60, m b: 1.64, m b: 1.04, m 

14 a: 1.96, m a: 2.12, m a: 1.98, m a: 2.01, m a: 3.55, dd  
(12.4, 9.2) 

 b: 1.89, m b: 1.88, m b: 1.87, m b: 1.86, m b: 2.02, m 
15 1.76, m 1.81, m 1.75, m 1.75, m 2.22, m 
16 0.87, d (6.8) 0.92, d (6.8) 0.86, d (6.8) 0.86, d (6.8) 1.00, d (6.0) 
17 0.86, d (6.8) 0.92, d (6.8) 0.84, d (6.8) 0.84, d (6.8) 1.04, d (6.0) 
18 1.37, s 1.61, s 1.25, s 1.25, s 1.88, s 
19 0.98, d (6.4) 0.94, d (6.8) 0.91, d (6.4) 0.92, d (6.8) 0.82, d (6.4) 
20 1.25, s 1.49, s 1.15, s 1.18, s 1.23, s 
OAc   2.09, s   
CHO    8.18,s  
4-OH   4.45, s 4.47, s  

a Spectra were measured in CDCl3 (400 MHz); b Spectra were measured in pyridine-d5 (400 MHz);  
c Spectra were measured in CDCl3 (500 MHz); d Spectra were measured in C6D6 (400 MHz). 

HRESIMS analysis of crassarine B (2) provided a molecular formula of C22H36O5 ([M + Na]+  
m/z 403.2463). The 1H and 13C NMR spectroscopic data of 2 were close to those of 1. A comparison of 
NMR spectroscopic data of 2 with those of 1 indicated that 2 possesses an acetoxy group [δC 170.9 (C), 
δC 21.0 (CH3); δH 2.09], which was suggested to be attached at C-11 due to the downfield-shifted proton 
resonance at δH 4.08 (1H, br d, J = 10.5 Hz, H-11) in comparison with the relevant case of 11-OH 
analogue 1 (δH 3.24, 1H, br d, J = 9.6 Hz, H-11). The structure elucidation of 2 was accomplished by an 
extensive analysis of its 2D NMR correlations, which led to the establishment of its planar structure, as 
shown in Figure 1. Except for the C-11 substituent and the THF ring in both compounds 1 and 2, the 
differences were observed for the chemical shifts of protons and carbons around the C-4 asymmetric 
center, in particular those of H3-18 (δH 1.37 and δC 28.9 for 1; δH 1.25 and δC 29.8 for 2). These 
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observations suggested that the configuration at C-4 in 2 should be opposite to that in 1. Moreover, 1 and 
2 shared the same NOE correlations around asymmetric centers C-1, C-8, C-11, and C-12. To confirm 
the above elucidation, 1 was acetylated to obtain 1a, which displayed different 1H NMR spectrum to that 
of 2 (see Experimental). Consequently, 2 was determined to be the 4-epi-11-O-acetyl derivative of 1. 
The 13C and 1H NMR spectral data of 3 are very similar to that of 2 (Tables 1 and 2); however, 1H NMR 
spectrum of 3 showed a singlet at δ 8.18 which correlates with carbon signal at δ 160.9 in the HSQC 
spectrum, indicating the presence of a formyloxy group at C-11 in 3. On the basis of the above data,  
3 was identified as the 11-O-formyl derivative of 2. Literature review showed that this is the first 
cembranoid with a formyloxy group. 

