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Abstract: Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical
derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to
synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT),
as antioxidant and antifungal agents. The target derivatives were characterized by means of ele-
mental analysis, FTIR, 13C NMR, TGA and XRD. Furthermore, the antioxidant activity of the chitin
derivatives was estimated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical
and superoxide-radical) and ferric reducing power. In addition, inhibitory effects against four fungi
were also tested. The findings show that antioxidant abilities and antifungal properties were in order
of SPCT > SCT > CT. On the basis of the results obtained, we confirmed that the introduction of
sulfonated groups on the CT backbone would help improve the antioxidant and antifungal activity
of CT. Moreover, its efficacy as an antioxidant and antifungal agent increased as the chain length of
the substituents increased. This derivatization strategy might provide a feasible way to broaden the
utilization of chitin. It is of great significance to minimize waste and realize the high-value utilization
of aquatic product wastes.

Keywords: water-soluble chitin derivative; sulfonated chitin; antioxidant ability; antifungal activity

1. Introduction

Chitin, comprising β-(1-4)-linked N-acetyglucopyranose units, was first characterized
and described in 1884 [1]. It is a linear polysaccharide widely distributed in crustacean
shells (such as shrimp, crab and lobster) and the cell walls of fungi, and it is the second
most abundant biopolymer on earth. Unlike other forms of biopolymer such as cellu-
lose, chitin has an acetamido group (NHCOCH3). Nitrogen-containing compounds have
a huge market, with applications such as drug delivery, cell nano patch and biological
membranes, etc. [2–5]. Annually, it has been estimated that chitin is produced in nature on
the order of 100 billion tons, and its main source is by-product generated in the crustacean
processing industries. It is estimated that 6–8 million tons of crustacean shell waste are
discarded annually in the world, resulting in a huge amount of waste and vast disposal
cost [6]. One of the economically as well as ecologically sustainable solutions is the ex-
traction of chitin from crustaceans’ shells, which may be a way of minimizing the waste
and producing value-added compounds with noteworthy biological properties that can be
applied in multifarious fields.

As a natural renewable resource, chitin has been widely applied due to its complete
biodegradability and excellent biocompatibility in combination with non-toxic properties [7–9].
Although it is widely available, the insolubility of chitin in water and even most organic
solvents becomes the biggest limitation in its practical application. To increase the solubility
of chitin, its chemical modification is required. Yet, water-soluble chitin derivatives are
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mostly obtained by different methods: deacetylation, alkylation, carboxylation and so
on [10–12]. Among them, sulfonation is an efficient method to improve the water-solubility
of derivatives, and polysaccharides exhibit biological activities after sulfation [13,14].

Oxygen in cells can generate reactive oxygen species (ROS) during metabolism,
such as hydroxyl radical (•OH), superoxide anion (O2

−), ozone (O3), hydrogen perox-
ide (H2O2), etc. [15]. Cellular damage by free radicals gives rise to various disorders, for
instance chronic renal failure, arthritis, diabetes, sepsis, respiratory distress syndrome,
Alzheimer’s disease and cancer [16,17]. Antioxidants have been found to be effective in
scavenging these free radicals to protecting cells from various diseases. However, the use
of synthetic small-molecule antioxidants has been correlated with detrimental effects to
human health and food safety, resulting in rigorous supervision by many governmental
agencies [18,19]. With the changes in consumer preferences for safe food, investigations on
natural polysaccharides and their unique antioxidant properties have sparked people’s in-
terest. The biocompatibility and biodegradability of chitin and its derivatives, coupled with
their capacity to eliminate free radicals, makes them potential functional constituents used
in different fields, ranging from food formulations to functional materials and medicine to
agriculture [20,21].

Chemical pesticides are usually used to prevent plant pathogens; with the develop-
ment of the environmentally friendly society, the problems associated with farm chemicals
have aroused widespread concern. In recent years, many effective antibacterials have been
prohibited due to dangers towards the environment and the health of humans. In this
view, it is urgently critical to find new chemical fungistats that not only can hold back
the growth of the microorganism effectively, but also are biocompatible, biodegradable
and low toxicity. Therefore, novel polysaccharide derivatives emerge as a new class of
environmentally friendly biomaterials.

