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Abstract: The presence and impact of toxins have been detected in various regions worldwide ever
since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on
marine resource utilization, marine environmental protection, and fishery production. Over the
course of more than two decades of research and development, scientists from all over the world have
conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic
mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction
to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial
synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over
the past 20 years, along with their advantages and disadvantages. This effort will contribute to the
future development of rapid detection technologies and the invention of detection devices for AZAs
in marine environmental samples.
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1. Introduction

Since the 20th century, human beings have progressively explored and exploited
marine resources. The high nutritional value of shellfish, along with their abundance of
unsaturated fatty acids, has been a significant factor in attracting human consumption.
However, shellfish possess self-protective mechanisms that often lead to the production of
toxins and other harmful substances for humans. Additionally, as apex predators in the
planktonic food chain, shellfish can accumulate toxins produced by algae [1].

Azaspiracids (AZAs) are a type of polyether toxin (Figure 1) that was initially discov-
ered in an episode of food poisoning in Ireland in 1995 [2]. Several individuals in Ireland
exhibited symptoms of diarrhea after consuming mussels, leading to the isolation and
identification of these toxins [3]. AZAs were originally named Killary Toxin or KT-3 [4],
and their name was later changed to Azaspiracids to better reflect the chemical structural
formula. Azaspiracids are known to be produced by the Protists Azadinium [5,6] and
Amphidoma [7,8], which belong to the order Lumbar Flagellate. Furthermore, these toxins
have been reported and detected in various shellfish species, such as oysters, scallops, and
clams [9–11].

Since the identification and isolation of AZA-2 and AZA-3 in 1997 [12], numerous
analogs of AZAs have been discovered and purified (Table 1). Among these, Azadinium
dexteroporum is currently known to produce the highest number of AZA variants, with
up to six types reported [13]. The total number of named AZA toxins and their analogs
currently stands at AZA-68 [14]. (Table 2).
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Figure 1. Chemical structure of AZAs. (a) Chemical structure of AZA-1, (b) chemical structure of 
AZA-2, (c) chemical structure of AZA-3, (d) chemical structure of AZA-6, and (e) chemical structure 
of AZA-7. 

  

Figure 1. Chemical structure of AZAs. (a) Chemical structure of AZA-1, (b) chemical structure of
AZA-2, (c) chemical structure of AZA-3, (d) chemical structure of AZA-6, and (e) chemical structure
of AZA-7.

Table 1. Chemical structure of some AZA analogs.

Toxins R1 R2 R3 R4

AZA-1 H CH3 H H
AZA-2 CH3 CH3 H H
AZA-3 H H H H
AZA-6 CH3 H H H
AZA-7 H CH3 OH H
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Table 2. Classification of AZA homologous analogs.

AZA-1 AZA-2 AZA-3 AZA-6 AZA-7

AZA-8 AZA-11 AZA-4 AZA-9 AZA-35
AZA-14 AZA-12 AZA-5 AZA-10 AZA-54
AZA-18 AZA-16 AZA-13 AZA-15 AZA-55
AZA-22 AZA-20 AZA-17 AZA-19 AZA-56
AZA-26 AZA-24 AZA-21 AZA-23 AZA-57
AZA-30 AZA-28 AZA-25 AZA-27 AZA-58
AZA-33 AZA-32 AZA-29 AZA-31
AZA-34 AZA-41 AZA-43
AZA-36 AZA-42
AZA-37 AZA-62(AZA-11)
AZA-38
AZA-39
AZA-40
AZA-50
AZA-51
AZA-59

AZA-63(AZA-37)
AZA-52(AZA-38)
AZA-53(AZA-38)

2. Toxin Distribution

Currently, there are reports of cases of AZA poisoning on many continents, including
North America [15], South America [16], Africa [17], Europe [18], and Asia [19].(Figure 2).
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3. Toxicology and Pathology

