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Abstract: Calyculins, highly cytotoxic polyketides, originally isolated from the marine 
sponge Discodermia calyx by Fusetani and co-workers, belong to the lithistid sponges 
group. These molecules have become interesting targets for cell biologists and synthetic 
organic chemists. The serine/threonine protein phosphatases play an essential role in the 
cellular signalling, metabolism, and cell cycle control. Calyculins express potent protein 
phosphatase 1 and 2A inhibitory activity, and have therefore become valuable tools for 
cellular biologists studying intracellular processes and their control by reversible 
phosphorylation. Calyculins might also play an important role in the development of 
several diseases such as cancer, neurodegenerative diseases, and type 2-diabetes mellitus. 
The fascinating structures of calyculins have inspired various groups of synthetic organic 
chemists to develop total syntheses of the most abundant calyculins A and C. However, 
with fifteen chiral centres, a cyano-capped tetraene unit, a phosphate-bearing spiroketal, an 
anti, anti, anti dipropionate segment, an α-chiral oxazole, and a trihydroxylated γ-amino 
acid, calyculins reach versatility that only few natural products can surpass, and truly 
challenge modern chemists’ asymmetric synthesis skills. 
 
Keywords: marine natural products; total synthesis; protein phosphatase inhibitors 

 
 

OPEN ACCESS



Mar. Drugs 2010, 8                
 

 

123

1. Introduction 
 
Nature offers an endless source of inspiration to synthetic organic chemists. Because water covers 

more than 70% of Earth’s surface, it is only logical that the number of new molecules isolated from 
marine species is enormous, including structures that have never been found from terrestial organisms. 
This interest has led to the discovery of many compounds with very promising biological activity [1]. 
Among these compounds is the calyculin family. Various studies have shown that calyculins are potent 
inhibitors of protein phosphatases 1 and 2A, opening up numerous possibilities for their therapeutic 
use [2–7]. 

Calyculins are a class of highly cytotoxic metabolites originally isolated from the marine sponge 
Discodermia calyx by Fusetani and co-workers. The first member, calyculin A, was isolated in 1986 
from a sponge collected in the Gulf of Sagami, near Tokyo Bay [8–15]. The sponge still remains the 
primary source of the natural product. The structures of different calyculins and structurally-related 
calyculinamides are shown in Figure 1. The most naturally abundant members of the family are 
calyculins A and C.  

 
Figure 1. Calyculins and calyculinamides. 

 
 
The structure of complex natural products may sometimes lead, even with the help of modern 

analytical methods, to misassignments of the absolute stereochemistry. In such cases, total synthesis 
can be the key for proving the absolute stereochemistry of the natural product. Calyculins provide an 
excellent example as Shioiri and co-workers ascertained the absolute stereochemistry of calyculins by 
synthesis in 1991 shortly after Fusetani disclosed the absolute configuration of calyculin A [16,17]. In 
their original article, Fusetani and co-workers presented a structure for calyculin A that appeared to be 
the enantiomer of the natural product [11]. Although being very clear about the uncertainty of the 
absolute configuration, the then ongoing synthetic efforts towards the calyculins had been directed to 
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the non-natural enantiomer. As a consequence, three of the six published total syntheses of calyculins 
have yielded the wrong enantiomer [18–23]. 

 
2. Importance of Protein Phosphatases 

 
Phosphorylation-dephosphorylation of proteins is one of the most essential mechanisms for the 

proper functioning of cells. It affects almost all cellular functions such as metabolism, signal 
transduction, cell division, and memory. Protein kinases have long been known for the regulatory 
properties of phosphorylation and dephosphorylation. Although it has been recognised only later, 
protein phosphatases (PP) have also a great influence for these regulation processes. Phosphatases that 
catalyze dephosphorylation of serine and threonine residues are encoded by the phospho protein 
phosphatase (PPP) and protein phosphatase magnesium-dependent (PPM) gene families, whereas the 
protein tyrosine phosphatases (PTPs) dephosphorylate phosphotyrosine amino acids [2,3]. PP enzymes 
play a very dynamic role in cellular signalling, particularly because they can be turned on and off 
through very tight regulation of their subunit composition and selective targeting. These functions are 
regulated by allosteric modification using second messengers and reversible protein phosphorylation to 
create specific subcellular multi-protein signalling modules [2,6,7].  

The total number of phosphatases discovered is over 100 but it has been estimated that the total 
number could be as many as 1,000 [6]. PP1, PP2A, PP2B, and PP2C are the most widely studied 
phosphatases and also account for the majority of the protein serine/threonine activity in vivo. PP1, 
PP2A, and PP2B belong to the family of PPPs and their enzymatic activity is dependent upon 
Ca2+/Calmodulin, whereas PP2C of the PPM family is Mg2+ dependent [2,3].  

Extracellular signals, such as hormones and growth factors, affect the regulatory subunits and 
thereby modify the substrate specificity of PP1, which is involved in glycogen metabolism, muscle 
contraction, cell cycle progression, neuronal activities, and splicing of RNA. Recently, PP2A has been 
the focus of important interest since it accounts for 1% of total cellular proteins, and for the major 
portion of serine and threonine phosphatase activity in most tissues and cells. Although PP2A is 
involved in a great variety of cellular processes, including cell metabolism, signalling, and cell cycle 
control as well as the control of telomerase activity, its specific role is less delineated [2,3]. 

The holoenzyme of PP2A consists of three subunits, named A, B, and C. The catalytic subunit C is 
always associated with the scaffolding subunit A, which modulates its enzymatic properties by 
coordinating the protein-protein targeting to protein kinases and cytoskeletal proteins [7]. The 
holoenzyme of PP1 contains also a catalytic subunit C. PP1’s and PP2A’s C subunits are structurally 
related, and share 50% amino acid identity [6]. The regulative subunit B, subdivided into B, B’, B’’, is 
encoded by separate genes, and can bind to AC with wide variety of heteromeric complexes. It is 
believed that individual subunits cannot exist individually in vivo; however, AC dimers are abundant 
in tissues. To date, two isoforms (α, β) of subunits A and C have been described, and there is an ever-
growing number of B-type isoforms. The homologues of mammalian PP2A subunits have been 
identified from diverse origins such as algae, higher plants, and yeast. Moreover, although PP2A is 
primarily a serine and threonine phosphatase, it can, in specific circumstances, display an independent 
phosphotyrosyl phosphatase (PTP) activity. The diversity and selectivity of PP2A has been linked to 
the coverable three dimensional holoenzyme [7]. 
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Protein phosphatase signalling plays an important role in many human diseases [3–5]. 
Unfortunately, studies towards determining the signalling mechanism have been slowed down by the 
absence of a PP2A crystal structure [4]. Many observations support the role of PP2A in tumorogenesis 
although PP2A inhibitors can also display anti-tumour activity [3–5]. The mutations in the gene 
encoding the subunit A in human breast, lung, and colorectal carcinomas, as well as in melanomas 
strengthen the notion of tumorigenesis activity [4,7]. However, it has not been unequivocally 
established so far whether such mutations, examples of which have been found in human cancer cells, 
result in the activation of an oncogenic function or rather in the inactivation of the presumed tumour 
suppressive role of PP2A. The exact effect of PP2As has been found complicated since it can exert 
inhibiting as well as stimulating control on cell proliferation. This might indicate activity of several 
different PP2A complexes during these processes [5]. 

The major members of PPP family are highly concentrated in the brain, and are fundamental 
elements of complex signalling system controlling neuronal function. PP1 is widely distributed in 
neurons and has multiple functions. Targeted inhibition of PP1 is a potential strategy for minimizing 
the symptoms associated with Parkinson’s disease [4]. PP2A activity also affects human 
neurodegenerative diseases. In Alzheimer’s disease, the activity levels of PP2A are significantly 
decreased. Altogether, PP2A-dependent PI 3-kinase signalling plays a crucial role in neuronal 
survival [4,7].  

Both PP1 and PP2A are involved in the mediation of insulin action on carbohydrate and lipid 
metabolism. More specifically, activation of PP1 and inactivation of PP2A can affect insulin 
stimulation. Type 2 diabetes mellitus is characterized by variation of insulin resistance. Therefore, 
molecules involved in the insulin signalling cascade are potential targets for therapeutic drug design; 
both PP1 and PP2A have been involved in these studies. 

PP2A signalling also regulates the transcription factors Sp1 and NK-κB which are essential 
modulators of cellular gene expression and viral transcription of many human viruses, such as HIV-1, 
cytomegalovirus, hepatitis B, herpes simplex type 1, Epstein-Bass virus, and papillomavirus. Recent 
studies also suggest that PP2A signalling participates in parasite-transmitted human diseases such as 
malaria [7]. 