To the best of our knowledge, there are few papers about chitin derivatives with
sulfonated side chains. In the current study, sulfonated chitin could be prepared by
modifying chitin using sulfur trioxide pyridine and 1,3-propane sultone, thus obtaining
water-soluble derivatives with biological activities. The chitin derivatives designed in this
way were expected to have advantageous characteristics such as good antioxidant and
antifungal activity. Then, we estimated their antioxidant ability and antifungal activity
in vitro, and the relationship between the structure and the antioxidant and antifungal
activities of chitin was discussed.

2. Results and Discussion
2.1. Synthesis and Characterization of Chitin Derivatives
2.1.1. Synthesis of Chitin Derivatives

Sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT) were prepared in four steps (Scheme 1),
namely tosylation, azidation, reduction, and sulfonation. The first step was to obtain
6-tosyl-chitin through processing chitin (treated with 40% concentrated sodium hydroxide
solution) with 4-toluene sulfonyl chloride and chloroform. Afterwards, the azide treatment
was used to remove the tosyl group for producing azido-chitin (ACT). Then, amino-chitin
(NCT) was successfully synthesized through the reduction reaction of PPh3. Raw chitin and
all intermediate products (TCT, ACT, NCT) were water insoluble. Lastly, the water-soluble
chitin derivatives SCT and SPCT were synthesized by sulfonation. Their solubilities in
water were up to 2.0 mg/mL and 6.0 mg/mL, and good water solubility leads to wider
use. The enhanced water solubility of derivatives due to the introduction of the (propane)
sulfonated group led to an increase in the intermolecular spaces between the chains and
partially broke the initial hydrogen bonds.
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The elemental analyses of chitin derivatives and the degree of substitution (DS) are re-
ported in Table 1, as calculated by the S/N (TCT, SCT and SPCT) or C/N (other derivatives)
ratio obtained from the elemental analysis.

Table 1. The elemental analyses and the degrees of substitution of chitin derivatives.

Full Name
Sample

(Abbreviations)

Found (%)
DS Formula

C H N S

chitin CT 45.23 7.19 6.59 1.0 C8H13NO5

tosyl-chitin TCT 50.02 6.56 4.53 7.86 0.93 (C15H19NO7S)0.89(CT)0.11

azido-chitin ACT 44.25 5.22 20.87 0.90 (TCT)0.1 (C8H12N4O4)0.9

amino-chitin NCT 46.95 6.80 14.97 0.87 (ACT)0.04 (C8H14N2O4)0.87

sulfo-chitin SCT 36.90 5.85 9.84 8.74 0.40 (NCT)0.6(C8H14N2O7S)0.4

sulfopropyl-chitin SPCT 39.62 6.11 9.88 8.14 0.41 (NCT)0.59(C11H19N2O7S)0.41

2.1.2. FTIR Analysis

The formation of chitin and its derivatives were also confirmed via FTIR spectroscopy
(Figure 1).

The spectrum of unmodified chitin (CT) indicates that the polysaccharide mainly
contains the following characteristic bands: 3444 and 3104 cm−1 (–OH and –NH), 2922 cm−1

(aliphatic –CH), 1662, 1562 and 1315 cm−1 (amide I, II and III), 1427 cm−1 (pyranose ring),
1377 cm−1 (acetamide groups) and 1072 and 1030 cm−1 (C–O) [22].

In the NCT spectra, the bending vibration bands of –NH2 groups at around 1600 cm−1 was
not observed, which may be attributable to the influence of amide. Moreover, the absorption
intensities at 1030 cm−1 decrease, indicating successful incorporation of the amine group.
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Figure 1. IR spectra of chitin and its derivatives.

For SCT, the new peak at 613 cm−1, attributed to the S=O stretching vibration of the
sulfonic acid group [23,24], suggests that a sulfonation reaction took place on the amine
group and the synthesis of the desired compound was achieved.

Finally, for SPCT, the new peaks at 617 cm−1, corresponding to the stretching vibration
of the SO2 group in sulfonic acid, suggest the presence of the SO3H group in SPCT; the peak
at 1543 cm−1 was assigned to the C–N–C bending vibration of the SPCT branch, suggesting
that reaction occurred at the amine group to produce sulfopropyl-chitin [13].

2.1.3. NMR Analysis

Solid-state 13C NMR spectroscopy was applied to further elucidate the chemical
structures of chitin and its derivatives (Figure 2).

