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Abstract: An extract of the coralline demosponge Astrosclera willeyana inhibited the ubiquitin ligase
activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract
provided ten active compounds, including three new N-methyladenine-containing diterpenoids,
agelasines W–Y (1–3), a new bromopyrrole alkaloid, N(1)-methylisoageliferin (4), and six known
ageliferin derivatives (5–10). The structures of the new compounds were elucidated from their
spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with
spectroscopic data in the literature. While all of the isolated compounds showed Cbl-b inhibitory
activities, ageliferins (4–10) were the most potent metabolites, with IC50 values that ranged from
18 to 35 µM.

Keywords: ageliferins; agelasine diterpenoids; Astrosclera willeyana; Cbl-b inhibition; N-methyladenine;
bromopyrrole

1. Introduction

The ubiquitin protein ligase (E3), referred to as Casitas B-lineage lymphoma proto-
oncogene-b (Cbl-b), negatively regulates the costimulatory pathway in T cells, decreasing
the immune response and setting the threshold for anergy in T cells [1]. Cbl-b is essential
for the negative regulation of T-cell activation, and thus, it reduces the immune response to
cancer cells [2,3]. In line with this function, cells that lack the cblb gene rejected tumors in
various models and were resistant to rechallenge with tumors after initial tumor rejection
in a variety of tumor models [4–7]. Thus, targeting Cbl-b may be an effective strategy to
enhance antitumor immunity. As part of an ongoing effort to identify small molecule in-
hibitors of the Cbl-b function from natural products [8], an extract of the sponge Astrosclera
willeyana was screened and showed a marked reduction of Cbl-b ligase activity.

The calcareous demosponge Astrosclera willeyana is often referred to as a “living fossil”
that is representative of late Paleozoic and Mesozoic reef sponges, and it has provided
unique secondary metabolites such as N-methylated ageliferin derivatives and manzacidin
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D [9,10]. These compounds contain pyrrole-2-carboxylic acid moieties, and their novel
structures have been the focus of numerous synthetic efforts [11–15]. To date, little is known
about the biological properties of these compounds, except for the reported cytotoxic and
antibacterial activities of the nonmethylated form of ageliferin [16,17]. In our current study,
bioassay-guided fractionation of the A. willeyana extract provided ten active compounds,
including three new N-methyladenine-containing diterpeneoids named agelasines W–Y
(1–3). The agelasines represent a family of diterpene–adenine conjugates that has only been
described from sponges in the genus Agelas. In addition, a new bromopyrrole alkaloid, N(1)-
methylisoageliferin (4), along with six known ageliferin derivatives (5–10) were isolated
and identified. Herein, we describe the isolation, structure elucidation, and biological
activities of the A. willeyana metabolites.

2. Results and Discussion

The organic solvent extract of the sponge Astrosclera willeyana was separated by
bioassay-guided diol flash chromatography and C18 HPLC to yield four new metabolites
named agelasines W–Y (1–3) and N(1)-methylisoageliferin (4) (Figure 1), along with six
known compounds: N(1′)-methylisoageliferin (5), N(1′)-methylageliferin (6), N(1),N(1′)-
dimethylisoageliferin (7), N(1),N(1′)-dimethylageliferin (8), N(1′)-methyl-2-bromoageliferin
(9), and N(1′)-methyl-2′-bromoageliferin (10).
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Figure 1. Structures of compounds 1–10.

Agelasine W (1) was obtained as a colorless oil. The molecular formula C26H40N5
+,

with 10 degrees of unsaturation, was determined by HRESIMS measurements ([M]+ m/z
422.3285, calcd for C26H40N5