 
3. Inhibition of Protein Phosphatases PP1 and PP2A by Naturally Occurring Toxins 

 
In contrast to many enzymes, protein phosphatases, especially PP1 and PP2A, exhibit broad and 

overlapping substrate specificity, with no apparent substrate consensus sequence. Because the protein 
phosphatases affect other proteins and have literally hundred of substrates, it has been challenging to 
describe the mode of action of these biological catalysts and their regulation. For that reason, much of 
the information gathered from the functioning of protein phosphatases is based on inhibition 
studies [6]. 

Protein inhibitors have been used to study the mechanism of protein phosphatase inhibition. 
However, they suffer from some shortages: proteolytic degradation, poor membrane permeability, high 
molecular weight, potential instability, and often unavailability in sufficient quantity. To avoid these 
problems, small molecule inhibitors are often used. Many naturally occurring molecules, with wide 
structurally diversity, have been identified to either selectively or specifically inhibit the phosphatases. 



Mar. Drugs 2010, 8                
 

 

126

Alkaloids, terpenes, oligosaccharides, and polyketides have evolved to imitate and/or complement 
small areas of molecular surfaces of protein-peptides [6]. 

Several natural products from different structural groups have been identified to inhibit 
serine/threonine-specific protein phosphatases. The natural toxin inhibitors are also known as the 
okadaic acid class inhibitors (Figures 1–4). Okadaic acid, the causative agent of diarrhetic seafood 
poisoning [4], was the first of these inhibitors discovered in 1981. It is a marine polyketide initially 
found from marine sponges Halicondria okadai and Halicondria melanodocia. 

 
Figure 2. PP2A-selective inhibitors. 

 
 
Cyclic peptides such as microcystins (e.g., microcystin–LR (18)) and nodularins were initially 

isolated from blue green algae and are potent inhibitors of PP1 and PP2A, but poor PP2B and PP2C 
inhibitors. Another cyclic peptide motuporin (19), also known as nodularin-V, was isolated from the 
marine sponge Theonella swinhoei gray (Figure 3) [4]. Both microcystins and motuporin share the rare 
aminoacid ADDA, which interacts with the hydrophobic groove of PP1. 
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Figure 3. Right: microcystin-LR (18); left: motuporin (19). 

 
 
As mentioned earlier several different structural groups can bind PP1 and PP2A, which makes the 

classification of these inhibitors challenging. The inhibitors can be classified by structure but a valid 
choice is classification based on PP1/PP2A selectivity. Based on different inhibition studies and 
screening, a large number of structurally interesting natural products has been identified to bind PP1 
and PP2A more or less selectively. The IC50 values of selected molecules are collected in Table 1, as 
well as the origin and structural class. 
 

Table 1. PP1 and PP2A inhibitors. 

Name of the 
inhibitor 

Isolation origin 
Structural 
Scaffold 

IC50 nM a 
Properties Ref. 

PP1 PP2A 

Microcystin-LR (18) Blue green algae Cyclic peptide 0.3–0.6 0.04–2.0 Liver toxin  [24] 

Nodularin-V (19) Blue green algae Cyclic peptide 0.5–3 0.03–1.0 Liver toxin  [24] 

Cantharidin (15) Blister beetles Terpenoid 0.5–2.0 0.2 
Natural defensive 
toxicant 

 [6] 

Thyrsiferyl- 23-acetate 
(16) 

Red algae, L. 
Obtusa 

Terpenoid >1 (4–16)·10-3   [6] 

Okadaic acid (13) Dinoflagellates Polyketide 10–1300 0.02–1.0 Tumour promoter  [24] 

Dinophysistoxin-4 (14) Dinoflagellates Polyketide ~200 ~2   [4] 

Calyculin A (1) 
Marine sponge D. 
calyx. 

Polyketide 0.4–2.0 0.25–3 Tumour promoter  [24] 

Calyculin C (3) 
Marine sponge 
D. calyx. 

Polyketide 0.6 2.8 Tumour promoter  [24] 

Tautomycin (20) 
Bacterium, 
Streptomyces 
verticillatus 

Polyketide 1.1–7.51 10–23.1 Antibiotic  [24] 

Fostriecins (17) 
Bacterium, 
Streptomyces 
pulveraceus 

Polyketide 0.131 3.4·10-6 Antitumoric activity  [4] 

a The determined IC50 values are not always directly comparable from source to source. They may vary 
depending on the substrate, and on the purity, concentration and origin of the purified protein. 

 



Mar. Drugs 2010, 8                
 

 

128

From the biological activity data (Table 1) it can be observed that okadaic acid (13), 
dinophysistoxin (14), cantharidin (15) and its derivative, thyrsiferyl-23-acetate (16), as well as 
phosphate-bearing inhibitor fostriecin (17) (Figure 2) are selective PP2A inhibitors. Although some 
common structures such as spiroketal moieties can be identified, the observed PP1 and PP2A 
differences cannot be adequately explained with the current structure-activity relationship data [6]. 
However, the binding data of Table 1 indicates that tautomycin (20) (Figure 4) and calyculins show 
slight PP1 selectivity. Tautomycin was first isolated from Streptomyces spiroverticillatus and is the 
first inhibitor to display preferential inhibition of PP1 (Figure 4) [4]. 

 
Figure 4. Tautomycin 20. 

 
 
Mutagenesis and natural products studies indicate that acidic groove residues are a key feature in 

the active site of PP1 [4]. This could mean that the binding region in PP2A is more hydrophobic than 
the one in PP1, and therefore more accessible to hydrophobic inhibitors such as thyrsiferyl-23-acetate 
(16) (Figure 2).  

 
4. Calyculins and Related Structures 
 
4.1. Origin 

 
The first isolated calyculin was calyculin A (1) in 1986, followed by calyculins B-D (2–4) in 1988, 

calyculins E-H (5–8) in 1990 and calyculin J (25) in 1997 [9–15]. D. calyx belongs to the order of 
lithistid sponges, which are an artificial assemblage of species of diverse origin known from their 
ability to produce diverse array of biologically active metabolites such as polyketides, cyclic peptides, 
alkaloids, pigments, and novel sterols [9]. 

Calyculin related structures have also been found from other marine sponges, such as 
Lamellomorpha strongylata which was collected at the Chantam Rise off the East Coast of South 
Island of New Zealand in 1995 and whose extraction afforded calyculinamides A (10) and B (11) [10]. 
Calyculinamide A (10), calyculinamide F (12), des-N-methyl calyculin A (9), and dephosphocalyculin 
A (24) were isolated in 1997 from D. calyx [13]. Further, calyculin derivatives clavosines A-C (21–23) 
were isolated in 1998 from the marine sponge Myriastra clavosa (Figure 5) [25]. In 2001, Epipolasid 
sponge Lufariella geometrica was collected at Heron Island’s Wistari Reef, Australia, and allowed the 
isolation of another novel calyculin derivative, geometricin A (26) [26]. The latest isolated calyculin 
derivative is swinhoeiamide A (27) from the lithistid sponge Theonella svinhoei [27].  

To this day, totally eighteen calyculins and calyculin related structures have been isolated. 
Calyculin A is formed from four different structural regions: C1–C8 tetraene, C9–C25 dipropionate 
spiroketal, C26–C32 oxazole and C33–C37 amino acid, these subunits are represented in Figure 1. 
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Calyculins differ from each other by the methyl group at C32 and the geometry of C2,3 and C6,7 

olefins [9–15]. The geometry of C2,3 and C6,7 olefins are also the critical sites of the structural 
differences in calyculinamides as well as in clavosines. In the latter, the C21 hydroxyl group is also in 
the S configuration, and is glycosylated by a trimethoxyrhamnose [10,13,25]. Calyculin J (25) is a C9 
brominated derivative of 1 where C8–11 and C11 oxygen form a tetrahydrofuran ring. Geometricin A 
(26), swinhoeiamide A (27), and hemicalyculin A (28) could be described as rump calyculin 
derivatives since the most significant difference comparing to calyculins is the lack of the polar 
region [26–28]. 

 
Figure 5. Calyculin related structures. 

 
 

4.2. Crystal structures of calyculins and their binding to protein phosphatases 
 
Several research groups have studied the structure-activity relationships (SARs) of naturally 

occurring toxins to PP1 and PP2A. Quinn et. al. developed a pharmacophore model for the binding of 
okadaic acid (13), calyculin A (1) and microcystin LR (18) to PP1 [29]. Competitive binding assays 
with 13, 1, 18 and tautomycin (20) suggested that at least these toxins share a common binding 
site [30]. The absolute stereochemistry of the calyculins was first published in 1991 by Shioiri  
et. al. [16]. The first publication of X-ray structure of PP1 in 1995 [31] soon inspired four docking 
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studies in 1997 [24,32–34]. However, the first two groups, Armstrong and Holmes, used the incorrect 
enantiomer of crystal structure. Their initial idea was that the binding of the toxins would not change 
the structure significantly [8]. This seems to be possible for cyclic microcystines and nodularins; 
however, with open chain molecules such as calyculins, this approach is unlikely [34]. 