In the 13C NMR spectrum of chitin (CT) shows eight peaks: one at 104 ppm for C1, the
second at 83 ppm for C4, the third at 76 ppm for C5, the fourth at 74 ppm for C3, the fifth
at 61 ppm for C6 and the sixth at 55 ppm for C2. The other signals at 173 and 23 ppm are
assigned to C=O and CH3.

In the spectra of NCT, peaks ranging from 85 ppm to 64 ppm were assigned to C3, C4
and C5. At the same time, the peak at 61 ppm shifted to a higher field (43 ppm) compared
with the signals of C-6 of CT. This indicates that the amino groups were introduced into
chitin successfully.

In the SCT spectrum, the C6-NH2 participation in the reaction was marked as C6’ and
that which was not involved was marked as C6. The C6’ signal shifted from 42 to 57 ppm.
In addition, the signal at 42 ppm was still observed, which adequately indicates that the
C6-NH2 moiety was only partially replaced in SCT.
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Similarly, in the SPCT spectra, the C6-NH2 participation in the reaction was marked as
C6′ and C6-NH2, and that which was not involved was marked as C6. The signal at 61 ppm
was attributed to the substituted C6′; furthermore, the signal at 42 ppm was assigned to
partial replacement at C6. This implies that free amino groups at C6 were incompletely
replaced. Two new signals at 27 ppm and 48 ppm appeared, which were assigned to the
carbons in 1,3-propane sultone [25]. According to the results, we speculate that the amino
groups reacted with the 1,3-propane sultone and the successful synthesis of the desired
chitin derivatives was achieved.

2.1.4. Thermogravimetric and Derivative Thermogravimetric Analysis (TGA/DTG)

The thermogravimetric analyses (TGA) and the corresponding derivative thermogravi-
metric (DTG) curves of CT, SCT and SPCT are represented in Figure 3. All the TGA curves
of samples exhibit two stages of weight loss. CT underwent a 4.4% loss of mass from 45 ◦C
to 140 ◦C, which was attributed to evaporation of water already within the polymer struc-
ture [26]. In the following step, a sudden decrease in weight was observed at about 260–396 ◦C
(DTGmax at 357 ◦C); 72.2% mass loss was observed. This mass loss could be ascribed to
the decomposition of the saccharide structure of the chitin molecule, which contains the
dehydration of saccharide rings and the disintegration of both the N-acetylated units as well
as the degradation of other proteins associated with the chitin structure [27,28].

Similar TGA behavior was seen for SCT and SPCT. Firstly, the TGA curve of SCT exhibited
a 7.4% loss of mass from 45 ◦C to 160 ◦C. Then, the major weight loss of SCT (59.8%) occurred
at about 200–600 ◦C (DTGmax at 233 ◦C). The following loss was likely caused by the declined
hydrogen bonding and disruption of glycoside linkages. In the case of SPCT, a comparatively
similar behavior was observed as seen in SCT. The TGA curve of SPCT exhibited a 7.9%
loss of mass from 40 ◦C to 152 ◦C, followed by a 61.2% loss of mass at about 160–600 ◦C
(DTGmax at 240 ◦C). In addition, the initial decomposition temperatures of CT, SCT and SPCT
were found to be 260, 200 and 160 ◦C, respectively. Compared to CT, SCT and SPCT have
lower initial decomposition temperatures, and SCT and SPCT are thermally instable due to
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the introduction of the (propane) sulfonated group, which disrupted the H-bond formation
between the chains, as discussed in the solubility test.
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Comprehensively, it is reasonable to presume that chitin derivatives were more sus-
ceptible to the thermal decomposition temperature than raw chitin. A possible reason is
that chemical reactions lowered the regularity of chitin molecular chain and resulted in the
breakage of hydrogen bonds, thereby reducing its resistance to thermal degradation. Our
results were in accordance with previous studies [29,30].