+, 422.3278). The 1H and 13C NMR data (Table 1) of compound
1 showed characteristic signals of an adenine moiety at δH/δC 8.44 (1H, s, H-8′)/148.0
(C-8′), 8.57 (1H, s, H-2′)/149.5 (C-2′), δC 112.4 (C-5′), 151.5 (C-4′), and 155.1 (C-6′), and an N-
methyl group at δH/δC 4.04 (3H, s)/36.6, revealing the presence of an N-methyladeninium
unit in (1). The remaining C20H33 portion was defined as a halimane diterpenoid moiety
by comparison of its NMR spectroscopic data with those of related diterpenes [18–20]. The
four methyl singlets at δH 0.84 (H3-18), 0.88 (H3-19), 0.94 (H3-20), and 1.84 (H3-16), and a
doublet at δH 0.83 (3H, d, J = 6.4 Hz, H-17), were compatible with a bicyclic halimane ring
system, while the 1H NMR signals of δH 2.10 (1H, m, H-11a), 1.26 (1H, m, H-11b), 2.00 (1H,
m, H-12a), 1.81 (1H, m, H-12b), 5.45 (1H, t, J = 6.9 Hz, H-14), 5.12 (2H, br d, J = 6.9 Hz, H2-
15), and 1.84 (3H, s, H3-16) were assigned to a 3-methyl-2-pentenyl chain, according to their
COSY and HMBC correlations (Figure 2). The HMBC correlations from H-1 to C-3 and C-5,
and from H-8 and H2-11 to C-10, established the location of a trisubstituted olefin at ∆1−10,
while the HMBC correlations from H2-15 to C-5′ and C-8′ defined the attachment of C-15
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to N-7′ of the adenine subunit. Moreover, the 1H and 13C data of (1) were highly similar to
those of agelasine C [21]. However, the N-methyl group in (1) showed HMBC correlations
to C-2′ and C-4′, which revealed its location on N-3′, while agelasine C had a methyl group
substituted at N-9′. The E configuration of the C-13/C-14 olefin was assigned from NOESY
correlations between H-14/H-12b and H2-15/H3-16. Additional NOESY correlations of
H-5/H-11a and H-8/H-11b suggested that H-5, H-8, and H2-11 were on the same face of
the molecule, while a correlation between H3-17 and H3-20 supported this assignment.
The chemical shift of C-20 appeared at δH 0.94 ppm, which was consistent with the C-17
and C-20 methyl groups being cis, since it was reported that C-20 is more shielded in a cis
than a trans orientation of these methyls [21]. The absolute configuration of agelasine W
(1) is suggested as 5R, 8R, 9,S according to the positive optical rotation of (1) ([α]25

D + 17)
compared to those for (+)-and (−)-agelasine C, +36.7 and −55.1, respectively [20,21].

Table 1. 1H NMR (600 MHz) and 13C NMR (150 MHz) data for agelasines W–Y (1–3) in CD3OD.

Position
1 2 3

δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type

1 5.36, t (4.0) 121.4, CH 5.36, t (4.0) 121.4, CH 2.01, m 1.83, m 18.8, CH2
2 2.04, m 24.1, CH2 2.04, m 24.1, CH2 2.15, m 2.01, m 25.0, CH2
3 1.37, m 1.13, m 34.2, CH2 1.37, m 1.13, m 34.2, CH2 5.28, br s 124.4, CH
4 32.4, C 32.4, C 141.0, C
5 1.69, m 44.8, CH 1.69, m 44.9, CH 38.0, C
6 1.59, m 1.30, m 24.8, CH2 1.59, m 1.30, m 24.8, CH2 2.03, m 1.09, m 38.8, CH2
7 2.02, m 1.37, m 30.2, CH2 2.02, m 1.37, m 30.2, CH2 1.25, m 29.9, CH2
8 1.55, m 40.6, CH 1.55, m 40.6, CH 1.48, m 38.6, CH
9 44.1, C 44.1, C 41.3, C
10 142.7, C 142.6, C 1.40, m 45.9, CH
11 2.10, m 1.26, m 38.6, CH2 2.10, m 1.26, m 38.7, CH2 1.65, m 1.37, m 37.6, CH2
12 2.00, m 1.81, m 35.5, CH2 2.00, m 1.81, m 35.5, CH2 2.03, m 33.9, CH2
13 147.4, C 147.7, C 147.7, C
14 5.45, t (6.9) 117.5, CH 5.45, t (6.9) 117.2, CH 5.50, t (7.0) 117.3, CH
15 5.12, br d (6.9) 46.6, CH2 5.13, br d (6.9) 46.7, CH2 5.15, br d (7.0) 46.7, CH2
16 1.84, s 17.0, CH3 1.84, s 17.0, CH3 1.86, s 17.0, CH3
17 0.83, d (6.4) 16.0, CH3 0.83, d (6.4) 16.0, CH3 0.80, d (6.4) 16.3, CH3
18 0.84, s 26.6, CH3 0.84, s 26.6, CH3 1.69, s 20.0, CH3
19 0.88, s 28.7, CH3 0.88, s 28.7, CH3 1.04, s 33.6, CH3
20 0.94, s 22.8, CH3 0.94, s 22.8, CH3 0.85, s 17.9, CH3
2′ 8.57, s 149.5, CH 8.67, s 149.5, CH 8.67, s 149.5, CH
3′-NMe 4.04, s 36.6, CH3 4.06, s 36.6, CH3 4.05, s 36.6, CH3
4′ 151.5, C 150.0, C 150.4, C
5′ 112.4, C 113.1, C 113.1, C
6′ 155.1, C 153.8, C 153.8, C
8′ 8.44, s 148.0, CH 8.38, s 147.1, CH 8.39, s 147.1, CH
10′-NMe 3.27, s 29.3, CH3 3.27, s 29.3, CH3