The acute lethal efficacy LD50 values of oral AZA-1, AZA-2, and AZA-3 in mice were
determined to be 443 µg/kg, 626 µg/kg, and 875 µg/kg [20], respectively. The final symp-
toms of oral administration of AZAs in mice include immobility, sternal lateral immobility,
tremors, abdominal breathing, hypothermia, and cyanosis. Although diarrhea is the main
toxic sign of human ingestion of seafood contaminated with AZAs, oral exposure from
AZA-1 to AZA-3 in mice did not cause significant diarrhea. The lethal dose of intraperi-
toneal injection in mice targeting AZA-1, AZA-2, and AZA-3 is 200 µg/kg, 110 µg/kg,
and 140 µg/kg [12]. The signs and symptoms observed after intraperitoneal injection of
purified AZAs in mice include progressive paralysis of the limbs, difficulty breathing,
and pre-death convulsions [21]. Regarding the determination of 8 AZA-1 analogs and
12 fragments from the synthesis process of AZA-1, it was found that they have very low or
almost no toxic effects compared to AZA-1 itself, indicating that the entire AZA-1 molecule
and its stereo-orientation are necessary for exerting toxic effects. Animals subjected to
AZA treatment exhibit organ swelling, along with the presence of fat droplets and vac-
uoles in liver cells [22]. The villi of the small intestine become blunt, accompanied by a
reduction in the thickness of the brush-like edge. Additionally, there is a mild to moderate
increase in apoptotic cells and infiltrating multi-nucleated cells in the mucosal lamina
propria. Depletion of white medullary lymph nodes and lymphocyte necrosis are observed
in the spleen. Hepatocellular necrosis is evident in liver cells. Prolonged exposure to small
amounts of AZA toxins can lead to a decrease in digestive epithelial cells, increased lipid
consumption, and an accumulation of lipofuscin [23]. The data on the oral toxicity of toxins
in combination with other toxins indicate that neither the combination with OA (okadaic
acid) nor YTX (yessotoxin) showed an increase in toxicity, and no overlapping or synergistic
effects were found, only gastrointestinal symptoms were observed [24,25].

There are currently no reports on the long-term effects of AZA toxins on humans, but
according to the European Food Safety Authority (EFSA), the lowest observed adverse
effect level for individuals with a body weight of 60 kg is 1.9 µg AZA-1 equivalents/kg, and
based on this, the most acute reference dose is calculated to be 0.2 µg AZA-1 equivalents/kg
body weight [26].

4. Toxic Mechanism

Currently, there is a lack of definitive experimental research regarding the therapeutic
mechanism of AZAs that would indicate its specific target-blocking properties. However,
several studies have demonstrated its ability to influence cell electrical activity by affecting
potassium ion channels [27], sodium ion channels [28], chloride ion channels [29], and
calcium ion channels [30] (Figure 3). However, the specific mode of action, whether through
interactions or intermediates, remains to be further explored. Specifically, its effect on the
sodium ion channel is limited to the modulation of a fast sodium channel flow rate, without
inducing channel inactivation. However, under the action of high-concentration toxins
(200 nM), the proportion of channel inhibition can reach 60%, seriously affecting the process
of cell depolarization [28]. AZAs can also inhibit sodium current through Nav 1.6 channels
in the presence of glutamic acid [31], indicating that AZA poisoning may be due to its
synergistic effect on some metabolites. Regarding the mechanism of potassium ion channels,
it has been reported that AZAs can inhibit hERG channels (hERG channels play a very
important role in myocardial repolarization) [27], and experimental data have shown that
it can affect the quantity of hERG in the membrane in rats [32]. Rats treated with different
doses of toxins (11 or 55 µg/kg) experienced partial PR interval prolongation and heart rate
changes due to potassium ion channel blockade [32]. Inhibition of Ca2+ channels primarily
affects the storage channels responsible for intracellular calcium ions, thereby giving rise to
neurological symptoms [30].
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Additionally, experimental data suggest that AZA-1 may act as a tumor initiator [33].
The induction mechanism here may be related to the abundant production of TNF-α and
can induce the expression of early response genes jun B, jun D, c-fos, c-jun, fos B, and
fra-1 to achieve tumor induction and occurrence. Repeated administration of AZA in
mice led to a significant increase in lung tumors, as well as inducing lymph necrosis in
tissues such as the small intestine, spleen, and thymus [34]. Prolonged exposure to AZAs
in the environment can result in alterations in cellular cytoskeletons and reduced metabolic
activity in human cells [28]. Certain experiments have demonstrated an upregulation of
mRNA expression of genes associated with cholesterol synthesis and glycolysis following
treatment with AZA toxins, suggesting a potential mechanism for AZAs in modulating
cellular metabolism [35].