2.1.5. X-ray Diffraction (XRD) Analysis

The crystalline structure of chitin and its derivatives were analyzed via X-ray diffrac-
tion (Figure 4). CT exhibited four peaks at 9.4◦, 12.8◦, 19.5◦ and 25.2◦. Two of them are
faint (12.8◦ and 25.2◦) and the other two are sharp (9.4◦ and 19.5◦). Compared to CT, the
XRD patterns of SCT and SPCT exhibited some changes in their peak width, peak intensity
and angles. The sharp peak of CT at 9.4◦ moved to 10.5◦ and 10.8◦ in the patterns of SCT
and SPCT, owing to the introduction of sulfonated groups and propane sulfonated groups
to the structure of chitin. In addition, for SCT, the peak at 19.5◦ shifted to 19.9◦, its intensity
decreased and its width increased. Similarly, for SPCT, the peak at 19.5◦ shifted to 20.6◦,
and the intensity and width of the peak had the same changes as well. Meanwhile, the
diffraction peak at 2θ = 12.8◦ and 25.2◦ disappeared, which may be due to the damaging of
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inter- and intra-molecular hydrogen bonds [31]. The results demonstrate that the (propane)
sulfonated group grafted on chitin resulted in a decrease in crystallinity, which can be
observed in the form of relatively weaker reflection in the spectra of SCT, and SPCT. A
lower crystallinity index leads to better water solubility [32]; as a result, SCT, and SPCT
should have a much better aqueous solubility than chitin, which is consistent with the
solubility test.
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2.2. Antioxidant Activities

The antioxidant assay of chitin could not be performed owing to its insolubility.
Therefore, the default is 0 (red line in Figure 5).

2.2.1. DPPH-Radical Scavenging Ability Assay

The DPPH-radical scavenging activity of SCT and SPCT is illustrated in Figure 5A. In
this experiment, we can clearly see that the scavenging effect increased with the increasing
concentration. Meanwhile, the scavenging capability against DPPH-radical was in order of
SPCT > SCT > CT at the concentrations studied. Moreover, SPCT and SCT show antioxidant
activities at 1.6 mg/mL of 79.7% and 47.3%, respectively.

The scavenging activity may be correlated with DPPH-radicals reacting with active
hydrogen in chitin derivatives to form a stable macromolecule. The more active the hydrogen,
the higher the scavenging capability. Therefore, the scavenging effect of all samples increased
with increasing concentration. The sulfonated groups grafted on CT are able to act as hydrogen
donors. Furthermore, SPCT is more reactive than SCT as it is sterically less hindered; as a
result, the hydrogens of the derivative are more exposed to the outside.

Meanwhile, the 50% inhibition concentration (IC50) is a good parameter to evaluate
scavenging capability. A lower IC50 value indicates a greater antioxidant activity. According
to the results, SPCT had the highest activity compared to CT and SCT. The IC50 of SPCT was
0.10 mg/mL. In other words, the SPCT can act as a reducing agent, and propane sulfonated
groups play an important role in scavenging activity against DPPH-radicals.
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2.2.2. Hydroxyl-Radical Scavenging Ability Assay

There is no doubt that timely removal of excess hydroxyl radicals is crucial to create a
healthier body. From Figure 5B, we can clearly see that the scavenging capability against
hydroxyl-radicals was in the order of SPCT > SCT > CT at the concentrations studied.
Results indicate that SPCT and SCT exhibited enhancement on hydroxyl-radical scavenging
capability; the scavenging effects at 1.6 mg/mL were 66.6% and 24.3%, respectively. In
additional, IC50 of SPCT was 0.86 mg/mL.

The scavenging activity may be correlated with active hydrogen in chitin derivatives.
Active hydrogen in the polysaccharide unit can react with ·OH by the typical H abstraction
reaction. The grafting of propane sulfonated groups onto CT can donate more protons
to free radicals; this principle was discussed in the DPPH-radical assay. These results
suggest that sulfonated groups could be an important factor in affecting hydroxyl-radical
scavenging activity.

2.2.3. Superoxide-Radical Scavenging Ability Assay

Superoxide scavenging activity was determined in the NBT assay. According to Figure 5C,
the result concurred with the scavenging properties against DPPH-radicals. Moreover, the
scavenging capability of the samples increased with the increase in concentration at
0.1–1.6 mg/mL. The maximum of 37.4% inhibition was observed at the concentration
of 1.6 mg/mL of SCT. SPCT also had the strongest scavenging activity, reaching 75.7% at
1.6 mg/mL. Moreover, the IC50 of SPCT was 0.17 mg/mL.