Crassarine D (4) possesses the same molecular formula as that of 1. The 13C NMR data (Table 1) of 
4 were mostly similar to those of 1, except for those of sp3 oxygenated carbons, suggesting that they 
vary mainly in the heterocyclic ring. The upfield shift for H-11 from δ 3.24 (1H, br d, J = 9.6 Hz) in 1 
to δ 3.02 (1H, d, J = 8.8 Hz) in 4 indicates that an ether linkage should be located between C-1 and 
C-11 to form a tetrahydropyran (THP) ring. The HMBC correlation from H-11 to C-1 (δ 77.5, C) 
confirmed the presence of this THP ring in 4, rather than the THF ring in 1. The detailed analysis of 
the correlations observed in the COSY, HMBC, and HSQC spectra further assigned all the 
spectroscopic data and established the planar structure of 4 (Figure 1). The E geometry of C-2/C-3 
double bond was also deduced from the coupling constant (16.0 Hz) between H-2 and H-3. NOE 
correlations between H3-20/H-14a, H3-17/H-14a, H3-20/H-13a, and H-11/H-13b suggested that H-11 is 
an axial proton and oriented oppositely to H3-20. Both H-11 and H-8 were suggested to be positioned 
on the same face based on the observation of NOE correlations between H-11/H-8, H-8/H-10a, and 
H-10a/H-11. In addition, H-3 showed NOE correlations with both H3-18 and H-15 (Figure 2), 
revealing that H3-18 should be pointed toward the same orientation as that of the isopropyl group. 
Consequently, the 1S*,4R*,8S*,11S*,12R* configuration was suggested for 4. Crassarine E (5) has the 
same molecular formula as that of 4. The 1H and 13C NMR spectroscopic data as well as the proton 
coupling patterns of 5 are similar to those of 4. A comparison of NMR spectroscopic data of 5 with 
those of 4 showed some differences in chemical shifts for protons and carbons neighboring C-4 and 
C-8, suggesting that they are epimeric at either C-4 or C-8. The NOE correlation between H3-18 and 
H-2 in 5, instead of H3-18 and H-3 in 4 (Figure 2) suggested that compound 5 is a 4-epimer of 4. 

Crassarine F (6) was assigned a molecular formula of C20H32O2, according to the HRESIMS and 
NMR spectroscopic data (Tables 1 and 3). The IR absorption band at 3300 cm−1 revealed the presence 
of hydroxy group. A tetrasubstituted 1,3-butadiene [δH 6.06 (1H, d, J = 10.4 Hz) and 5.90 (1H, dd,  
J = 10.4, 1.2 Hz); δC 147.2 (C), 135.4 (C), 121.7 (CH), and 119.1 (CH)], a trisubstituted double bond 
[δH 5.50 (1H, dd, J = 7.2, 6.0 Hz); δC 136.7 (C), and 126.7 (CH)], and a trisubstituted epoxide [δH 2.87 
(1H, dd, J = 7.6, 6.0 Hz); δC 59.5 (C) and 57.0 (CH)] were also evident. Above NMR signals suggested 
6 to be the 1,3-diene cembranoid with an epoxy group [15]. The 11,12-epoxy group was assigned  
by the HMBC correlations from H3-20 to C-11, C-12, and C-13 and H2-14 to C-1, C-2, and C-13 
(Figure 1). The COSY cross peaks of H2-10/H-11 and H2-10/H-9 as well as the HMBC correlations 
from H3-19 to C-7, C-8, and C-9 assigned the hydroxy group at C-9 (δC 75.3, CH). These findings and 
the detailed COSY and HMBC correlations established the planar structure of 6, as shown in Figure 1. 
The relative configuration of 6 was determined by the interpretation of NOESY spectrum. The crucial 
NOE correlations (Figure 2) between H-2/H3-18, H-2/H-15, and H-9/H-7 indicated the E geometry for 
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all double bonds and suggested a s-trans geometry for the 1,3-diene. NOE correlations between 
H-11/H-3, H-11/H-14a, and H-3/H-14a showed that these protons should be pointed toward the core of 
14-membered ring. Furthermore, the absence of NOE correlation between H-11 and H3-20 and the 
presence of correlation between H-9 and H3-20 suggested the 9S*,11S*,12S* configuration, as 
depicted in Figure 2. The absolute configuration of 6 was determined by the application of Mosher’s 
method [16,17]. The (S)- and (R)-MTPA esters of 6 (6a and 6b, respectively) were prepared using the 
corresponding (R)- and (S)-MTPA chloride, respectively. The determination of chemical shift differences 
for the protons neighboring C-9 led to the assignment of the 9S configuration in 6 (Figure 3). Thus, the 
absolute configuration of 6 was determined as 9S, 11S, 12S. 

Table 3. 1H NMR Spectroscopic Data of Compounds 4−7. 