The gastrointestinal symptoms associated with AZA exposure may arise from alter-
ations in the human intestinal glial system which can impact the integrity of the intestinal
barrier. These changes include, but are not limited to, induced neuronal alterations, oxida-
tive stress, disruption of the cell cycle, and an increase in specific enteric glial cell (EGC)
markers [36]. Furthermore, the synergistic effects of multiple toxins present in the natural
marine environment can enhance the virulence of AZAs [37]. Additionally, AZA-1 has
been found to have a partial promoting effect on cell apoptosis and induce an increase
in genetic toxicity. In terms of the blood system, AZAs can affect the damage to immune
system cell lysosomes, consequently impacting phagocytic function [23].

Heart cells subjected to AZA-1 treatment exhibited heightened levels of apoptotic
markers, including caspase-3 and -8, cleavage of PARP, and upregulation of Fas ligands [38].
These molecular changes are reflected at the tissue level, resulting in alterations in arterial
blood pressure and deposition of cardiac collagen. Long-term experimental studies have
demonstrated that AZAs can induce structural changes in the heart that contribute to heart
failure [39] and provoke arrhythmias by modulating ion channels [32] (Figure 3).

In summary, although the activity of toxins as inhibitors of PP [40], kinases, and
GPCR or as inhibitors of actin polymerization/depolymerization has been experimentally
overturned [41], other experiments have shown their cytotoxicity, affecting cytoskeleton
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arrangement, promoting tumors, and potentially affecting the activity of multiple ion
channels. However, at this point in time, there seems to be no scientific consensus on a
specific target or mechanism of AZAs that can jointly explain the various effects observed
in experiments and the gastrointestinal symptoms observed in exposed individuals, so
further exploration of treatment is needed in the future.

5. AZA Analogs from Different Sources

The initial characterization of AZA and its analogs was conducted in 1998 using mass
spectrometry (MS) and nuclear magnetic resonance (NMR) techniques [3]. Over 60 types of
AZA analogs have been identified, with the majority being produced through metabolic
processes in mussels.

AZA-38 and 39 are primarily produced by Amphidoma languida, a small dinoflagellate
species belonging to the Amphidomataceae family. Recently, these toxins have undergone
structural modifications [42]. The toxins produced by different ribosomal subtypes of
Azadinium spinosum exhibit variations, with subtype A mainly producing AZA-1 and AZA-
2, while subtype B primarily produces AZA-11 and AZA-51 [43]. In the case of ribosomal
subtype A of Azadinium pomorum, there is either no production or only a minimal amount
of AZAs, whereas ribosomal subtype C can generate AZA-40 and AZA-2 [44]. Different
strains of Azadinium pomorum produce the hydroxylation product AZA-42 from AZA-41
and the dehydrogenation product AZA-62 from AZA-11. The former strain is isolated
from the South China Sea, while the latter strain is isolated from the northern coast of
Chile [45]. Furthermore, AZA-59 is the sole AZA toxin produced by Azadinium pomorum
strains isolated from the Pacific northwest coast of the United States.

6. Synthesis In Vivo

To date, a majority of studies have pointed to the blue mussel, Mytilus edulis, as the
primary vector for AZAs. However, other organisms such as mollusks, arthropods, and
echinoderms have also been reported as potential vectors [46]. In mussels, several AZAs
undergo acyl ester formation, with some studies suggesting that these esters exhibit higher
toxicity than the free toxins themselves [47]. The average distribution of AZAs in mussels
is as follows: hepatopancreas (60.6%), gills (12.0%), and adductor muscle (27.4%) [48].

