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Abstract: The new asperorlactone (1), along with the known illudalane sesquiterpene echinolactone
D (2), two known pyrones, 4-(hydroxymethyl)-5-hydroxy-2H-pyran-2-one (3) and its acetate 4, and
4-hydroxybenzaldehyde (5), were isolated from a culture of Aspergillus oryzae, collected from Red
Sea marine sediments. The structure of asperorlactone (1) was elucidated by HR-ESIMS, 1D, and
2D NMR, and a comparison between experimental and DFT calculated electronic circular dichroism
(ECD) spectra. This is the first report of illudalane sesquiterpenoids from Aspergillus fungi and, more
in general, from ascomycetes. Asperorlactone (1) exhibited antiproliferative activity against human
lung, liver, and breast carcinoma cell lines, with IC50 values < 100 µM. All the isolated compounds
were also evaluated for their toxicity using the zebrafish embryo model.

Keywords: Aspergillus oryzae; marine fungus; illudalane sesquiterpenes; antiproliferative activity;
zebrafish toxicity

1. Introduction

The marine environment is an unsurpassed casket of chemodiversity and a prolific
source of biologically active compounds with potential medicinal applications [1]. In the
last 50 years, scientists all over the world have dedicated their efforts to uncover the po-
tential of marine metabolites, succeeding in the isolation of thousands of natural products
with peculiar architectures and interesting bioactivities [2]. As per April 2021, the marine
pharmacology arsenal [3] includes 15 approved drugs (mainly for cancer treatment), seven
compounds in phase I, 12 compounds in phase II, and 5 compounds in phase III clinical
trials, the latter including plitidepsin, recently proposed for COVID-19 symptomatic treat-
ment [4,5]. Sponges and tunicates are undoubtedly the most intensely studied marine
organisms, but it is now clear that marine microbes, isolated from sediments or from
symbiotic plants or invertebrates, constitute a rich source for secondary metabolites. In this

Mar. Drugs 2021, 19, 333. https://doi.org/10.3390/md19060333 https://www.mdpi.com/journal/marinedrugs

https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0002-3318-9861
https://orcid.org/0000-0001-9891-2443
https://orcid.org/0000-0003-1224-8428
https://orcid.org/0000-0002-1034-7441
https://orcid.org/0000-0002-6496-7822
https://orcid.org/0000-0002-1008-3167
https://orcid.org/0000-0001-8010-0180
https://doi.org/10.3390/md19060333
https://doi.org/10.3390/md19060333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/md19060333
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md19060333?type=check_update&version=3


Mar. Drugs 2021, 19, 333 2 of 9

context, although terrestrial fungi are more explored, in comparison to their marine coun-
terparts, a surprising number of structurally unique compounds have been isolated from
fungi living in marine habitats [6]. The peculiar properties of the marine environment with
regard to nutrients, temperature, and competition, are likely crucial factors in improving
the ability of marine fungi to elaborate compounds with promising bioactivities, especially
suited for antibiotic and anticancer applications [7].

The genus Aspergillus is one of the most abundant among marine ascomycetes, char-
acterized by high salt tolerance, fast growth rate, and the capacity to adapt to diverse
habitats. Marine Aspergillus fungi produce a wide range of secondary metabolites be-
longing to different classes and are endowed with a broad array of biological activities
of industrial and pharmaceutical interest [8,9]. As a part of our ongoing research activity
aimed at the isolation of bioactive compounds from terrestrial and marine fungi [10–13],
A. oryzae samples obtained from the sediments of the Red Sea, along the coasts of Saudi
Arabia, were chemically investigated. This study resulted in the isolation of two illudalane
sesquiterpenes, the new asperorlactone (1) and the known echinolactone D (2), along with
two rare pyrone derivatives (3–4) and 4-hydroxybenzaldehyde (5). These compounds were
evaluated for their antiproliferative activity against three human carcinomas (lung, liver,
and breast) cell lines. Chemotherapeutics used in cancer treatment are often characterized
by marked toxic effects on normal cells. Less than 2% of compounds emerging from in vitro
drug screening could enter clinical trials since the majority of the newly developed leads
fail in preclinical testing due to their toxicity in experimental animal models [14]. In vitro
drug screening methods are prevalently used in order to characterize the bioactivity and
the toxicity of new compounds, while testing their safety in suitable animal models prior to
clinical trials would save time and money. Since a high throughput screening approach is
not feasible in higher animals, zebrafish constitute a valid option for preclinical testing and
have shown quite reproducible results. It is predicted that, following further development
of technologies, zebrafish will play a key role in speeding up the emergence of precision
medicine [15,16]. On these bases, the isolated compounds 1–5 have been tested for their
zebrafish animal toxicity, and results are reported herein.