# 4 a, δH (J in Hz) 5 a, δH (J in Hz) 6 b, δH (J in Hz) 7 b, δH (J in Hz) 
2 5.81, d (16.0) 5.58, d (16.0) 6.06, d (10.4) 6.08, d (10.8) 
3 5.89, d (16.0) 6.07, d (16.0) 5.90, dd (10.4, 1.2) 6.02, d (10.8) 
5 a: 2.80, d (16.0) a: 3.01, d (16.6) 2.04, m 2.00, m 
 b: 2.72, d (16.0) b: 2.41, d (16.6)   
7 a: 2.39, dd (13.6, 11.2) a: 2.46, dd (11.6, 2.8) 2.10, m a: 2.13, m 
 b: 2.16, dd (13.6, 2.4) b: 2.07, dd (12.0, 11.6)  b: 2.00, m 
8 1.92, m 1.96, m 5.50, dd (7.2, 6.0) 5.26, dd (9.2, 5.2) 
9 a: 1.32, m a: 1.56, m 4.00, dd (8.0, 3.2) a: 2.36, m 
 b: 1.18, m b: 0.99, m  b: 2.29, m 
10 a: 1.49, m a: 1.57, m a: 1.99, m a: 1.72, m 
 b: 1.19, m b: 1.26, m b: 1.67, m b: 1.64, m 
11 3.02, d (8.8) 3.19, d (10.4) 2.87, dd (7.6, 6.0) 3.00, dd (6.8, 5.2) 
13 a: 1.74, m a: 1.72, m a: 1.85, m a: 1.91, m 
 b: 1.57, m b: 1.51, m b: 1.52, m b: 1.62, m 
14 a: 1.68, m a: 1.65, m a: 2.23, m a: 2.40, m 
 b: 1.59, m b: 1.59, m b: 1.92, m b: 1.90, m 
15 1.77, m 1.80, m 2.16, m 2.21, m 
16 0.78, d (6.8) 0.80, d (7.0) 0.99, d (6.8) 1.00, d (6.8) 
17 0.91, d (6.8) 0.90, d (7.0) 0.99, d (6.8) 0.99, d (6.8) 
# 4 a, δH (J in Hz) 5 a, δH (J in Hz) 6 b, δH (J in Hz) 7 b, δH (J in Hz) 
18 1.37, s 1.38, s 1.65, s 1.63, s 
19 0.98, d (6.4) 1.00, d (6.4) 1.40, s 3.93, d (12.0) 
    3.89, d (12.0) 
20 1.11, s 1.15, s 1.12, s 1.15, s 

a Spectra were measured in CDCl3 (400 MHz); b Spectra were measured in C6D6 (400 MHz). 

The HRESIMS data of crassarine G (7) revealed a molecular formula of C20H32O2, the same as that 
of 6. The IR spectrum of 7 disclosed the presence of hydroxy group (νmax 3434 cm−1). A comparison of 
the NMR spectroscopic data of 7 (Tables 1 and 2) with those of 6 revealed that the hydroxy-containing 
methine (C-9) in 6 was replaced by a sp3 methylene in 7. It was also found that resonances appropriate 
for H3-19 in 6 were absent from the 1H and 13C NMR spectra of 7 and replaced by signals for a 
hydroxymethyl group [δH 3.93 and 3.89 (each 1H, d, J = 12.0 Hz); δC 59.4 (CH2)]. Careful inspection 
of the 2D NMR spectra of 7 confirmed the above elucidation. 
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Figure 3. 1H NMR chemical shift differences of MTPA esters of 6. 

 

The HRESIMS and 13C NMR spectroscopic data of crassarine H (8) established a molecular 
formula of C20H30O2 and six degrees of unsaturation. The 13C NMR spectrum showed the presence of a 
trisubstituted double bond [δC 146.2 (C) and 107.7 (CH)] and a trisubstituted epoxide [δC 65.4 (CH) 
and 60.7 (C)]. In addition, the carbon resonances at δC 9.1 (CH3, C-18), 151.1 (C, C-6), 146.8 (C, C-3), 
109.6 (CH, C-5), and 117.0 (C, C-4) are attributed to the presence of a 2,5-dialkyl-3-methylfuran [18]. 
This furan moiety and the trisubstituted double bond were found to be conjugated according to the 
downfield-shifted proton resonance of H-2 at δ 5.95 (1H, s) [18]. This was further confirmed by the 
HMBC correlations from H-2 to C-1, C-3, C-14, and C-15, H3-18 to C-3, C-4, and C-5, and H-5 to C-3, 
C-4, and C-6. The above data together with the detailed inspection of the COSY and HMBC correlations 
of 8 established its planar structure (Figure 1). The relative configuration of 8 was determined mainly by 
the assistance of the NOESY experiment. The key NOE correlations between H-2 and both H-15 and 
H3-18 indicated an E geometry of C-1/C-2 double bond (Figure 2). The trans epoxy group was 
deduced by the NOE correlations between H-11/H-13b and H3-20/H-13a. In addition, H-8 showed an 
NOE correlation with H3-20, instead of H-11, suggesting the 8S*,11S*,12S* configuration for 8. 