Agelasine X (2) was obtained as a colorless oil, and the HRESIMS spectrum displayed
a [M]+ ion at m/z 436.3452, corresponding to the molecular formula of C27H42N5

+ with
10 degrees of unsaturation. The 1H and 13C NMR data of compound 2 were nearly identical
to those of (1), except for the presence of an additional N-methyl group at δH/δC 3.27 (3H,
s)/29.3. The location of the N-methyl group was assigned at N-10′ based on an HMBC
correlation to C-6′ (δC 153.8). The relative and absolute configurations of agelasine X (2)
were assigned the same as (1) based on their close spectroscopic similarities and its positive
optical rotation ([α]25

D + 20).
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Figure 2. Key 2D correlations for agelasine W (1).

Agelasine Y (3) was also isolated as a colorless oil, and HRESIMS ([M]+ m/z 436.3439,
calcd for C27H42N5

+, 436.3435) established a molecular formula of C27H42N5
+ that was

isomeric with compound 2. Agelasine Y (3) shared many similar NMR features with
those of (2), except for differences in select signals in the bicyclic diterpene ring system
(Table 1). The diterpene portion of (3) was assigned as a clerodane skeleton by NMR
analysis and a comparison of its spectroscopic data with those of previously reported
clerodane diterpenes [20,22–24]. The location of the trisubstituted C-3/C-4 olefin was
defined by a COSY correlation between the H-2/H-3 and HMBC correlations from H2-1
to C-3, H-10 to C-4, H3-18 to C-3 and C-5, and from H3-19 to C-4 (Figure 3). The relative
configuration of the bicyclic ring system of (3) was deduced as a cis-clerodane from the
characteristic deshielded carbon signals at δC 25.0 (CH2, C-2) and 33.6 (CH3, C-19) [22], in
addition to a NOESY correlation between H-10 and H3-19. Additional NOESY correlations
of H-8/H-10, H-10/H-11a, and H3-17/H3-20 established the relative configurations at C-8
and C-9. Furthermore, a comparison of the 13C NMR data in CDCl3 with four closely
related clerodane diastereomers (cis-cis, cis-trans, trans-trans, and trans-cis) showed that the
chemical shifts of (3) (Supplementary Materials) were in good agreement with those of
neo-cis-cis-kolavenol [25], supporting the assigned configuration of the bicyclic scaffold.
The E configuration of the side chain olefin was assigned from NOESY correlations of
H-14/H-12b and H2-15/H3-16. The structure of (3) resembled that of agelasine Except
for the position of the N-methyl groups, the rotation for (3) ([α]25

D + 15) and agelasine A
([α]25

D − 31.3) have opposite signs [20]. Therefore, the absolute configuration of agelasine Y
(3) is suggested as shown.
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Figure 3. Key 2D NMR correlations for agelasine Y (3).