As reported, the scavenging effect is correlated with the number of active hydrogens
in the molecule. As mentioned in the DPPH-radical and hydroxyl-radical assay, SCT and
SPCT can be proton donors that react with superoxide anions. The results clearly indicate
that SPCT can be regarded as an efficient antioxidant polymer and propane sulfonated
groups undoubtedly play crucial roles in its free radical scavenging capability.
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2.2.4. Reducing Power Assay

The reducing powers of chitin and its derivatives are shown in Figure 5D. The results
clearly indicate that the reducing power of samples exhibited an upward trend with the
increase in sample concentration. SPCT exhibited stronger reducing power than SCT, and
they were found to have reducing powers at 1.6 mg/mL of 2.2 and 0.8, respectively.

Accordingly, the reducing capacity of a compound may serve as a significant indicator
of its potential antioxidant activity [33]. Based on the results, it is concluded that propane
sulfonated groups can enhance the ability of the reducing power.

These data demonstrate that the scavenging effect of all samples increased with increas-
ing concentration. Additionally, the scavenging abilities were in order of SPCT > SCT > CT
in the tested concentration. It is valid to find that the antioxidant ability increases with the
increasing chain length of alkyl substituent. This observation is in agreement with previous
reports [34]. According to the results, we could conclude SPCT with presumed antioxi-
dant properties may be developed into new antioxidants as a possible food ingredient or
supplement in the pharmaceutical industry.

2.3. Antifungal Activity

The action of phytopathogenic fungi causes severe damage to plants; thus, control
of these plant-threatening fungi is of great interest. Here, we tested CT, SCT and SPCT
against destructive plant-threatening fungi (P. asparagi, F. oxyspirum f. niveum, B. cinerea
and F. oxysporum f. sp. Cucumerium). The results are shown in Figure 6. It is clear from
the plots that the antifungal activities of the derivatives correlated well with the increase
in concentration. Additionally, chitin derivatives exhibited the best antifungal activity at
1.0 mg/mL. Simultaneously, the inhibitory index was in the order of SPCT > SCT > CT.
Details are as follows.
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As depicted in Figure 6A, CT and SCT slightly inhibited the growth of P. asparagi
and the inhibitory rates were 11.5% and 22.3% at 1.0 mg/mL, respectively. Compared
to both, SPCT had better antifungal activity, and the inhibitory index was up to 65.1% at
1.0 mg/mL. In other words, SPCT possesses powerful antifungal activity against P. asparagi,
and propane sulfonated groups are an important factor that affects antifungal activity.

As depicted in Figure 6B, CT also slightly inhibited the growth of F. oxyspirum f. niveum
and the inhibitory rate was 6.5% at 1.0 mg/mL. Compared with CT, the inhibitory indices
of SCT and SPCT at 1.0 mg/mL were 24.2% and 66.2%, respectively. Namely, both SCT and
SPCT have a better ability to inhibit F. oxysporum, and propane sulfonated groups might
help to improve the antifungal activity of chitin derivatives.

The antifungal assays against B. cinerea suggest that the antifungal activities of the
chitin derivatives exhibited a dose-dependent manner (Figure 6C). It is evident that the
antifungal activity of the chitin derivatives was much better than that of chitin at the same
concentration. The inhibitory rates of CT, SCT and SPCT against B. cinerea at 1.0 mg/mL
were 13.6%, 46.9% and 77.3%, respectively.

The inhibitory rates of CT, SCT and SPCT against F. oxysporum f. sp. Cucumerium are
shown in Figure 6D. The results are similar to the antifungal activity against P. asparagi. The
inhibitory rate of CT was 14.6% at 1.0 mg/mL, while those of SCT and SPCT at 1.0 mg/mL
were 20.3% and 89.0%, respectively.

Based on the results mentioned above, sulfonated chitin can serve to repress the
growth of fungus, and SPCT with propane sulfonated groups exhibits higher antifungal
activity than SCT with sulfonated groups and CT. The result also concurs with the previous
studies reported by Sajomsang and Li, in which they also discovered that the antifungal
activity of chitosan derivatives against the plant pathogenic fungi was enhanced by the
increasing chain length of alkyl substituent [35,36]. According to the results mentioned
above, propane sulfonated groups are considered efficacious antifungal groups. Therefore,
SPCT that exhibits selective bactericidal activity could be used in agricultural industries.