The anti-inflammatory activity of diterpenoids 1–8 against the accumulation of pro-inflammatory 
iNOS and COX-2 proteins in RAW264.7 macrophage cells stimulated with LPS was evaluated using 
immunoblot analysis. At a concentration of 10 µM (Figure 4), 8 was found to significantly reduce the 
levels of iNOS protein (35.8 ± 10.7%), compared with the control cells stimulated with LPS only.  
At the same concentration, 6 could reduce COX-2 expression (65.6 ± 6.2%) by LPS treatment. 
Cytotoxicity of diterpenoids 4–8 against HepG2, HepG3, MCF-7, MDA-MB-231, and A-549 cancer 
cell lines was also evaluated. The results showed that the tested compounds were found to be inactive 
(IC50 > 20 μM) toward the above cancer cell lines after 72 h exposure.  
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3.2. Animal Material 

The soft coral Sinularia crassa was collected by hand using scuba off the coast of Sansiantai, Taitung 
county, Taiwan, in July 2008, at a depth of 10 m, and was stored in a freezer (−20 °C). This soft coral 
was identified by one of the authors (C.-F.D.). A voucher specimen (Specimen No. SST-03) was 
deposited in the Department of Marine Biotechnology and Resources, National Sun Yat-sen University. 

3.3. Extraction and Isolation 

The frozen bodies of S. crassa (1.1 kg fresh wt) were minced and extracted with EtOH (3 × 2 L, each 
for 1 day) at room temperature. The organic extract was concentrated to an aqueous suspension and was 
further partitioned between EtOAc and H2O. The EtOAc extract (17.0 g) was fractionated by open 
column chromatography on silica gel using n-hexane-EtOAc and EtOAc-MeOH mixtures of increasing 
polarity to yield 32 fractions. Fraction 19, eluting with n-hexane–EtOAc (5:1), was further separated by 
silica gel column chromatography with gradient elution (n-hexane-EtOAc, 24:1 to 0:1) and followed 
by RP-18 open column (MeOH-H2O, 50% to 100%) to yield three subfractions (19A–19C). 
Subfraction 19A was subjected to RP-18 HPLC (MeOH-H2O, 90%) to obtain compound 8 (2.2 mg). 
Similarly, compounds 2 (1.1 mg) and 3 (1.0 mg) were obtained from subfraction 19C using RP-18 
HPLC (MeOH-H2O, 75%). Subfraction 19B was fractionated over silica gel using gradient elution 
(n-hexane-EtOAc, 24:1 to 0:1) to yield three subfractions (19B-1–19B-3). Compounds 4 (3.4 mg) and 
5 (2.3 mg) were obtained from subfractions 19B-1 and 19B-2, respectively, using RP-18 HPLC 
(MeOH-H2O, 66%). Subfraction 19B-3 was subjected to normal phase HPLC (n-hexane-EtOAc, 2:1) 
to obtain 1 (2.3 mg). Fractions 22 to 24, eluting with n-hexane–EtOAc (1:1), were combined and 
further separated over silica gel column chromatography (n-hexane–EtOAc, gradient elution, 18:1 to 0:1) 
to give a residue containing terpenoids. This residue was separated over RP-18 column 
chromatography using gradient elution (MeOH-H2O, 50% to 100%) to obtain two subfractions (23A 
and 23B). Subfraction 23A was further purified by RP-18 HPLC (MeOH-H2O, 75%) to yield 
compound 6 (1.8 mg). In the same manner, compound 7 (8.7 mg) was obtained from subfraction 23B 
using RP-18 HPLC (MeOH-H2O, 80%).  