N(1)-methylisoageliferin (4) was obtained as a pale-yellow glass. The molecular for-
mula C23H26Br2N10O2 with 15 degrees of unsaturation was determined by an HRESIMS of
the doubly charged ion ([M + 2H]2+ m/z 317.0374, calcd for C23H28N10O2

79Br2
2+, 317.0376).
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The 1H and 13C NMR data of (4) (Table 2) closely resembled those of the known com-
pound N(1′)-methylisoageliferin (5) [10], and the molecular formula of (4) was isomeric
with (5). NMR signals characteristic of the 3-bromo-N-methylpyrrole 5-carbozamide and
2-bromopyrrole 5-carboxamide ring systems were apparent, as well as signals for a highly
substituted cyclohexene and two amino imidazole rings. The HMBC correlations from H-4
and H2-8 to C-6 (Figure 4) revealed that the 3-bromo-N-methylpyrrole 5-carboxamide ring
was linked to C-8, and the 2-bromopyrrole 5-carboxamide ring was linked to C-8′ via the
HMBC correlations from H-4′ and H2-8′ to C-6′. Thus, the constitution of (4) only differed
from (5) by the location of N-methyl substitution on the pyrrole ring. The configuration
of N(1)-methylisoageliferin (4) was identical to that of (5), since its NMR data for the
cyclohexene ring, including proton coupling constants and NOE enhancements, and its
optical rotation, as well as its ECD data, were fully consistent with those of (5) [10].

Table 2. 1H NMR (600 MHz) and 13C (150 MHz) NMR data for N(1)-methylisoageliferin (4)
in CD3OD.

Position δH (J in Hz) δC, Type

2 6.91, d (1.5) 129.1, CH
2′ 104.7, C
3 95.6, C
3′ 6.14, d (4.0) 112.5, CH
4 6.84, d (1.5) 116.1, CH
4′ 6.81, d (4.0) 113.5, CH
5 127.0, C
5′ 128.4, C
6 163.9, C
6′ 163.0, C
8 3.72, dd (14.8, 3.2); 3.43, dd (14.8, 4.3) 40.4, CH2
8′ 3.63, dd (14.0, 2.7); 3.37, dd (14.0, 2.7) 42.5, CH2
9 2.17, m 43.8, CH
9′ 2.25, m 37.2, CH
10 3.82, br d (8.5) 33.6, CH
10′ 2.72, dd (16.3, 5.3); 2.47, ddd (16.3, 9.0, 2.9) 23.5, CH2
11 127.6, C
11′ 122.8, C
13 149.3, C
13′ 149.2, C
15 6.77, s 112.9, CH
15′ 119.1, C

NMe 3.90, s 37.2, CH3

The known compounds 5–10 were identified as N(1′)-methylisoageliferin (5), N(1′)-
methylageliferin (6), N(1),N(1′)-dimethylisoageliferin (7), N(1),N(1′)-dimethylageliferin (8),
N(1′)-methyl-2-bromoageliferin (9), and N(1′)-methyl-2′-bromoageliferin (10) by compari-
son of their spectroscopic data with the appropriate literature values [10].

Compounds 1–10 were tested for their ability to inhibit the in vitro enzymatic activity
of the Cbl-b ubiquitin ligase (Table 3). The adenine–diterpenoid metabolites agelasines W–
Y (1–3) showed weak inhibitory activities against Cbl-b (IC50 > 50 µM), while the ageliferin
derivatives (4–10) had more pronounced inhibitory effects (IC50 = 18~35 µM). Compounds
7–9 were the most potent metabolites among the tested compounds, but definitive SAR
conclusions were difficult to make. There was no clear pattern of N-methylation or bromine
substitution of the two pyrrole rings that directly correlated with the observed Cbl-b
inhibitory activity. While the ageliferins are rather modest inhibitors of Cbl-b, the ageliferin
structural scaffold could serve as a starting point for the development of more potent
analogs with enhanced inhibitory properties.
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Table 3. Cbl-b inhibitory activities of compounds 1–10 (IC50 values in µM).