AZA has been detected in various bivalve mollusks, including oysters (Crassostrea
gigas), scallops (Pecten maximus), clams (Tapes filipinarium), and cockles (Cardium rule), as
well as in numerous phytoplankton species [10]. In the experiment involving feeding blue
mussels (Mytilus edulis) with toxins, it was found that AZA-17 and AZA-19 were mainly
fast metabolites feeding AZA-1 and AZA-2 [49], indicating that carboxylation of methyl
groups at the C22 position is a dominant metabolic pathway, while hydroxylation and
decarboxylation are secondary degradation pathways. Notably, AZA-65 and AZA-66 have
been identified as intermediate products in the conversion of AZA-1 and AZA-2 to AZA-17
and AZA-19. In mussels, the expression of AZA-1-3 can lead to the production of AZA-8,
AZA-12, and AZA-5 through C-23 α hydroxylation. Additionally, the double hydroxylation
of AZA-67 and AZA-68 can generate AZA-1 and AZA-2 as secondary metabolites [14].

Experimental evidence has demonstrated a correlation between toxin production in
algae and temperature, with the highest toxin concentrations observed at 26 ◦C [50].

AZA-1 treated with rat liver microsomal extract undergoes oxidation at the F ring and
can bind with glucuronic acid at C1 to generate glucuronides [51].

7. Synthesis In Vitro

In the synthesis of AZAs, the FGHI ring exhibits relatively high stability in the region
spanning from C-26 to C-40, whereas the variability is primarily observed in the C-1 to
C-22 [52] region. As early as 2008, the structure of the AZA-1 compound was fragmented
and partially synthesized, encompassing the synthesis of the E ring, HI ring, CD ring, and
FG ring. The conversion of furan into the ABCD ring can be achieved through a single
oxygen-initiated one-pot process [53]. Subsequently, the combination of the EFGHI ring
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and the ABCD ring enables the complete synthesis of AZA-1 [54]. The artificial in vitro
synthesis of fragments from C-22 to C-40 has been enhanced and refined [55]. Currently,
through the full synthesis of AZA-1 and continuous modification and optimization of
reaction conditions, an artificial stereoisomeric composite closely resembling the structure
of natural AZA-3 has been achieved [56].

8. Detection of Toxins

Many countries, including those in the European Union (EU), have established reg-
ulatory limits for AZA content in shellfish intended for human consumption. In the EU,
this limit is set at 160 µg of AZA equivalents per kg of shellfish meat (whole body or any
edible part) [57]. Currently, the European official method for detecting AZAs is the mouse
bioassay [58]. Evaluating the suitability of chromatographic conditions, multi-experimental
groups also provided experimental evidence for the standardized authentication of AZA
concentrations and a new CRM from the NRC Certified Reference Materials Program
(Halifax, NS, Canada) [59–61] (Table 3).

Table 3. LOD and LOQ of different detection methods and sources of samples.

Year Method LOD LOQ Recovery Rate Samples

1999 LC-MS [62] 50 pg Isolated from toxic mussels
collected in Ireland

2000 micro-LC-MS [63] 20 ng/g Isolated from toxic mussels
collected in Ireland

2002 LC-MS [9] 4 pg 0.8 ng/mL Isolated from toxic mussels
collected in Ireland

2002 SPE-LC-ESI-MS [64] 5–40 pg 0.05–1.00 µg/mL Isolated from toxic mussels
collected in Ireland

2004 LC-ESI-MS [65] 5 pg 0.05–1.00 µg/mL Isolated from toxic mussels
collected in Ireland

2010 SPE-CID-MS [66] 0.0021 mg/g 0.007 µg/g From the National Research
Council of Canada

2010 SPE-LIT-MS [66] 0.003 mg/g 0.010 µg/g From the National Research
Council of Canada

2010 SPE-HPLC-MS [67] 11.00 pg/g 75.8–82.5% Extracted from the samples
from China

2011 LC-Orbitrap-MS [68] 0.041–0.10 µg/L 96–105% From the National Research
Council of Canada

2014 LC-MS [69] 0.12–13.6µg/kg 0.39–45.4 µg/kg 81.9–119.6% Extracted from the samples
from China

2015 SPE-HPLC-MS [70] 0.013–0.085 µg/kg 1.00 µg/kg 99.2–102% Extracted from the samples
from China

2015 UHPLC-HR-Orbitrap-MS [71] 0.006–0.050 ng/mL 0.018–0.227 ng/mL 96–114% Isolated from toxic mussels
collected in Ireland