Crassarine A (1): colorless oil; [α]24
D −93(c 0.20, CHCl3); IR (KBr) νmax 3461, 2963, 2928, 2873, 

1698, 1455, 1380 cm−1; 1H NMR and 13C NMR data, see Tables 1 and 2; ESIMS m/z 361 [M + Na]+; 
HRESIMS m/z 361.2353 [M + Na]+ (calcd for C20H34O4Na, 361.2355). 

Crassarine B (2): colorless oil; [α]24
D −13 (c 0.11, CHCl3); IR (KBr) νmax 3288, 2957, 2925, 2855, 

1732, 1698, 1453, 1372, 1237 cm−1; 1H NMR and 13C NMR data, Tables 1 and 2; ESIMS m/z 403  
[M + Na]+; HRESIMS m/z 403.2463 [M + Na]+ (calcd for C22H36O5Na, 403.2460). 

Crassarine C (3): colorless oil; [α]24
D −45 (c 0.10, CHCl3); IR (KBr) νmax 3483, 2955, 2925, 2855, 

1725, 1698, 1455, 1375, 1171 cm−1; 1H NMR and 13C NMR data, Tables 1 and 2; ESIMS m/z 389  
[M + Na]+; HRESIMS m/z 389.2302 [M + Na]+ (calcd for C21H34O5Na, 389.2304). 

Crassarine D (4): colorless oil; [α]24
D −48 (c 0.34, CHCl3); IR (KBr) νmax 3386, 2955, 2925, 2855, 

1716, 1458, 1268, 1036 cm−1; 1H NMR and 13C NMR data, Tables 1 and 3; ESIMS m/z 361 [M + Na]+; 
HRESIMS m/z 361.2354 [M + Na]+ (calcd for C20H34O4Na, 361.2355). 
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Crassarine E (5): colorless oil; [α]24
D −27 (c 0.23, CHCl3); IR (KBr) νmax 3453, 2957, 2925, 2855, 

1713, 1458, 1261, 1044 cm−1; 1H NMR and 13C NMR data, Tables 1 and 3; ESIMS m/z 361 [M + Na]+; 
HRESIMS m/z 361.2357 [M + Na]+ (calcd for C20H34O4Na, 361.2355). 

Crassarine F (6): colorless oil; [α]24
D −63 (c 0.18, CHCl3); IR (KBr) νmax 3300, 2960, 2926, 2857, 

1668, 1458, 1380, 1255, 1036 cm−1; 1H NMR and 13C NMR data, Tables 1 and 3; ESIMS m/z 327 
[M + Na]+; HRESIMS m/z 327.2302 [M + Na]+ (calcd for C20H32O2Na, 327.2300). 

Crassarine G (7): colorless oil; [α]24
D −41 (c 0.73, CHCl3); IR (KBr) νmax 3434, 2959, 2928, 2872, 

1671, 1459, 1383, 1011 cm−1; 1H NMR and 13C NMR data, Tables 1 and 3; ESIMS m/z 327 [M + Na]+; 
HRESIMS m/z 327.2302 [M + Na]+ (calcd for C20H32O2Na, 327.2300). 

Crassarine H (8): colorless oil; [α]24
D −12 (c 0.22, CHCl3); IR (KBr) νmax 2955, 2922, 2855, 1458, 

1380 cm−1; 1H NMR and 13C NMR data, Tables 1 and 2; ESIMS m/z 325 [M + Na]+; HRESIMS  
m/z 325.2145 [M + Na]+ (calcd for C20H30O2Na, 325.2143). 

3.4. Acetylation of 1 

To a stirring solution of compound 1 (0.1 mg) in pyridine (1 mL) was successively added excess 
acetic acid anhydrous (0.2 mL). After the mixture was stirred over night at room temperature, H2O  
(0.3 mL) was added, and this mixture was subsequently extracted with EtOAc (5 × 6 mL). The combined 
EtOAc extract was successively washed with saturated aqueous NaHCO3 and brine. The organic layer 
was dried over anhydrous Na2SO4 and concentrated to give a residue, which was chromatographed on 
silica gel with n-hexane-EtOAc (2:1) as eluent to afford 1a (0.1 mg) which showed a [M + Na]+ peak at 
m/z 403 in ESIMS spectrum. Selected 1H NMR (CDCl3, 300 MHz) spectrum of 1a: δ 5.89 (1H, d,  
J = 15.9 Hz, H-2 or H-3), 5.77 (1H, d, J = 15.9 Hz, H-2 or H-3), 4.83 (1H, br d, J = 9.9 Hz, H-11), 2.95 
(1H, d, J = 15.0 Hz, H-5a), 2.46‒2.56 (2H, m, H-5b, H-7a), 2.08 (3H, s, OCOCH3), 1.37 (3H, s, H3-18), 
1.20 (3H, s, H3-18), 0.85‒0.89 (9H, overlapped, H3-19, H3-16, and H3-17).  