Compound IC50 Compound IC50

1 57 6 30
2 72 7 18
3 66 8 19
4 33 9 19
5 25 10 35

3. Materials and Methods
3.1. General Experimental Procedures

Flash chromatography was performed using a CombiFlash system (Teledyne Isco,
Lincoln, NE, USA). High-performance liquid chromatography (HPLC) was performed
using a Varian ProStar 215 solvent delivery module equipped with a Varian ProStar 340
UV-Vis detector, operating under Star 6.41 chromatography workstation software (Agi-
lent Technologies, Santa Clara, CA, USA). HPLC fractions were subsequently dried on
Explorer-220 (Thermo Fisher Scientific, Waltham, MA, USA). NMR spectra were acquired
with a Bruker Avance III NMR spectrometer equipped with a 3-mm cryogenic probe and
operated at 600 MHz for 1H and 150 MHz for 13C (Bruker, Billerica, MA, USA). Spec-
tra were calibrated to their residual solvent signals at δH 3.31 and δC 49.0 for CD3OD.
LRESIMS studies were measured on an Agilent 6130 Quadrapole LC/MS system (Agi-
lent Technologies, Santa Clara, CA, USA). HRESIMS data were carried out on an Agilent
Technology 6530 Accurate-mass Q-TOF LC/MS (Agilent Technologies, Santa Clara, CA,
USA). UV spectra were measured with a PerkinElmer Lambda 465 UV/Vis photodiode
array spectrophotometer (PerkinElmer, Waltham, MA, USA). ECD spectra were obtained
with a Jasco-1500 circular dichroism spectrophotometer (JASCO, Tokyo, Japan). Optical
rotations were recorded on a Rudolph research analytical AUTOPOL IV spectropolarimeter
(Rudolph Research Analytical, Hackettstown, NJ, USA). IR spectra were measured with a
Bruker ALPHA II FT-IR spectrometer (Bruker, Billerica, MA, USA).

3.2. Animal Material

Specimens of the sponge Astrosclera willeyana were collected in Tonga in November
1997 and kept frozen until extraction. The collection was carried out by the Coral Reef
Research Foundation under contract with the Natural Products Branch, U.S. National
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Cancer Institute. A voucher specimen (voucher ID # 0CDN5435) was deposited at the
Smithsonian Institution, Washington, DC, USA.

3.3. Extraction and Isolation

Following the standard NCI protocol for marine samples [26], the frozen sponge
sample (2127 g, wet weight) was ground and processed to provide 4.50 g of organic sol-
vent (CH2Cl2-MeOH 1:1 and 100% MeOH) extract (NSC #C017821). A 3.10-g aliquot of
the extract was loaded onto a cotton plug and then applied to a diol flash chromatog-
raphy column (150 g) through a CombiFlash system, sequentially eluting with hexane,
CH2Cl2, EtOAc/CH2Cl2 1:1 (v/v), EtOAc, MeOH/EtOAc 1:4 (v/v), MeOH/EtOAc 1:1
(v/v), MeOH/EtOAc 4:1 (v/v), and MeOH to obtain nine fractions (Frac. A–I). The active
Frac. E (eluted by MeOH/EtOAc 1:4, (v/v) 735 mg) was fractionated by semiprepar-
ative HPLC (Phenomenex Luna C18(2), 5 µM, 100 Å, 250 × 21.2 mm), using a linear
gradient of CH3CN/H2O 3:7–1:0 with 0.1% trifluoroacetic acid (TFA) as the mobile phase
to afford agelasine W (1, 7.0 mg), agelasine X (2, 18.9 mg), and agelasine Y (3, 4.7 mg).
Another more active Frac. F (eluted by EtOAc/MeOH 1:1, 1787 mg) was separated by
semipreparative HPLC in the same way as Frac. E to afford N(1)-methylisoageliferin
(4, 10.7 mg), N(1′)-methylisoageliferin (5, 20.0 mg), N(1′)-methylageliferin (6, 26.3 mg),
N(1),N(1′)-dimethylisoageliferin (7, 53.1 mg), N(1), N(1′)-dimethylageliferin (8, 6.9 mg),
N(1′)-methyl-2-bromoageliferin (9, 26.9 mg), and N(1′)-methyl-2′-bromoageliferin (10,
14.7 mg).