3. Materials and Methods
3.1. Materials

Chitin was purchased from Sinopharm Chemical Reagent Co., and its degree of
deacetylation was 10%. The other reagents, such as chloroform, sodium azide, triph-
enylphosphine (Ph3P), 4-toluene sulfonyl chloride, 1,3-propanesulfonate, sulfur trioxide
pyridine, N-Methyl pyrrolidone (NMP) and dimethyl sulfoxide (DMSO), etc., were pro-
vided by Sinopharm Chemical Reagent Co., Ltd., Shanghai, China.

3.2. Analytical Methods

FT-IR spectra of the samples diluted in KBr pellets were performed on a Fourier
transform infrared spectrometer (JASCO Co., Ltd. Shanghai, China). The elemental anal-
yses (C, H, and N) were carried out using a Vario Micro Elemental Analyzer (Elementar,
Germany). The UV–Vis absorbance was measured using a T6 New Century UV spec-
trometer (P General Co., Ltd., Beijing, China). 13C nuclear magnetic resonance (13C NMR)
spectra were carried out on a Bruker AVANCE III spectrometer (Bruker Tech. and Serv.
Co., Ltd. Beijing, China.) The thermogravimetric analysis (TGA) was recorded on the
TGA/DSC1/1100 (Mettler-Toledo). The X-ray patterns of samples were measured using an
X-ray diffractometer (D8 advance, Bruker, Germany).

3.3. Synthesis

As shown in Scheme 1, amino-chitin was synthesized according to the earlier literature [37].
The synthesis and characterization of amino-chitin are provided in the Supplementary Materials.
SCT and SPCT were prepared as follows.
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3.3.1. Preparation of Sulfo-Chitin (SCT)

A mixture of 0.3 g amino-chitin and 80 mL DMSO was treated with sulfur trioxide
pyridine complex (1.2 g) at 80 ◦C for 24 h. The crude product was dialyzed for 2 days and
lyophilized. Yield: 64%.

3.3.2. Preparation of Sulfopropyl-Chitin (SPCT)

We dispersed 0.3 g of amino-chitin into 50 mL of 2% acetic acid solution via magnetic
stirring. Then, 1.0 mL of 1,3-propanesulfonate was added into solution, and the solution
was raised to 80 ◦C and maintained for 24 h. The crude product was dialyzed for 2 days
and lyophilized. Yield: 40%.

3.4. Investigation of the Antioxidant Activity

Antioxidant activity models can be classified into two basic mechanisms: single
electron transfer (SET) and hydrogen atom transfer (HAT). The SET mechanism studies
one electron’s transferring ability to reduce metals and radicals with changes in color
as a result, such as 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging, hydrogen
peroxide scavenging and ferric ion reducing antioxidant power. On the contrary, the
HAT mechanism is the ability to quench free radicals by hydrogen donation, which can
be measured by various assays such as oxygen radical absorbance and total oxyradical
scavenging capacity assay.

3.4.1. DPPH-Radical Scavenging Activity

The DPPH scavenging activities of the samples were determined using the method
described by Luan [38]. Testing samples (SCT and SPCT) and 180 µM DPPH ethanol
solution were incubated for 0.5 h at 25 ◦C. Afterwards, the reaction system was shaken
evenly and incubated in dark for 20 min. Finally, the absorbance of the mixture was
recorded at 517 nm spectrophotometrically. The assay was performed in triplicate and the
DPPH-radical scavenging activity was computed using the following Equation (1):

Scavenging effect (%) =

[
1−

Asample 517 nm − Acontrol 517 nm

Ablank 517 nm

]
× 100 (1)

where Asample 517 nm is the absorbance of the sample at 517 nm; Acontrol 517 nm is the absorbance
of the control at 517 nm; and Ablank 517 nm is the absorbance of the blank at 517 nm.