Calyculins as well as other inhibitors have been targets of continuous study and several binding 
models have been proposed [28,35–37]. The binding mode of calyculin A (1) to the active site of PP1 
is shown in Figure 6: 1 is represented according to its crystal structure in orange [35], in yellow is the 
calyculin model built by Koskinen [34].  

 
Figure 6. Binding models of calyculin A to PP1. 

 
 
The SARs of calyculins indicate that the phosphate, the hydroxyl C13, and the hydrophobic 

polyketide tail are essential for their inhibitory action. The dipeptide portion was less important in the 
interaction with enzymes, but essential for cytotoxicity [28,35]. However, compared to 1, 
dephosphonocalyculin A (24) was inactive, which was already examined [15]. This could indicate that 
phosphate group is less important for the binding.  

It should be noted that the published models are still speculative. The prediction of enzyme-
inhibitor interaction is challenging because there are so many parameters affecting the system. Site-
directed mutagenesis studies and SAR data for serine/threonine protein phosphatases are useful, but 
the interpretation of the results can be difficult. Even the models of most simple enzymes contain so 
wide range of contacts that the interpretation is difficult. Calyculin fragments would give a useful 
addition to PP1, PP2A binding and SAR studies. In future, design of simpler and more selective 
inhibitors would also be possible. 

 
5. Synthetic Approaches towards Calyculins 
 

The fascinating structures of calyculins have drawn a great amount of attention and resources. The 
first total synthesis of ent-calyculin A (1) was published by Evans et al. in 1992 [18]. Two years later, 
Masamune et al. published the first total synthesis of the natural enantiomer of 1 [19]. In 1996, the 
Shioiri group published a formal total synthesis of 1 [20]. Total synthesis of ent-calyculin A and B by 
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Smith et al. [22] and calyculin C by the Armstrong group were published in 1998 [21]. The latest total 
synthesis of ent-calyculin A was published by Barrett et al. in 2001 [23]. The Koskinen group has been 
involved in the preparation of individual fragments [38–46]. Only the studies of these seven groups 
will be examined in detail in this review. 

The total synthesis of calyculins has been reviewed by Jacobs and Itching in 1998 [47], and by 
Pihko and Koskinen in 1999 [48]. The retrosynthetic analyses, as well as the preparation of individual 
fragments, and the final assembly of the fragments are presented in the following section. In order to 
compare the different methods, we will first present the preparation of the different fragments 
separately. Then, the assembly of these fragments to reach the calyculins will be discussed. The total 
syntheses of calyculins will be presented in chronological order and, for clarity, the different fragments 
will be described in the same order of publishing year of the total syntheses.  
 
5.1. Retrosynthetic analysis 

 
The retrosynthetic analysis of the calyculin skeleton divides it into three fragments: the C1–C8 

tetraene subunit, the C9–C25 dipropionate spiroketal subunit, and the C26–C37 amino acid oxazole 
subunit (Scheme 1).  

 
Scheme 1. Retrosynthetic analysis of the calyculin skeleton (X, Y and Z denote the 
functional groups suitable for coupling). 

 
 
Further, the C26–C37 amino acid oxazole subunit is divided into two subunits: the amino acid  

C33–C37 subunit and the oxazole C26–C32 subunit (Scheme 2).  
 

Scheme 2. Retrosynthetic analysis of the C26–C37 fragment (X denotes the functional group 
suitable for coupling with the fragment C9–C25). 
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The retrosynthetic analysis and the executions of the different fragments are described in the 
following sections. 
 
5.2. C1–C8 tetraene fragment 
 

For the synthesis of this fragment, a number of renowned reactions can be highlighted: Horner-
Wadsworth- Emmons (HWE), Peterson olefination, Stille coupling, and related Negishi and Suzuki 
couplings. Evans and co-workers [18] were the first to report that the HWE reaction to couple the 
entire tetraene is not possible due to the unstable cyano group and tetraenes tendency to isomerisation. 
The uses of sp2-sp2 couplings methods such as the Stille coupling were tempting since the double bond 
geometries of the starting materials are completely retained in the reaction. 

 
Scheme 3. Retrosynthetic analysis of C1–C9 fragment (X denotes the functional groups 
suitable for coupling). 

 
 
Based on the disconnections of the building blocks, the retrosynthetic analysis of tetraene can be 

divided into three groups (Scheme 3). Smith’s group choose to disconnect in position a and d which 
gives nitrile 29 and phosphate 30 [22], whereas Evans’ and Armstrong’s target was to create vinyl 
iodide 31 and phosphate 32, via b and d disconnections [18,21]. Finally, Masamune and Barrett chose 
c and d disconnections involving intermediates 33 and 34 [19,23].  

In addition, a few other approaches and ideas for the synthesis of this fragment have been 
published. For example, Negishi et al. recently proposed that propyne bromoboration and tandem Pd-
catalyzed cross coupling could be used in the synthesis of C1–C8 fragment [49]. 

 
5.2.1. Evans [18] 

 
Evans’ synthesis of phosphonate diene 32 began with vinyl stannane 35 which was prepared by 

reduction of methyl (E)-3-(tributylstannyl)-2-propionate (Scheme 4). Swern oxidation followed by 



Mar. Drugs 2010, 8                
 

 

133

HWE reaction gave diene ester 36 as a 19:1 E:Z mixture. Reduction of the ester furnished alcohol 37, 
which was converted to phosphonate 38 by the Michaelis-Becker method. Final methylation of 38 
completed the synthesis of targeted phosphonate 32. 

 
Scheme 4. Preparation of phosphonate 32. 

 
 

5.2.2. Masamune [19] 
 
The fact that tributylstannyl moieties can be easily converted to the corresponding iodide was 

utilized in the synthesis of the tetraene fragment by Masamune via fragments 33 and 34. However, the 
synthesis of 33 has not been published, and the preparation described here has been found in the PhD 
thesis of S. A. Filla [50]. Addition of Lipschutz higher cuprate Bu3SN(Bu)Cu(CN)Li2 to ethyl 
butynoate 39 occurred regioselectively to furnish the (Z)-enoate 40 in good yield (Scheme 5). 
Treatment of 40 with the Weinreb reagent produced nitrile 41. Tin-iodide exchange gave vinyl iodide 
42 whose Stille coupling with trans-1,2-bis(tri-n-butylstannyl)ethylene (43) produced the expected 
stannane 33 in a modest 40% yield. 

 
Scheme 5. Preparation of stannane 33 by Masamune. 
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The protected 3-butyl-2-ol 44 was reacted with methylcopper (I) reagent followed by iodination to 
give vinyl iodide 45. (Scheme 10) This was converted to phosphonate 46 by an Arbuzov reaction and 
subsequent tin-iodine exchange with CuSnBu3 yielded 34. This last step appeared to be the weakest 
link in this part, lowering the global yield. 

 
Scheme 6. Preparation of phosphonate 34. 

 
5.2.3. Shioiri [20] 

 
Shioiri group’s strategy was to introduce the whole tetraene, actually the C1–C12, as a single moiety 

to the rest of the target molecule. Stannyl cupration of alcohol 47 was the key step, affording the 
stannyl derivative 48 in 87% yield. Further conversion of the alcohol to the corresponding nitrile 
generated 33 (Scheme 7). 

 
Scheme 7. Preparation of stannane 33 by Shioiri. 

HO HO

SnBu3

CN
SnBu3

a) Swern
b) NH2OH

c) MsCl, Et3N
42%

Bu3SnCu(Bu)(CN)Li2

87%

47 48 33
37%, 4 steps

 

 
Scheme 8. Preparation of tetraene 54. 

 
 

The synthesis of the other coupling partner began with alcohol 49 which was readily available from 
L-(+)-tartrate (Scheme 8). Parikh-Doering oxidation and subsequent HWE reaction were followed by 
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conversion of the acetonide to the bis-TBS ether derivative 50. Weinreb amide formation and reaction 
with methyl magnesium bromide furnished methyl ketone 51, which was converted to (E)-vinyl iodine 
52 by use of the Takai and Utimoto’s chromium reagent. Selective deprotection of the primary TBS 
group was followed by conversion of the resulting alcohol to the corresponding methyl ketone 53. 
Final Stille coupling of 53 with stannane 33 produced 54. Shioiri’s group has also published another 
strategy for the synthesis of this subunit; however, this method has not been used in the formal total 
synthesis [49]. 

 
5.2.4. Smith [22,51] 

 
Smith et al. began by synthesizing the iodo phosphonate 56 in two steps from allylic alcohol 55 

(Scheme 9). This was followed by a two stage one-pot coupling of the three components. The first 
part, the Negishi coupling of the organozinc compound 57 with bromoboronate 58 was followed by a 
Suzuki coupling with iodide 55 affording phosphonate 59 in 64% yield. Final methylation of 59 
furnished 30.  

 
Scheme 9. Preparation of phosphonate 30. 