Agelasine W (1): colorless oil; [α]25
D + 17 (c 0.06, MeOH); UV (MeOH) λmax (log ε) 280

(3.70) nm; IR (neat) νmax 2951, 2357, 1659, 1434, 1196, 1133 cm−1; 1H and 13C NMR, Table 1;
HRESIMS m/z 422.3285 [M]+ (calcd for C26H40N5

+, 422.3278).
Agelasine X (2): colorless oil; [α]25

D + 20 (c 0.06, MeOH); UV (MeOH) λmax (log ε) 285
(3.89); IR (neat) νmax 2952, 2357, 1643, 1395, 1196, 1132 cm−1; 1H and 13C NMR, Table 1;
HRESIMS m/z 436.3452 [M]+ (calcd for C27H42N5

+, 436.3435).
Agelasine Y (3): colorless oil; [α]25

D + 15 (c 0.06, MeOH); UV (MeOH) λmax (log ε) 285
(3.95) nm; IR (neat) νmax 2944, 2357, 1643, 1394, 1196, 1132 cm−1; 1H and 13C NMR, Table 1;
HRESIMS m/z 436.3439 [M]+ (calcd for C27H42N5

+, 436.3435).
N(1)-Methylisoageliferin (4): pale-yellow glass; [α]25

D + 50 (c 0.06, MeOH); UV (MeOH)
λmax (log ε) 218 (4.30), 228 (4.25) and 270 (4.32) nm; ECD (c 7.12 × 10−3 M, MeOH) λmax
(∆ε) 284 (−0.75), 250 (+0.96), 229 (−4.56), and 212 (+1.33) nm; IR (neat) νmax 3172, 1678,
1200, 1139 cm−1; 1H and 13C NMR, Table 2; HRESIMS m/z 317.0374 [M + 2H]2+ (calcd for
C23H28N10O2

79Br2
2+, 317.0376).

3.4. Cbl-b Biochemical Assay

An extract of Astrosclera willeyana was identified as an active source in a screening
campaign of prefractionated natural product samples for the inhibition of Cbl-b ubiquitin
ligase activity [8]. The bulk extract was fractionated as described above, and the resulting
fractions were evaluated for activity in the Cbl-b bioassay, the details of which have already
been reported [8]. In brief, dose response experiments with chromatography fractions and
purified compounds were carried out in a Tris-HCl-based enzymatic assay buffer with the
following final composition: 75-nM Cbl-b (N1/2 construct) [27], 50-nM Ube2d2 protein
(E2) [28], 10-nM UBE1protein (E1), 50-nM biotinylated ubiquitin, and 0.5-µM unlabeled
recombinant ubiquitin. The assay buffer also contained the following additives: 0.1-mM
dithiothreitol, 0.5-mg/mL bovine gelatin (type B), 0.5-mM magnesium chloride, and 0.01%
Triton X-100. Reactions were initiated by the addition of ATP to a final concentration of
100 µM. Following initiation, reactions were transferred to plates previously precoated
overnight with 10 µg/mL of the polyubiquitin-binding domain of Cbl-b (UBA) [29]. The
UBA domain of Cbl-b binds ubiquitin chains, which results in the capture and enrichment
of autopolyubiquitinated Cbl-b. Following a reaction interval of 60 min, the reactions were
quenched by the addition of zinc to a final concentration of 2.4 mM. Quenched reactions
were incubated at room temperature overnight. Following this incubation period reaction,
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plates were processed as standard ELISA plates: washed thrice in Tris-buffered saline
(with 0.1% Tween-20, 1X TBST), probed with avidin-conjugated horse radish peroxidase,
which binds captured biotinylated ubiquitin, washed again in 1X TBST (3X), and then, an
avidin-HRP-dependent fluorescent signal (indicating avidin-HRP/biotin-polyubiquitin
complexes captured by the UBA coating on the plate) was detected (excitation 325 nm,
emission 420 nm) using an Infinite M1000 (Tecan US, Inc., Raleigh, NC, USA) plate reader.