2015 ELISA [72] 0.45–8.6 ng/mL 57 µg/kg Isolated from toxic mussels
collected in Ireland

2017 MB-based direct
immunoassay [73] 63 µg/kg 120–2875 µg/kg From the National Research

Council of Canada

2019 ELISA [74] 0.30–4.1 ng/mL 37 µg/kg From the Marine Institute,
Ireland

2019 MSPE-UPLC-MS [75] 0.4–1.0 µg/kg 1.0–4.0 µg/kg 82.8–118.6% From the National Research
Council of Canada

2020 SPATT-UPLC-ESI-MS [76] 0.001–0.05 µg/L 0.04 µg/ml From the National Research
Council of Canada

2013 QuEChERS-UHPLC-ESI-MS [77] 0.10 µg/kg 71–108% Extracted from the samples
from China

2014 LC-HRMS [78] 0.9–4.8 pg 80–94% From the National Research
Council of Canada

2020 LC-MS [79] 0.3–0.4 µg/kg 68–129% From the National Research
Council of Canada

8.1. LC-MS

LC-MS, or liquid chromatography–mass spectrometry, is a powerful analytical tech-
nique that combines the physical separation capabilities of liquid chromatography (LC)
with the mass analysis capabilities of mass spectrometry (MS). When combined, LC sep-
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arates the chemical components of a mixture, and then, those individual components
are funneled into the mass spectrometer. The mass spectrometer further separates the
chemicals based on their mass-to-charge ratio, and then identifies and quantifies them. In
the field of toxin detection, LC-MS has been intensively employed to generate high-quality
data, demonstrating its pivotal role in advancing our understanding of various toxins.

In 1999 [12], an LC/MS method was first used that offered sensitive and specific
determination of AZA and its two analogs. This method achieved a detection limit of 50 pg
for AZAs, demonstrating a sensitivity approximately 8 × 104 times greater than that of
the mouse bioassay. Later, a variety of optimized LC-MS (n) methods were developed
successively. A highly sensitive LC-MS method achieved a detection limit of 4 pg and
allowed for the simultaneous analysis of multiple types of AZAs [9,80]. Additionally, an
on-board LC-MS-MS system was developed for near real-time analysis of phycotoxins in
plankton [81]. A variety of AZAs have since been found, including its isomers [13,52,82,83].
Since the first discovery of AZA and its two analogs in 1999, this type of toxin has been
detected in various marine coasts and marine products worldwide [16,62,84–96] (Table 4).

Table 4. Reported cases of azaspiracid poisoning (AZP) mentioned in the article.

Location of AZP Year Area of Production The Types of Toxins Results

Ireland 1999 [62] Arranmore Island AZA-1-3 Nearly 95% of the
total AZAs.

England and Norway 2002 [84] Craster and Sognefjord AZA-1-3

61%(AZA-1), 22%(AZA-2),
and 17%(AZA-3) (Norway);

72% (AZA-1) and 28%
(AZA-3) (UK).

Spain 2007 [85] Galica AZA-1 Nearly 15.46% of the
total toxins.

Sweden and Norway 2008 [86]
The west coast of Sweden

and northwest coast
of Norway

AZA-1-3 70.6% (AZA-1) (Sweden);
16.7% (AZA-1) (Norway).

France 2008 [87] The North Brittany coast AZAs 80% (AZA-1) and
20%(AZA-2).

Scotland 2008 [88] The Food Standards
Agency, Scotland AZA-1,2 Nearly 69% of the

total samples.

Portugal 2008 [96] Foz do Arelho beach AZA-1-3 23.5% (AZA-1), 42.8%
(AZA-2), and 33.6% (AZA-3).

Chile 2010 [16] Coquimbo Bay AZA-1 Below the
quantification limit.

China 2011 [89] The whole coast of China AZA-1 Not mentioned.

China 2015 [90] The main seafood markets
along the Chinese coastline AZA-1 2.75% of the total samples;

27.1% of the total toxins.

Spain 2016 [91] The North
Patagonian coast AZAs Not mentioned.

Spain 2017 [92] The Gulf of Cadiz AZAs 49.15% (AZA-43) and 50.85%
(AZA-2).

The Adriatic Sea 2018 [93] The coast of Abruzzo and
Molise regions AZA-1-3

23.80% (AZA-1), 42.87%
(AZA-2), and

33.33% (AZA-3).