OHI
a) MsCl

b) (MeO)3P
70%

ZnClEtO

Br
B(OiPr)2

P(OMe)2I
O

P(OMe)2
O

EtO
P(OMe)2
O

EtO

5930

55 56

57

58

Pd(PPh3)4
64%

n-BuLi, MeI

84%

38%, 4 steps
 

 
5.2.5. Armstrong [21,52] 

 
Armstrong’s synthesis of the tetraene fragment also began with the iodo alcohol 55 and proceeded 

successfully using classical transformations to generate phosphonate 61, which unfortunately appeared 
to be too unreactive toward hindered aldehydes (Scheme 10). For this reason, the authors decided to 
convert 61 to diene 32. Unfortunately, this transformation proceeded with a low yield of 33% over two 
steps, lowering the overall yield. 
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Scheme 10. Preparation of phosphonate 32. 

OHI

a) TBSCl
b) t-BuLi, Bu3SnCl

c) TBAF
d) MsCl

63%

OMsBu3Sn

P(OMe)2Bu3Sn
O

P(OMe)2
O

Bu3Sn

a) (MeO)2P(O)H
b) MeI

53%

a) I2

b)

33%

55 60

6132
11%, 8 steps

SnBu3
Bu3Sn

43

 
 

5.2.6. Barrett [23,53]  
 
For the preparation of stannane 33, Barrett et al. used a strategy similar in every aspect to the one 

presented earlier by Masamune; however, as mentioned before, Masamune’s results were not 
published. Conjugate addition of tributylstannyl cuprate to ethyl butynoate 39 gave (Z)-enoate 40. 
Conversion of ethyl ester of 40 to the corresponding nitrile 41 was achieved via the amide in 2 steps. 
Metal-halogen exchange furnished vinyl iodide 42 and Stille coupling with 43 were the lasts steps for 
the preparation of 33. 

 
Scheme 11. Preparation of stannane 33 by Barrett. 

 
 

The key idea of the synthesis of the C6-C14 fragment was to construct the vinyl iodide 67 via methyl 
zirconation–iodonolysis of alkyne 66 using Negishi’s procedure (Scheme 12). The synthesis started 
with commercially available methyl (S)-3-hydroxy-2-methylpropanoate (62) which was efficiently 
converted to homoallylic alcohol 64 by Brown’s homologation with (-)-63 [54,55], setting the 
stereochemistry at C11 and C12 with excellent diastereomeric excess (>96%). Further standard steps led 
to ester 65, which was then reduced to aldehyde and homologated to the corresponding alkyne 66 
using the Corey-Fuchs protocol. Methylzirconation-iodinolysis of 66 furnishing the corresponding 
vinyl iodide and final formation of the methyl ketone at C14 were the final steps for the preparation  
of 67. 
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Scheme 12. Synthesis of vinyl iodide 67. 

 
 

5.2.7. Koskinen [40] 
 
Koskinen et al. reported a short and efficient synthesis of alcohol 37, which was used by Evans for 

the preparation of phosphonate 32 (Scheme 13). Sequential treatment of distannyl compound 43 with 
n-BuLi and ZnCl2, followed by Pd-catalyzed Negishi coupling with bromo-ester 68, furnished diene 
69 in 95% yield. Reduction with DIBAL-H afforded the alcohol 37. Introduction of the phosphonate 
moiety included bromination, Michaelis-Becker reaction and final methylation, following the 
procedure published by Evans et al. [18] gave 32.  

 
Scheme 13. Preparation of 32 by Koskinen. 

 
 

5.3. Synthesis of the C9–C25 dipropionate-spiroketal subunit 
 
The C9–C25 spiroketal-propionate subunit forms the core of the calyculins. With eleven 

stereocenters, a phosphate-bearing spiroketal, and anti, anti, anti dipropionate segment, the synthesis 
of this fragment is most challenging. 

The construction of the C9–C25 spiroketal-propionate subunit can be divided into four groups 
(Scheme 14). Armstrong’s [21] and Koskinen’s group [44–46] chose to introduce the dipropionate in 
two parts and to use Brown’s asymmetric crotylborane chemistry, while Masamune et al. selected the 
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asymmetric aldol strategy [19]. In contrast, Evans et al. used a chiral β-ketoamide aldol 
methodology [18]. Shioiri et al. used the Ziegler-Brückner aldol-oxidative degradation method [20] 
and Smith’s group chose to use vinyl cuprate–epoxide coupling [22]. 

For the disconnection on the spiroketal, Smith and co-workers strategy was to create the C19-C20 
bond by addition of a dithiane to an epoxide (via disconnection d). All the other groups decided to use 
more or less similar aldol-type strategy to create the C20–C21 bond (disconnection e). 

Trost and co-workers have also published a synthesis of the C15–C24 spiroketal core; the synthesis 
being based on their methodology on ruthenium-catalyzed cyclization and allyl alcohol addition 
process [56]. 

 
Scheme 14. Retrosynthetic analysis of C9-C25 fragment. (Y denotes the functional groups 
suitable for coupling and P protective groups). 

 
 

5.3.1. Evans [18] 
 
The authors exploited their studies on the oxazolidone chiral auxiliaries in this synthesis, creating 

six of the eleven stereocentres with this method. The synthesis of the spiroketal fragment began with 
the known acid 70, which could be prepared from diethyl isopropylidenemalonate in three steps (the 
yields of these early transformations were not reported in the original procedure) [57]. Compound 70 
was converted to the (S)-phenylalanine-derived oxazolidone, followed by auxiliary-based asymmetric 
hydroxylation at C17 which afforded 71 as a single diastereomer. Removal of the chiral auxiliary and 
PMB protection at C17 were followed by chelation controlled addition of methoxyallylstannane 73 to 
aldehyde 72, affording alcohol 74 as a 7.5:1 mixture of diastereomers. Silylation and regioselective 
Rh-catalysed hydroboration gave alcohol 75. Finally, pivaloyl protection and oxidative cleavage of the 
double bond afforded ketone 76 (Scheme 15). 
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Scheme 15. Preparation of ketone 76. 

 
 

Mukayama aldol coupling of between 76 and 77, prepared in 3 steps via classical methods, afforded 
78 as a single diastereomer in 80% yield. Spiroketal formation was effected with acid catalysis, 
furnishing 79 in a 5:1 ratio of diastereomers (Scheme 16). 

 
Scheme 16. Formation of spiroketal 79. 

 
 
Spiroketal 79 was then hydroborated and TBS protected at C25, followed by pivalate removal and 

Swern oxidation at C13, resulting in the formation of aldehyde 80 (Scheme 17). Addition of 80 to the 
titanium enolate derived from β-ketoamide 81 provided the syn, syn adduct 82 exclusively. Anti 
selective reduction at C11 was then performed, yielding diol 83. The configuration of the C13 alcohol 
had then to be inverted via a Mitsunobu reaction to give 84. Finally, standard transformations provided 
aldehyde 85, which represents the C9–C25 subunit of calyculins.  
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Scheme 17. Preparation of 85. 

 
 

5.3.2. Masamune [19] 
 
Masamune et al. chose to create the C10–C13 dipropionate segment before constructing the 

spiroketal (Scheme 18). The synthesis began with D-threonine derivative 86. Claisen condensation 
with methyl isobutyrate, lactonisation, and TBS protection gave 87. Reduction at C17 with KHBEt3, 
with >10:1 diastereselectivity, PMB protection, and conversion to silyl enol ether provided 88. Then, 
the titanium-chelated Mukaiyama aldol addition of 88 to aldehyde 89 provided 90 with a 10:1 
diastereoselectivity. Reduction at C15 with Me4NHB(OAc)3, diol protection, and a debenzylation-
oxidation sequence provided aldehyde 91. 

The authors exploited their studies with chiral borolanyl triflates in asymmetric aldol reactions. The 
advantage of these reagents is that the intrinsic Felkin bias can be overridden in aldol reactions with 
chiral aldehydes. This was applied to the construction of the C10–C13 anti, anti, anti dipropionate. 
Reacting aldehyde 91 with enolate 92 produced 93 with an excellent 12:1 diastereoselectivity. 
Acetonide migrations to the more stable syn adduct, reduction of the thioester, protection of the 
alcohol, and C15 methylation provided compound 94. The standard final four steps completed the 
preparation of the C9-C20 methyl ketone 95. 
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Scheme 18. Preparation of 95. 

 
 

The key aldol reaction between 95 and aldehyde 96 was performed in the presence of bulky 
(cHex)2BCl, leading to the exclusive formation of 97, without any trace of its C21 epimer (Scheme 19). 
Desilylation and treatment with formic acid provided spiroketal 98 as a single diastereomer. TBS 
protection and removal of PMB constituted the last steps of the C9–C25 fragment 99. 

 
Scheme 19. Preparation of spiroketal 99. 
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5.3.3. Shioiri [20,58] 
 
Shioiri’s group formal total synthesis of calyculin A consisted of a variety of studies and different 

strategies. The synthesis of C14–C20 ketone 105 began from diethyl L-tartrate 100 which was converted 
in five steps to the key intermediate 101. Aldol reaction with ketene acetal 102, in the presence of 
chiral borane reagent 103, stereoselectively produced 104, which was then easily converted to the 
corresponding methyl ketone 105. 