4. Conclusions

Two different classes of Cbl-b inhibitory metabolites, including three new adenine-
diterpenoid conjugates (1–3) and seven ageliferin derivatives (4–10), were obtained from
the marine sponge Astrosclera willeyana. Agelasines W–Y (1–3) have bicyclic terpenoid
skeletons with a prenyl side chain that terminates with an N-methyladenine subunit.
These alkaloids arise from a mixed biosynthetic process that incorporates both terpene
and purine components, and their new structures enrich the known chemo-diversity of
Astrosclera sponges. Diterpene alkaloids with an N-methyladenine moiety are generally
methylated at the N-9′ position [30–34]; however, agelasines W–Y (1–3), along with the
previously reported agelasimines [35,36], have methyl substituents at both the N-3′ and
N-10′ positions. The new compound N(1)-methylisoageliferin (4) and six known analogs of
ageliferin (5–10) exhibited significant Cbl-b inhibitory properties, and they could provide a
structural framework for lead compound development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19070361/s1, Figure S1: 1H NMR spectrum (600 MHz) of Agelasine W (1) in CD3OD,
Figure S2: 13C NMR spectrum (150 MHz) of Agelasine W (1) in CD3OD, Figure S3: HSQC spectrum
of Agelasine W (1) in CD3OD, Figure S4: HMBC spectrum of Agelasine W (1) in CD3OD, Figure S5:
COSY spectrum of Agelasine W (1) in CD3OD, Figure S6: NOESY spectrum of Agelasine W (1)
in CD3OD, Figure S7: HRESIMS of Agelasine W (1), Figure S8: IR spectrum of Agelasine W (1),
Figure S9: UV spectrum of Agelasine W (1), Figure S10: 1H NMR spectrum (600 MHz) of Agelasine
X (2) in CD3OD, Figure S11: 13C NMR spectrum (150 MHz) of Agelasine X (2) in CD3OD, Figure S12:
HSQC spectrum of Agelasine X (2) in CD3OD, Figure S13: HMBC spectrum of Agelasine X (2)
in CD3OD, Figure S14: COSY spectrum of Agelasine X (2) in CD3OD, Figure S15: HRESIMS of
Agelasine X (2), Figure S16: IR spectrum of Agelasine X (2), Figure S17: UV spectrum of Agelasine
X (2), Figure S18: 1H NMR spectrum (600 MHz) of Agelasine Y (3) in CD3OD, Figure S19: 13C
NMR spectrum (150 MHz) of Agelasine Y (3) in CD3OD, Figure S20: HSQC spectrum of Agelasine
Y (3) in CD3OD, Figure S21: HMBC spectrum of Agelasine Y (3) in CD3OD, Figure S22: COSY
spectrum of Agelasine Y (3) in CD3OD, Figure S23: NOESY spectrum of Agelasine Y (3) in CD3OD,
Figure S24: HRESIMS of Agelasine Y (3), Figure S25: IR spectrum of Agelasine Y (3), Figure S26: UV
spectrum of Agelasine Y (3), Figure S27: 1H NMR spectrum (600 MHz) of N(1)-methylisoageliferin
(4) in CD3OD, Figure S28: 13C NMR spectrum (150 MHz) of N(1)-methylisoageliferin (4) in CD3OD,
Figure S29: HSQC spectrum of N(1)-methylisoageliferin (4) in CD3OD, Figure S30. HMBC spectrum
of N(1)-methylisoageliferin (4) in CD3OD, Figure S31: COSY spectrum of N(1)-methylisoageliferin
(4) in CD3OD, Figure S32: ECD spectrum of N(1)-methylisoageliferin (4), Figure S33: HRESIMS of
N(1)-methylisoageliferin (4), Figure S34: IR spectrum of N(1)-methylisoageliferin (4), Figure S35: UV
spectrum of N(1)-methylisoageliferin (4), Table S1: 1H NMR (600 MHz) data for compounds 5–10
in CD3OD, Table S2: 13C NMR (150 MHz) data for compound 5–10 in CD3OD, Table S3: 13C NMR
(150 MHz) data for compound 3 and closely related clerodane diastereomers in CDCl3.
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