Denmark 2019 [94] The Limfjord and the
Kattegat/Belt area AZAs Not mentioned.

Spain 2020 [95] Galicia AZA-1-3 Not mentioned.

Matrix effects can result in either signal enhancement (increase in the apparent con-
centration of the analyte) or signal suppression (decrease in the apparent concentration
of the analyte). It is a significant concern in LC-MS analysis that greatly influences the
accuracy and reliability of toxin detection. After an in-depth investigation of matrix ef-
fects, it was found that AZA-1 significantly inhibited the signal in the presence of matrix
effects. Subsequently, this issue was greatly improved through the use of a rapid LC-MS
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method that separated major toxins based on the MS ionization mode [97,98]. Furthermore,
LC-MS has facilitated rapid simultaneous separation, monitoring, and quantification of
toxins [67,79,99].

8.1.1. UHPLC/HPLC-MS

The utilization of ultrahigh-performance liquid chromatography (UHPLC) coupled
with advanced mass spectrometry techniques has transformed the detection and quan-
tification of these toxins. Several research groups have combined this method with other
techniques such as ESI [71,100,101] and SPE [70,102,103] and optimized it to achieve the
simultaneous detection of multiple toxins [76,77], improve detection limits, reduce matrix
effects [75], and enhance the effect of chromatographic gradients [104].

8.1.2. SPE/MSPE+LC-MS

The development and refinement of extraction techniques, particularly SPE [64] and
MSPE [75], coupled with LC-MS also have significantly advanced our ability to detect and
quantify toxins [66,75,102,103,105]. After validation, optimization can significantly reduce
matrix effects [106].

8.1.3. LC-ESI-MS

Sensitive LC–electrospray ionization–mass spectrometry (LC-ESI-MS(n)) methods, includ-
ing ion trap mass spectrometry [84,86,105,107] and Orbitrap technology [51,71,78,101,108,109],
have been developed for the determination of major AZAs and their hydroxyl analogs,
enabling the separation of multiple AZAs in a short period of time. The combination of
LC-MS with ESI technology allows for the determination of MS dissociation pathways and
the differences between CID spectra to be obtained [63,65,68,84,110–112]. Subsequently,
through a series of practical tests [69,113], the utility of this approach was demonstrated,
including its ability to reduce matrix effects [114,115].

8.1.4. LC-HRMS

The use of HRMS was described in combination with passive sampling as a progressive
approach to marine algal toxin surveys [116]. This method can also be used in conjunction
with the Orbitrap exactive HCD mass spectrometer [78], solid–liquid ultrasound-assisted
extraction, and solid–phase extraction [103], and has been implemented in the detection
process [47,117].

8.1.5. LC-MS+NMR

The combination of NMR and LC-MS is primarily used for the discovery of new AZAs
and the detection of the structure and concentration of the toxins [13,118–121].

8.1.6. LC-MS + Others

Other methods used in conjunction with LC-MS detection technology include live mi-
croscopy, quantitative polymerase chain reaction (qPCR) [94], micro-liquid chromatography–
tandem mass spectrometry (micro-LC-MS-MS) [63], selected ion monitoring (SIM), multi-
reaction monitoring (MRM) [122], and the use of a gel to selectively capture and release
AZAs [123].

8.2. MBA and CBA

The detection and quantification of toxins, particularly azaspiracids (AZAs), have
been significantly advanced by the development and refinement of bioassay techniques,
including mouse bioassay (MBA) [124–127] and cell-based assay (CBA) [127,128]. Due to
cost and ethical considerations, these two methods are currently not mainstream detection
techniques. They are typically used in conjunction with other technologies to validate the
detection results, although such cases are actually quite rare.
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8.3. Biosensor

At present, the quantification and identification of AZAs are possible only for those
compounds that have available certified standards. The development of biosensor assays
for detecting AZAs remains a challenge, with no such assay currently available.

Recently, significant progress has been made in the development of AZA-specific
antibodies that have shown binding affinity for several AZA analogs, including AZA-1, 2,
3, and 6 [129,130]. These antibodies have been utilized to design competition and sandwich
enzyme-linked immunosorbent assays (ELISAs) with a synthetic fragment of the AZA
molecule that is conserved for many analogs.