 
Scheme 20. Preparation of ketone 105. 

 

Scheme 21. Synthesis of spiroketal 112. 

 
 

The aldol reaction between 105 and aldehyde 106, easily prepared from dimethyl L-malate, 
proceeded with an excellent diastereoselectivity to give 107 in a 18:1 ratio (Scheme 21). Interestingly, 
only the potassium enolate of 105 gave satisfactory results in the formation of the syn aldol adduct, the 
lithium and sodium enolates giving only poor diastereoselectivity. Spiroketalization was then 
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performed in aqueous HF. Further protection-deprotection sequence followed by TPAP oxidation gave 
aldehyde 108. Coupling of 108 with the enolate of C9–C13 lactone 109 furnished 110 as a mixture of 
diastereomers. Barton deoxygenation of the hydroxyl group at C14 furnished 111, together with its C13 

epimer in a 4:1 ratio (the latter being further epimerized with MeLi to give the desired 111). 
Degradation of the γ−lactone to the 1,3-acetonide was performed using Ziegler-Brückner conditions 
and further protection of the diol to gave 112.  
 
5.3.4. Smith [22,59,60] 

 
Smith published the synthesis of the spiroketal core of ent-calyculin A in 1991, using a novel 

dithiane-epoxide coupling strategy. Brown’s crotylation on 3-benzyloxypropanal, using  
(Z)-crotylboron reagent (+)-113, furnished alcohol 114 in 99% enantiopurity (Scheme 22).  
Boc-protection and electrophilic cyclization in the presence of IBr afforded the syn, syn carbonate 115, 
with good α/β selectivity of 13.9/1. The synthesis of C20–C25 coupling moiety was finished with 
cleavage of the carbonate group, and TBS protection to give epoxide 116. 

 
Scheme 22. Synthesis of epoxides 116. 

 
 

The C16-C19 dithiane moiety 118 was easily prepared from alcohol 117, via consecutive Swern 
oxidation, dithiane formation and diol protection (Scheme 23). Key coupling was performed by 
metalation of 118 with n-BuLi followed by addition of DMPU and epoxide 116, to furnish alcohol 
119. Silyl protection, acetal reduction, and Parikh-Doering oxidation then afforded aldehyde 120. The 
stereochemistry of C16 was created by chelation-controlled addition of vinylmagnesium bromide to 
120 to give alcohol 121 with a >20:1 diastereoselectivity. Two different conditions for the 
spirocyclisation were employed. The first, using aqueous HF, produced 122a as a single diastereomer 
in 88% yield but resulted in the loss of PMB group at C17. To retain this useful protecting group, an 
alternative sequence was applied. Sequential treatment of 121 with TBAF and HgCl2/CaCO3 afforded 
a mixture of 122b and its C19 epimer. Fortunately, the latter could be quantitatively converted to 122b 
upon exposure to p-TsOH, with a global yield of 76%. 
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Scheme 23. Preparation of spiroketal 122. 

OH

O
O

Et
Et

O
O SS

PMP

19

a) Swern

b) HS(CH2)3SH
c) PMPCH(OMe)2

78%
117 118

116

90% OBn

OTBSO
O SS

PMP

OH

119

16 21 25

a) TBSOTf
b) DIBAL-H
c) SO3.py

76%

120

OBn

OTBSPMBO SS OTBS

OH
121

16
25

MgBrO

O
OH

OBn

122a R = H 88%
122b R = PMB 76%

25

15

aq. HF

or
a) TBAF
b) HgCl2

OBn

OTBSPMBO SS OTBS

OHC
16 25

RO

  
 
After extensive experimentation, the authors found out that Payne epoxidation of 122b occurred in 

good syn diastereoselectivity and yield (9.5:1, 89%) to give 123. After TBS-protection, the epoxide 
was coupled with the vinyl cuprate derived from 124 giving access to 125 as a single diastereomer in 
83% yield. Methylation of the C15 hydroxyl group of 125, and oxidation of the alkene were followed 
by DIBAL-H reduction to provide 126 with >12:1 diastereoselectivity at C13 (probably via internal 
hydride delivery by prior coordination at the C15 methoxy group). Finally, protecting group 
manipulations provided compound 127. 

 
Scheme 24. Preparation of fragment 127. 
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5.3.5. Armstrong [21,52] 
 
Armstrong’s group used Brown’s chiral allylborane reagents in their synthesis of C9–C25 fragment. 

The synthesis of spiroketal core starts with the reaction of D-glyceraldehyde 128 with the enantiopure 
allylboron reagent (-)-129 (Scheme 25). This addition occurred in good yield and excellent 
stereoselectivity to provide 130. After MEM-protection and ozonolysis, ketone 131 was obtained. 
Aldol reaction between 131 and aldehyde 132 and further benzoyl protection furnished compound 133. 
Upon exposure to TFA, 133 underwent the expected tandem deprotection-spirocyclisation to give the 
desired spiroketal 134 as a single enantiomer.  

Swern oxidation of alcohol 134 was followed by reaction with allylmagnesium bromide in the 
presence of ZnCl2 to give homoallylic alcohol 135 (Scheme 26). Unfortunately, the Felkin-Ahn mode 
was followed for this addition, resulting in the formation of the stereochemistry at C15 opposite to that 
present in the natural product. Inversion at C15 was performed by consecutive oxidation-reduction. 
Finally, the new C15 hydroxyl was methylated to give 136. Ozonolysis of 136 afforded the 
corresponding aldehyde that, upon submission to an asymmetric Brown’s crotylboration with (+)-63 
and benzoyl protection, gave olefin 137 as a single diastereomer. Second ozonolysis gave the 
corresponding aldehyde which was the substrate for a further Brown’s crotylation. Unfortunately, this 
step proceeded with very low diastereoselectivity; the expected anti, anti, anti adduct 138 being 
isolated in only 40% yield; the anti, syn, anti isomer being isolated in 30%. This disappointing result 
led the authors to study the influence of the different protecting groups at C25, C21 and C13 on the 
crotylation process. Unfortunately, all the other protecting group combination gave lower yield of the 
expected 138, the undesired isomer always being the main product. The tetra-TBS protected 
compound 139 was then prepared by simple protection group conversion of 138, followed by MEM-
deprotection.  

 
Scheme 25. Preparation of spiroketal 134. 
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Scheme 26. Preparation of 139. 

 
 

5.3.6. Barrett [23,61] 
 
Barrett et al. also used the Brown’s crotyl boration reagents for the synthesis of the spiroketal 

moiety of calyculins. The synthesis began with ester 140 which was converted to allylic alcohol 141 
(Scheme 27). Sharpless asymmetric epoxidation, ring opening and protection of the resulting diol 
furnished acetonide 142. Deprotection of the benzyloxymethyl ether, and subsequent Swern oxidation 
completed the synthesis of aldehyde 143. 

 
Scheme 27. Preparation of aldehyde 143. 
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Addition of (Z)-borane (-)-145 to aldehyde 144 proceeded effectively to yield the syn adduct 146 
with >95% stereocontrol (Scheme 28). Transformation of 146 to the corresponding methyl ketone 147 
was then carried out using standard transformations. Key aldol reaction between 147 and aldehyde 143 
yielded, after acidic treatment, to the spiroketal 148, as a 2:1 mixture of C21 epimers. Swern oxidation 
followed by K-selectride reduction furnished diol 149 as a single diastereomer. Final protection-
oxidation steps led to compound 150. 

 
Scheme 28. Preparation of spiroketal 150. 

 
 

5.3.7. Koskinen [42–46] 
 

The Koskinen group has presented separate studies for the preparation of the dipropionate and the 
spiroketal moieties. The key lactone 153 was prepared in five steps from ketoester 151 and aldehyde 
152 (Scheme 29). MEM-protection, benzyl deprotection and further oxidation provided aldehyde 154. 
This aldehyde was subjected to a Brown’s crotylation, affording the expected homoallylic alcohol in a 
6:1 separable mixture of diastereomers, in favor of the expected product. Further ozonolysis furnished 
aldehyde 155, which was, in turn, subjected to a crotylation reaction. Based on previous studies by 
Armstrong [21,52] showing that a second Brown’s crotylation on similar substrates gave only poor 
selectivity, the authors decided to use the Roush (Z)-crotyl trifluorosilane 156 for this reaction [62]. 
This transformation pleasingly afforded a single isomer and further acetonide protection furnished 157, 
whose analysis proved the anti, anti, anti relationships in the stereotetrad. This strategy proved to be 
efficient in terms of selectivity, but suffers from poor yields. Current studies in our lab recently 
showed that this methodology could be improved and much better yields were obtained on new 
substrates used in the course of the synthesis of calyculins (unpublished results).  
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Scheme 29. Preparation of 157. 