3.4.2. Hydroxyl-Radical Scavenging Activity

The hydroxyl-radical scavenging power of the samples was performed in accordance
with the approach of Sun [39]. The reaction mixture, with a total volume of 4.5 mL and
involving testing samples (SCT and SPCT), was incubated with EDTA-Fe2+ (220 µmol/L),
H2O2 (60 µmol/L) and safranine T (0.23 µmol/L) in phosphate buffer (pH 7.4) for 0.5 h at
37 ◦C under shaken condition. The absorbance of the resulting solution was recorded at
520 nm against a blank. The assay was performed in triplicate and the hydroxyl-radical
scavenging activity was computed using the following Equation (2):

Scavenging effect (%) =
Asample 520 nm − Ablank 520 nm

Acontrol 520 nm − Ablank 520 nm
× 100 (2)

where Asample 520 nm is the absorbance of the sample at 520 nm; Acontrol 520 nm is the absorbance
of the control at 520 nm; and Ablank 520 nm is the absorbance of the blank at 520 nm.

3.4.3. Superoxide-Radical Scavenging Activity

The superoxide-radical scavenging capability was determined based on the procedure
reported with slight modifications [40]. It involving testing samples (SCT and SPCT),
reduced nicotinamide adenine dinucleotide (338 µmol), phenazine mothosulfate (30 µmol)
and nitro blue tetrazolium (72 µmol) in Tris-HCl buffer (16 mM, pH 8.0). After the resulting
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solution was incubated for 5 min at room temperature, the absorbance was read quickly
at 560 nm. The assay was performed in triplicate and the superoxide-radical scavenging
effect was computed according to the following Equation (3):

Scavenging effect (%) =

[
1−

Asample 560 nm − Acontrol 560 nm

Ablank 560 nm

]
× 100 (3)

where Asample 560 nm is the absorbance of the sample at 560 nm; Acontrol 560 nm is the absorbance
of the control at 560 nm; and Ablank 560 nm is the absorbance of the blank at 560 nm.

3.4.4. Reducing Power Activity

The reducing power was measured following the earlier methods [41]. In summary,
1.5 mL of 1% potassium ferricyanide was mixed with 1.5 mL of testing sample (CT, SCT
and SPCT), and the resulting solution was incubated at 50 ◦C for 20 min. Then, 10%
trichloroacetic acid (1.5 mL) was added. Subsequently, the upper layer (2.0 mL) was
blended with distilled water (2.0 mL) and 0.1% ferric chloride (0.2 mL). After standing
undisturbed for 10 min, the absorbance of the mixture was recorded at 700 nm. The
reducing power of the samples increased with the absorbance.

3.5. Evaluation of Antifungal Activity In Vitro

Antifungal assays were determined according to the method reported by Zhang [42].
In brief, each sample solution (CT, SCT and SPCT) was added to fungal medium to give a
final concentrations of 0.1, 0.5 and 1.0 mg/mL and sterilized by autoclaving at 120 ◦C for
40 min. After the PDA medium was cooled, the fungal mycelia disk (5 mm) was transferred
to the nutrient agar plate and incubated at 27 ◦C. All the samples were plated in triplicate
on agar plates, and the inhibition rate was calculated as follows with Equation (4):

Antifungal index (%) =

[
1− Da

Db

]
× 100 (4)

where Da is the diameter of growth zone in the test plate and Db is the diameter of growth
zone in the control plate.

3.6. Statistical Analysis

All data were reported as means ± standard deviation. The differences in the assays
were determined via Scheffe’s method. Data were analyzed by the analysis of variance to
guarantee statistical significance.

4. Conclusions

In summary, chitin derivatives with propane sulfonated groups were successfully
synthesized. In addition, the antioxidant and antifungal activities of chitin and sulfonated
chitin derivatives were tested in vitro. Chemical derivatization and the incorporation of
(propane) sulfonated groups were done on chitin to yield better solubility, antioxidant and
antifungal activities. We found that antioxidant abilities and antifungal properties were in
the order of SPCT > SCT > CT. From the results, it can be inferred that the antioxidant ability
and antifungal activity increased with an increase in the chain length of alkyl substituents.
At the same time, propane sulfonated groups led to an enhancement of the antioxidant
and antifungal activity. Furthermore, chitin derivatives with enhanced biological activities
could be utilized as potential biomaterial for antioxidant and antifungal applications.
Therefore, this work can offer a feasible way to overcome chitin’s limitation by generating
soluble derivatives. Undoubtedly, the further modification and utilization of chitin can
minimize the waste of shell-waste and create new industrial opportunities.
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mdpi.com/article/10.3390/md20110668/s1, Figure S1: FTIR spectra of TCT and ACT; Figure S2: Solid-state
13C NMR spectra of TCT and ACT.
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