These developments mark a significant step forward in the detection of AZAs. The
hope is that in the near future, these new antibodies will be applied in the development of
electrochemical or optical immunosensors for the detection of AZAs.

8.4. ELISA

In 2015, Samdal [72] demonstrated an ELISA with a working range of 0.45–8.6 ng/mL
and a limit of quantitation for total AZAs in whole shellfish of 57 µg/kg. He also pro-
duced a new plate coater, OVA-cdiAZA-1, resulting in an ELISA with a working range of
0.30–4.1 ng/mL and a limit of quantification of 37 µg/kg for AZA-1 in shellfish, in 2019 [74].
ELISA can also be employed in conjunction with gel methods [123]. This method is usually
combined with bioassay techniques; two research teams have already implemented this
technique [125,131].

8.5. Other Immunoassays

As part of the advancements in immune technology, microsphere-based immunoas-
says [132], magnetic bead (MB)-based direct immunoassays [73], and immunoaffinity
chromatography (IAC) columns [133], specifically designed for the purification and concen-
tration of AZAs, have been reported. An immunoassay kit was discovered that provided a
more sensitive, specific, and swift approach to determining toxins in total shellfish extracts
compared to LC-MS [134].

Due to the extensive research and the establishment of regulatory measures concerning
AZAs, most studies focused on detection and quantification are primarily concerned with
the safety of samples. At the same time, there are also some studies that utilize reference
standards to explore new analogs [3,52,82,83]. Since AZA-1 to 3 were the earliest discovered
in this group and constitute a significant portion of the entire toxin group (especially AZA-1
and AZA-2 as precursor compounds), with established regulations in terms of food safety,
therefore, in the majority of detection efforts, significant attention is placed on these three
toxins or the entire AZA toxin family as the target of analysis [92].

We compared the detection results of our investigation group and found that in
contrast to other lipophilic toxins, the levels of AZAs were generally low in the samples.
In the majority of the tests, AZAs accounted for a minimal proportion and were far below
the relevant regulations for food safety. This also implies that the standardization of this
toxin is relatively challenging to extract, and it requires a high sensitivity of the detection
techniques in practical applications. The AZP toxin group encompasses a wide range
of analogs, making it possible for misidentification of toxin types in certain experiments.
Therefore, a more precise differentiation of toxin analogs may be a prospective research
direction for future studies.

To date, more than 60 analogs of AZAs have been identified, exhibiting complex
diversity and similar structures. Therefore, in order to distinguish them more effectively,
gaining a clear understanding of their structure and chemical composition through the
utilization of MS and NMR spectroscopy, as well as other identification techniques, has
become a focal point in the research of these toxins. Gaining a more detailed and in-depth
understanding of toxins and developing faster and more efficient detection techniques can
contribute to the early development of commercialized detection kits and standardized
testing procedures.
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Currently, there are relatively few explicitly regulated AZAs. However, in certain
detections, the proportion of unregulated AZAs may be higher than that of the established
regulated types—potentially even by an order of magnitude. This fact highlights the
underestimation of the total AZA load by current regulatory strategies.

9. Conclusions

In summary, AZAs are an important part of toxin research. Currently, many countries
and institutions have developed monitoring plans and regulatory measures to ensure the
safety of seafood products and to safeguard public health. Continuous in-depth research
on monitoring and detection methods is crucial for effectively monitoring AZA pollution
and protecting consumers from potential harm. Although progress has been made in
understanding the toxicology and occurrence of AZAs, there are still some knowledge
gaps. Further research is needed to investigate the long-term health effects and potential
risks associated with long-term exposure to AZAs. In addition, more research is needed to
elucidate the mechanism of action of AZAs and determine the exact relationship between
AZAs and their potential carcinogenicity.

Although the probability of large-scale outbreaks of shellfish toxins is low, considering
the toxicity, unpredictability, and significant differences in the abundance of AZA toxins
in recent years, as well as the threat to consumers and marine professionals, we still
need to establish a complete monitoring and protection system. The design of stable and
efficient methods and equipment for detecting toxins is also conducive to promoting the
development and utilization of marine resources, promoting the safety of marine fisheries,
and promoting human health.
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