 
 
Koskinen also recently published a preparation of the C13–C25 spiroketal core of calyculins  

(Scheme 30) [46]. Lactone 153 was allyl-protected, reduced with LiAlH4, and the diol protected as a 
TES ether. Further selective deprotection-oxidation of the primary alcohol, and homologation of the 
aldehyde to the corresponding alkyne using the Ohira-Bestmann protocol produced 158 in good yield. 
Key coupling between acetylene 158 and thioester 159 furnished ynone 160. This was subjected to 
acidic treatment, leading to TES-deprotection followed by a double intramolecular hetero-Michael 
addition (DIHMA) to yield 161 as a single enantiomer. The DIHMA spiroketalisation differs from all 
the other methods described for this fragment. 

 
Scheme 30. Preparation of spiroketal 161. 

 
 

5.4. Syntheses of the C26-C32 oxazole fragment 
 
Compared to the synthesis of C9-C25 spiroketal-propionate subunit, the C26–C32 oxazole fragment 

seems to be less difficult; however, formation of the C30 stereocenter creates challenges. Construction 
of the suitably substituted oxazole in good yield without epimerization proved challenging. 
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Retrosynthetically, the C26-C32 can be simplified to a chiral aminoacid (Scheme 31). The Evans’ 
oxazolidone was used as source of chirality by Evans [18], Smith [22], and Barrett [23] whereas 
Masamune used the Sharpless epoxidation [19]. Shioiri decided to use a hydroxy acid as the starting 
material [20]. Finally, Armstrong started from L-pyroglutamic acid [21], while Koskinen used  
D-alaninal [39]. 

 
Scheme 31. Retrosynthetic analysis of C26–C32 fragment (X denotes the functional groups 
suitable for coupling and P the protective group). 

 
 

5.4.1. Evans [18] 
 
The key step of the oxazole synthesis was the diastereoselective Michael addition of  

N-propionyloxazolidone 162 to tert-butyl acrylate, setting up the correct stereochemistry for 163 at C30 
in 88% yield with >95:5 diastereoselectivity (Scheme 32). Cleavage of the tert-butyl ester followed by 
Curtius rearrangement afforded amino acid 164, which was coupled with L-serine methyl ester to give 
165. Cyclisation with thionyl chloride afforded the corresponding oxazoline 166. Finally, oxidation by 
trapping the enolate of 166 with PhSeCl followed by oxidative elimination afforded oxazole 167.  

 
Scheme 32. Preparation of oxazole 167. 
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5.4.2. Masamune [19,63] 
 
The starting point for the oxazole fragment 172 was the epoxy alcohol 168, obtained by Sharpless 

asymmetric epoxidation of the corresponding allylic alcohol; unfortunately, no details about the yield 
or selectivity were reported (Scheme 33). Regioselective ring-opening of 168 with Me3Al provided the 
diol 169, with the requisite stereochemistry at C30. Oxidative cleavage of 169, further oxidation to acid 
and conversion to amide furnished 170. Treatment of 170 with ethyl bromopyruvate furnished, after 
dehydration, oxazole 171. To avoid epimerization, this reaction had to be carried out in the presence of 
3, 4-epoxycyclopentene. Final preparation of oxazole 172 was achieved with standard transformations. 

 
Scheme 33. Preparation of oxazole 172. 

 
 

5.4.3. Shioiri [20,64] 
 
For the synthesis of oxazole fragment of calyculin A, Shioiri et al. used methyl (S)-3-hydroxy-2-

methylpropionate [(S)-174]. TBS protection, DIBAL-H reduction to the corresponding aldehyde, and 
Wittig olefination gave the unsaturated ester 175 (Scheme 34). This was followed by hydrogenation of 
the double bond, and cleavage of the TBS-deprotection to yield alcohol 176. Oxidation of 176 to the 
corresponding acid and coupling with L-serine methyl ester gave 177. For the conversion to the 
oxazoline 178, the authors applied their own method which uses triflic anhydride, diphenyl sulfoxide 
and potassium phosphate. Oxazoline 178 was obtained in 66% yield, without any epimerization in the 
process. Oxidation with NiO2 provided the corresponding oxazole. Finally, after removal of the  
tert-butyl ester, Curtius rearrangement gave the amino ester 179. This synthesis afforded the 
enantiomer of the fragment present in the natural product. However, the enantiomer of 179 can easily 
be obtained by using (R)-3-hydroxy-2-methylpropionate [(R)-174] as starting material. 

The authors presented also a method for the preparation of the C26–C32 oxazole part of calyculin C, 
which adds an extra methyl group at C32 [57]. This method relied on the asymmetric ring opening of a 
prochiral cyclic anhydride. However, this strategy has not been used in any total synthesis and 
therefore will not be described here in detail. 
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Scheme 34. Preparation of oxazole 179. 

 
 

5.4.4. Smith [22,51] 
 
The synthesis started with 4-chlorobutyl chloride (180) which was converted to oxazolidinone 181 

(Scheme 35). Methylation (87% yield, 95% diastereoselectivity) followed by removal of the chiral 
auxiliary furnished acid 182. Condensation with L-serine methyl ester in the presence of 
diethylcyanophosphonate (DECP) as the coupling agent yielded amide 183. Exposure of 183 to 
Burgess reagent followed by Narrish-Singh oxidation produced the desired oxazole ring. Finally, azide 
reduction furnished 184 in good yield and without epimerisation.  

 
Scheme 35. Preparation of oxazole 184. 

 



Mar. Drugs 2010, 8                
 

 

152

5.4.5. Armstrong [21,65] 
 
Comparing to other syntheses of this subunit, Armstrong targeted calyculin C, which contains one 

additional methyl at C32. Bicyclic N,O-acetal 185, which was prepared from (S)-pyroglutamic acid, 
was methylated at C30 to give 186 in a 80:20 ratio of diastereomers (Scheme 36). Acetal hydrolysis 
followed by mesylation afforded lactam 187. Radical deoxygenation of the in situ formed iodide and 
Boc-protection yielded 188. Ring opening by Me3Al in the presence of ammonia furnished the open-
chain amide 189. Finally, oxazole 190 was obtained by reaction of 189 with 1,3-dichloroacetone. 

 
Scheme 36. Preparation of oxazole 190. 

  
 
5.4.6. Barrett [23,66] 

 
Barrett et al. synthesized the oxazole unit by using a modified Cornforth-Meyers approach  

(Scheme 37). The synthesis started with oxazolidinone 191, which was reacted with lithium 
benzyloxide to give ester 192.  

 
Scheme 37. Preparation of oxazole 196. 

 
 

Nitrile 193 was obtained by submitting 192 to Me3Al and dehydration. Addition of MeOH and HCl 
to 193 produced an intermediate imidate ion, which reacted with glycine methyl ester to produce 194. 
The Cornforth-Meyers procedure, using methyl formate in the presence of t-BuOK and BF3.OEt2, 



Mar. Drugs 2010, 8                
 

 

153

provided oxazole 195. Final stages transformed the terminal alkene of 195 to the corresponding 
primary amine 196 in 5 steps. No racemization was observed during the entire process. 
 
5.4.7. Koskinen [39] 

 
Koskinen group’s strategy towards calyculin C was to use cyclic stereocontrol to create the  

syn-isomer of C26–C32 (Scheme 38). D-Alaninal derivative 197 was subjected to Still-Gennari 
modification of HWE olefination to give the corresponding (Z)-enoate, whose cyclization under 
Ragnarsson-Grehn conditions (Boc2O, cat. DMAP) and hydrogenation furnished lactam 198, together 
with 9% of its anti diastereomer. Hydrolysis of 198 followed by coupling with L-serine methyl ester 
afforded amides 199 (at this stage, the anti diastereomer could be separated by chromatography). 
Conversion to oxazole 200 was achieved by treatment with Burgess reagent to give the oxazoline, 
followed by oxidation. This oxidation proved to be difficult, and the best results were obtained by 
using either CuBr2/HMTA/DBU as discussed earlier [22,51] or by temporary TMS protection of the 
carbamate hydrogen, deprotonation of the oxazoline and oxidation of the enolate with I2. Those two 
strategies yielded 42% of oxazole 200.  

 
Scheme 38. Preparation of oxazole 200. 
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5.5. Syntheses of the C33–C37 amino acid fragment 

 
Because of the three chiral centres and possibly reactive amine, the synthesis of C33–C37 is also a 

challenging target. For the synthesis of this fragment, most groups used carbohydrates. It can be also 
noticed that the left half of the fragment resembles serine. This was exploited by the Shioiri, Barrett, 
and Koskinen groups (Scheme 39) [20,38,65,66]. 
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Scheme 39. Retrosynthetic analysis of C33–C37 fragment.  

 
 

5.5.1. Evans [18] 
 
Sarcosine derived oxazolidinone was prepared from 201 and further alkylated with 

dimethoxyethane in good yield (80%) and diastereoselectivity (98:2) to produce 202 (Scheme 40). 
Displacement of the chiral auxiliary with LiBH4 followed by Swern oxidation, where Hunig’s base 
was employed to prevent racemisation, cleanly furnished aldehyde 203. Enolization of 204 in the 
presence of Sn(OTf)2 and TMEDA followed by addition of aldehyde 203 afforded the expected anti 
aldol 205 in 60% yield. Unfortunately significant amounts of other diastereomers were also formed in 
the reaction.  