3.5. Preparation of (S)- and (R)-MTPA Esters of 6 

To a solution of 6 (0.5 mg) in pyridine (0.4 mL) was added (R)-MTPA chloride (25 μL), and the 
mixture was allowed to stand for 3 h at room temperature. The reaction was quenched by the addition of 
1.0 mL of H2O, and the mixture was subsequently extracted with EtOAc (3 × 1.0 mL). The EtOAc layers 
were combined, dried over anhydrous MgSO4, and evaporated. The residue was subjected to short silica 
gel column chromatography using n-hexane-EtOAc (8:1) to yield the (S)-MTPA ester, 6a (0.3 mg). The 
same procedure was used to prepare the (R)-MTPA ester, 6b (0.4 mg from 0.5 mg of 1), with (S)-MTPA 
chloride. Selected 1H NMR (CDCl3, 300 MHz) of 6a: δ 7.38−7.50 (5H, m, Ph), 6.14 (1H, d, J = 11.4 Hz, 
H-2), 6.00 (1H, d, J = 11.4 Hz, H-3), 5.61–5.71 (2H, overlapped, H-7 and H-9 ), 3.69 (1H, d, J = 12.0 Hz, 
H-11), 3.56 (3H, s, OMe), 1.80 (3H, s, H3-18), 1.39 (3H, s, H3-19), 1.10 (3H, s, H3-20), 1.07 (3H, d,  
J = 6.9 Hz, H3-16 or H3-17), 1.03 (3H, d, J = 6.9 Hz, H3-16 or H3-17); selected 1H NMR (CDCl3,  
300 MHz) of 6b: δ 7.38−7.50 (5H, m, Ph), 6.13 (1H, d, J = 11.4 Hz, H-2), 5.98 (1H, d, J = 11.4 Hz, H-3), 
5.67–5.78 (2H, overlapped, H-7 and H-9), 3.70 (1H, d, J = 10.2 Hz, H-11), 3.52 (3H, s, OMe) 1.78  
(3H, s, H3-18), 1.22 (3H, s, H3-19), 1.13 (3H, s, H3-20), 1.12 (3H, d, J = 6.9 Hz, H3-16 or H3-17), 1.03 
(3H, d, J = 6.7 Hz, H3-16 or H3-17). 
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3.6. Cytotoxicity Testing 

Compounds were assayed for cytotoxicity against human liver carcinoma (HepG2 and HepG3), 
human breast carcinoma (MCF-7 and MDA-MB-231), and human lung carcinoma (A-549) cells using 
the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method [19]. Freshly 
trypsinized cell suspensions were seeded in 96-well microtiter plates at densities of 5000‒10,000 cells 
per well with tested compounds added from DMSO-diluted stock. After 3 days in culture, attached cells 
were incubated with MTT (0.5 mg/mL, 1 h) and subsequently dissolved in DMSO. The absorbency at 
550 nm was then measured using a microplate reader. The IC50 is the concentration of agent that reduced 
cell growth by 50% under the experimental conditions.  

3.7. In Vitro Anti-Inflammatory Assay 

Macrophage (RAW264.7) cell line was purchased from ATCC. In vitro anti-inflammatory activities 
of tested compounds were measured by examining the inhibition of LPS induced upregulation of iNOS 
and COX-2 proteins in macrophage cells using western blotting analysis [20,21]. 

4. Conclusions 

Cembranoids with a 1,12-oxa-bridged THF ring, such as compounds 1–3, are rare in natural 
products. Incensole [22], incensole oxide [23], and incensole acetate [24] are the cembranoids of this 
class which were isolated from frankincense, the resin produced by the plant Boswellia carteri. It is 
also noteworthy that the formyloxyl cembranoid, such as 3, and the 1,11-oxa-bridged 
tetrahydropyranocembranoids, such as 4 and 5, were discovered for the first time.  
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