 
Scheme 40. Preparation of 205. 

 
 

5.5.2. Masamune [19,63] 
 
The synthesis of the aminoacid derivative 209 began with the reaction of lactone 206, easily 

prepared from gulonolactone, with the Weinreb’s reagent of methylamine (Scheme 41). The crude 
hydroxyamine obtained was then mesylated and treated with t-BuOK to provide lactam 207, with 
reverse stereochemistry at C35 to that present in 206. Cleavage of acetonide liberated the corresponding 
diol which was protected as the dibenzyl ether 208. Treatment of 208 with Meerwein’s reagent 
provided the corresponding imidate, which after hydrolysis, reaction with formaldehyde and reduction 
with cyanoborohydride, furnished aminoester 209, the enantiomer of the C33–C37 fragment present in 
calyculins. However, in the course of the total synthesis of natural calyculin A, the authors briefly state 
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that the synthesis of the fragment with the correct stereochemistry had been performed with significant 
improvements compared to 209. 

 
Scheme 41. Preparation of 209. 

 
 
5.5.3. Shioiri [20,67] 

 
Shioiri et al. also published a synthesis of the C33–C37 fragment. Their strategy was based on OsO4 

dihydroxylation of the L-serine derived Z-alkene 212 (Scheme 42). Boc-L-serine 210 was  
O-methylated and converted to aldehyde 211. Reaction with Still-Gennari’s phosphonate and Boc 
replacement by Cbz group furnished the Z-enoate 212. Dihydroxylation in the presence of 
dihydroquinine p-chlorobenzoate produced the corresponding diol (80% total yield, 80:20 
diastereoselectivity), which was then protected as its acetonide 213. 

 
Scheme 42. Preparation of ester 213.  

 
 

Shioiri’s group has also earlier published a synthesis of enantiomer of the C33–C37 fragment. 
Although it was not utilized in the total synthesis, it had a great effect in determining the absolute 
stereochemistry of the calyculins. 



Mar. Drugs 2010, 8                
 

 

156

5.5.4. Smith [22,51] 
 
The starting point of the preparation of the amino acid subunit was commercially available  

iso-propylidene D-erythronolactone (214, Scheme 43). Treatment of 214 with PMBNH2 in the 
presence of Me3Al gave the ring opened hydroxyl amide. Parikh-Doering oxidation of the primary 
alcohol and dehydration led to the formation of 215, in a 7:1 anomeric mixture in favor of the 
β−anomer. In the presence of the TMS-enol ether of pinacolone and BF3.OEt2, 215 elegantly led to the 
formation of ketone 216 in 81% yield and as a single diastereomer. Formation of the TMS-silyl ether 
of 216 followed by reduction provided alcohol 217. Methylation of the free hydroxyl group of 217, 
PMB-Boc protecting group exchange and basic hydrolysis were the last steps for the preparation  
of 218.  

 
Scheme 43. Preparation of 218. 

 
 
5.5.5. Armstrong [21,65] 

 
The synthesis started from alcohol 219, available in four steps from D-lyxose (Scheme 44).  

O-Methylation, acidic hydrolysis followed by mild reduction yielded the corresponding diol which 
was selectively silyl-protected to give 220. The C36 stereochemistry of 220 is opposite to that found in 
the natural product. Inversion was achieved via mesylation, azidation and reduction to furnish amine 
221. Classical steps of amine-methylation, silyl deprotection and oxidation of the primary alcohol to 
the corresponding methyl ester completed the preparation of 222. The overall yield for this fragment 
remains low mainly because of the difficulties encountered in the Jones oxidation.  
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Scheme 44. Preparation of 222. 

 
 

5.5.6. Barrett [23,66] 
 
Like the other fragments in the Barrett’s total synthesis of ent-calyculin A, the aminoacid part was 

also prepared using an allylboration strategy (Scheme 45) [54,55]. Key reaction of Garner’s aldehyde 
223 with the silylated allylborane derivative 224 followed by oxidative cleavage of the C-Si bond 
produced stereospecifically diol 225, which was then protected as a di-PMB ether. Selective hydrolysis 
of the isopropylidene ketal gave alcohol 226. O- and N-methylation preceeded the oxidative cleavage 
of the double bond, which was further oxidized to acid to furnish amino acid 227. 

 
Scheme 45. Preparation of 227. 
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5.5.7. Koskinen [38] 
 
The synthesis of the aminoacid fragment C33-C38 by Koskinen et al. began with the L-serine derived 

aldehyde 228 which gave, after treatment with the Still-Gennari phosphonate, the Z-enoate 229 
(Scheme 46). The key-step for this sequence was the stereospecific dihydroxylation. Taking advantage 
of the allylic strain of Z-olefins enhanced by the presence of the cyclic protecting group pattern, 
treatment of 229 with OsO4 led to the formation of a single diol 230, whose analysis proved >99% 
optical purity. After acetate protection, the acetonide was cleaved to amino alcohol 231.  
O-Methylation, Boc-deprotection and N-dimethylation finished this synthesis to give 232. 

 
Scheme 46. Preparation of 232.  
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5.6. Finishing the total synthesis: introduction of phosphonate and assembly of fragments 
 
The syntheses of the four fragments of calyculins have without a doubt created a great challenge to 

all chemists involved in the synthesis work. However, before the final assembly of the fragments, 
representing the final judgement of the efficiency of the total synthesis, there was still one problem to 
solve: the introduction of the C17 phosphate group. The C17 is placed in very shielded and hindered 
position in the spiroketal core. It therefore requires a reactive electrophile for the activation, but at the 
same time it has to be mild enough not to react with other parts of the molecule. It is interesting that 
even if phosphate groups are common in natural products, techniques for their introduction are  
still limited. 

Because the Evans and Masamune groups were the first ones involved in the total synthesis of 
calyculins, they performed the pioneering work in that field, by studying the different possibilities 
protecting phosphate groups [18,19,68]. They both ended up using phosphorous (III) compounds as 
reactive electrophiles; this technique being used later by all the other groups. 

The efforts towards the total synthesis of any natural product are truly tested in the coupling of 
fragments. Without a good method for that, even the greatest synthesis does not complete its final goal. 
The completion of the six published total synthesis of calyculins are discussed next. 
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5.6.1. Total synthesis of ent-calyculin A by Evans [18] 
 
The total synthesis published by Evans and co-workers was the first completed synthesis of a 

member of the calyculin family; however, the molecule obtained appeared to be the enantiomer of 
calyculin A. Thanks to this work, the absolute configuration of calyculins was finally determined.  

The assembly of the fragments is shown in Scheme 47 and Scheme 48. It should be noted that the 
protection of hydroxyl groups was planned as a cumulative silicon strategy. If a protection needed to 
persist until the end of the synthesis, silicon-based protecting groups were used while more temporary 
protecting groups were non-silicon based. 

To produce the C26–C37 subunit, the oxazole 167 was first Boc-deprotected and coupled with 
oxazolidone 205 in the presence of Me3Al, pleasingly leading to the formation of the amide bond and 
PMB-deprotection in the same operation (Scheme 47). Diol 233 was thus obtained and was further 
TES-protected, which was followed by CBz-removal, reductive methylation of the amine, and 
reduction of the ester group to furnish 234. Conversion of the alcohol to the corresponding 
tributylphosphonium salt, precursor for the Wittig reaction, terminated the preparation of 235.  

 
Scheme 47. Preparation of the C26–C37 fragment 235. 

 
 

The preparation of the C1–C25 fragment was finished with the HWE reaction between aldehyde 85 
and stannyl phosphonate 32 which afforded the corresponding stannyl triene as a 7:1 E:Z mixture 
(Scheme 48). Stille coupling of the triene with vinyl iodide 31 gave the tetraene 236. The phosphonate 
at C17 was then introduced, by treating 236 with PCl3, followed by PMBOH and in situ oxidation of 
the intermediate phosphite with H2O2. Selective removal of the primary TBS at C25 and subsequent 
oxidation produced aldehyde 237. Wittig reaction between 237 and the phosphonium salt 235 afforded 
the protected product 238. Treatment of 238 by HF finished the first total synthesis of ent-calyculin A. 
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Scheme 48. Final steps for the synthesis of ent-calyculin A. 
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5.6.2. Total synthesis of calyculin A by Masamune [19,63] 

 
Masamune et al. published in 1994 the first total synthesis of naturally occurring calyculin A. The 

assembly of C26–C37 fragment is described in Scheme 49. Ester ent-209 was saponified and then 
coupled with amine ent-172 which gave amide 239. Selective deprotection of the C34 and C35 benzyl 
moieties in the presence of C26 PMB group was achieved by performing the hydrogenation in a 
HCO2H/MeOH solvent mixture. Further TES-protection of the resulting diol, PMB removal and 
oxidation to aldehyde produced 240. 

 
Scheme 49. Preparation of C26–C37 fragment 240.  
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Then, the phosphate introduction at the C17 alcohol of spiroketal 99 was carried out (Scheme 50). 
The authors chose trimethylsilylethyl phosphate ester, a protecting group they had previously 
studied [68], which was introduced by successively treating 99 with TMSCH2CH2OPCl2, 
TMSCH2CH2OH and H2O2, to yield 241. To create the C25–C26 double bond, the Masamune group 
decided to use Julia-Lythgoe conditions. In this purpose, the benzyl group at C25 was removed and 
conversion of the alcohol to the corresponding sulfone was carried out. Additional protecting group 
exchange at C9 was also performed to give sulfone 242. Key Julia-Lythgoe olefination between 242 
and 240 was then performed, providing 243. The geometry of the newly formed C25-C26 double bond 
was described as being predominantly E, however no E:Z ratio was reported. Oxidation of the primary 
alcohol of 243 was followed by reaction with phosphonate 34 and tin/iodide exchange. Stille coupling 
with stannyl 33 furnished compound 244. Final HF treatment completed the first total synthesis of 
natural calyculin A. 

 
Scheme 50. Final steps to calyculin A. 
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5.6.3. Formal total synthesis of calyculin A by Shioiri [20] 
 
The formal total synthesis of ent-calyculin A by Shioiri and co-workers converges on the C9–C37 

intermediate 243 in the Masamune’s synthesis. This synthesis allows a comparable overall yield with 
considerably shorter synthesis. 

The C26–C37 fragment was synthesized efficiently from 213 and de-BOC-ent-179 (Scheme 51). The 
coupling of the fragments C26–C32 and C33–C37 in the presence of DEPC furnished amide 245 in 90% 
yield. Acetonide deprotection furnished diol 233, which was converted to phosphonium 235 following 
Evans procedure [18]. 

 
Scheme 51. Preparation of C26–C37 235 by Shioiri. 

 
 

PMB-removal at C17 on 112 was followed by phosphorylation, C9 protecting group exchange and 
ozonolysis at C25 to give aldehyde 246 (Scheme 52). Wittig reaction between 246 and phosphonium 
salt 235, followed by TMS-deprotection at C9 furnished compound 243, the intermediate previously 
reported by Masamune. 

 
Scheme 52. Preparation of 243. 
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5.6.4. The total synthesis of ent-calyculin A and B by Smith [22,51,69] 
 
Smith and co-workers tenacious work afforded the total syntheses of ent-calyculin A and B in 1999. 

The coupling of C33–C37 oxazole 184 and C26–C32 acid 218 was carried out in the presence of DEPC, 
as described by Shioiri, to give 247 (Scheme 53). Boc-deprotection was followed by methylation of 
the amine, and acetonide deprotection liberated diol which was protected with DEIPS group, to yield 
248. Finally, conversion of the methyl ester at C26 to the phosphonium salt 249 was carried out via the 
corresponding chloride. 

 
Scheme 53. Preparation of C26–C37 fragment 249. 

 
 

Scheme 54. Final steps to ent-calyculin A and B. 
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Phosphate introduction at C17 of 127 was followed by benzyl deprotection and oxidation to furnish 
aldehyde 250 (Scheme 54). Wittig olefination between 250 and phosphonium chloride 249 provided 
251 as a 9:1 E:Z mixture in 84% yield. Pivaloyl-removal at C9 and subsequent oxidation of 251 
furnished the corresponding aldehyde, which was olefinated via HWE reaction with phosphonate 30 to 
give methyl ketone 252, after acidic treatment, in excellent 92% yield and 15:1 E:Z ratio. Peterson 
olefination of 252 furnished a 1.7:1 mixture of the E and Z isomers, which respectively corresponds to 
protected ent-calyculin A and ent-calyculin B. After chromatographic separation, final HF treatment 
produced ent-calyculin A in 69% yield and ent-calyculin B in 84% yield. 
 
5.6.5. Total synthesis of calyculin C by Armstrong [21,65] 

 
The total synthesis of calyculin C by Armstrong was also a result of perseverant work. Armstrong 

and co-workers were also the first to prepare calyculin C and prove its stereochemistry.  
Boc-deprotection of 190 was followed by coupling with ester 222 (Scheme 55). Unfortunately, this 
reaction produced a 2.7:1 mixture of C34 epimers. Further studies proved that the main product was the 
undesired isomer; the expected diastereomer 253 being isolated in only 17%. Conversion of the 
chloride to the phosphonium salt and benzyl-deprotection then furnished 254.  

 
Scheme 55. Preparation of C26–C37 fragment 254. 

 
 
The final stages of the synthesis followed Evans’ example (Scheme 56). Fragment 139 was 

converted to the tetraene 255. C17-phosphonate protection, C25-deprotection and subsequent oxidation 
furnished aldehyde 256. Olefination between 256 and 254 furnished compound 257 in modest yield. 
Final HF treatment completed the total synthesis of calyculin C 3. 
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Scheme 56. Final steps to calyculin C.  

 
 

5.6.6. Formal total synthesis of ent-calyculin A by Barrett [23] 
 
Barrett et al. last steps for completing the total synthesis of ent-1 began with the coupling of 

aminoacid 227 and oxazole 196 fragments, to give amide 258 (Scheme 57). The latter was then 
converted to Evans’s intermediate 234, by a three-step/one-pot sequence involving Boc-deprotection, 
N-methylation and reduction of the ester at C26. 

 
Scheme 57. Preparation of the C26–C37 fragment 234 by Barrett. 
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Aldol reaction between methyl ketone 67 and aldehyde 150 gave in a diastereoselective manner  
β-hydroxyketone 259, unfortunately carrying the wrong stereochemistry at C15 (Scheme 58). LiAlH4 
reduction at C13 furnished the corresponding diol in 73%, together with its C13-epimer in 15% yield. 
Selective monosilylation at C13 was followed by inversion of stereochemistry at C15 by successive 
Dess-Martin oxidation and DIBAL-H reduction to produce 260. O-Methylation at C15, PMB-removal 
at C17 and final Stille coupling with stannane 33 finished the synthesis of Evans’ intermediate 236.  

 
Scheme 58. Preparation of the C1–C25 fragment 236 by Barrett. 
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6. Conclusions 
 

Altogether six total or formal synthesis of calyculins have been published. These syntheses can be 
divided into three groups: 

• Masamune and Armstrong have described the total synthesis of natural calyculins A and C, 
respectively 

• Evans and Smith have completed the total synthesis of the enantiomer of naturally occurring 
calyculin A (and B for Smith) 

• Shioiri and Barrett have published highly advanced intermediates, previously prepared by 
Masamune and Evans respectively and therefore accomplished formal synthesis of natural and 
non natural calyculin A. 

Even if the basic retrosynthetic analysis appeared to be quite similar in the different synthesis, the 
different points of views and methods makes the comparison challenging. The overall yields and 
number of steps of the different syntheses are compiled in Table 2. 
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Table 2. Overview of the total synthesis. 

Group Target Pub. 
year 

Number of 
steps a 

Overall 
yield (%) a 

Number of 
steps b 

Overall 
yield (%) b 

Evans ent-Calyculin A 1992 33 0.54 36 - 
Masamune Calyculin A 1994 43 0.31 45 0.18 
Shioiri Calyculin A 1996 32 0.092 32 0.092 
Smith ent-Calyculin A 1998 35 0.89 37 0.79 
Armstrong Calyculin C 1998 30 0.018 30 0.018 
Barrett ent-Calyculin A 2001 34 0.9 34 0.9 

a Longest linear sequence based on the reported starting materials. 
b Longest linear sequence based on commercially available starting materials. 

 
Each of these syntheses resulted from extensive efforts and has to be considered as high level work. 

As discussed earlier, the structure of calyculins makes the total synthesis very demanding in every 
aspect; every fragment had its own features and presented challenges. Of course, theses syntheses are 
not perfect and some drawbacks could be noted, like a C13-stereochemistry inversion for Evans, a low-
yielding iodide-tin exchange for Masamune, protecting groups exchange for Shioiri, low selectivity in 
the final Peterson olefination for Smith (which fortunately led to the formation of ent-calyculin B), 
stereochemistry inversions and poor selectivity in the second Brown crotylation for Armstrong or a 
C15-stereochemistry inversion for Barrett. However, all these syntheses were performed before 2000 
and all the new tools that have appeared in the last decade for stereoselective transformations were not 
available. For all these reasons, these total syntheses of the structurally much elaborated calyculins 
deserve the biggest respect from the synthetic community.  

Another goal should still lie in a better understanding of the PP inhibition-activity of calyculins and 
related toxins. Improved design and synthetic methods should also lead to the design of simpler 
synthetic inhibitors that could compete with the activity of natural toxins. 
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