2. Results and Discussion
2.1. Extraction and Structural Identification

A. oryzae samples were isolated from the Red Sea sediment collected at a depth of—
50 m off Jeddah, Saudi Arabia. Fermentation of the fungus on solid rice medium and
extraction with EtOAc afforded a brownish residue, which was chromatographed by using
silica gel and RP-18 column chromatography, affording one new (1) and four known (2–5)
compounds (Figure 1).
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The known compounds were identified as echinolactone D (2) [17], 4-(hydroxymethyl)-
5-hydroxy-2H-pyran-2-one (3) [18], (5-hydroxy-2-oxo-2H-pyran-4-yl)methyl acetate (4) [16],
and 4-hydroxybenzaldehyde (5), by a comparison of their spectroscopic data with those
reported in the literature. The illudalane echinolactone D (2) had been isolated before
from mycelia of the fungus Echinodontium japonicum [17] and from the wood decomposing
fungus Granulobasidium vellereum [19], and therefore, this is its first report from a marine
source. Compound 3 is a rare isomeric analog of kojic acid for which only three reports
were present in the literature, all from Aspergillus fungi (marine A. flavus [18], terrestrial
A. niger [20], and freshwater A. austroafricanus [21]).

Asperorlactone (1) was isolated as a colorless oil with molecular formula C15H18O3,
determined by HR-ESIMS. The 13C NMR and DEPT spectra of 1 (Table 1) showed the pres-
ence of one lactone carbonyl (δC 166.5), one aromatic methine (δC 123.1), one oxymethine
(δC 60.8), one sp3 (δC 39.3) and five sp2 (δC 122.7, 132.2, 136.2, 144.3, 150.1) nonprotonated
carbons, three sp3 methylenes (δC 46.5, 47.1, 72.7, the latter O-bearing), and three methyl
groups (δC 13.1, 27.5 × 2). On the basis of these data, the seven unsaturation equivalents
required by the molecular formula of 1 could be accommodated by the presence of a
benzene ring and of two additional rings, including a lactone.

The 1H NMR spectrum of 1 (Table 1) showed only one aromatic methine signal
(δH 7.75), two methyl singlets (δH 1.19 × 2), an arylmethyl at δH 2.37 (s, 3H), and two pairs
of methylenes around δH 2.80–2.83. The single-spin system of 1 included a diastereoptopic
hydroxymethylene (δH 4.52 and 4.63), and an oxymethine signal (δH 4.95). Having asso-
ciated all these proton signals to those of the directly linked carbons with the 2D NMR
HSQC experiment, the illudalane type sesquiterpenes skeleton of compound 1 could be es-
tablished by following the correlation network of the 2D NMR HMBC spectrum (Figure 2)
(see Supplementary Materials).
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Table 1. 1H (700 MHz) and 13C (175 MHz) NMR data for asperorlactone (1) in CD3OD.

Positions δH (Mult., J in Hz) δC, Type

1a 2.83 (overlapped) 46.5, CH2
1b 2.81 (d, 17.5)
2 - 150.1, C
3 - 132.2, C
4 - 136.2, C
5 4.95 (dd, 1.0, 2.1) 60.8, CH
6 4.63 (dd, 1.0, 12.0) 72.7, CH2

4.52 (dd, 2.1, 12.0)
7 - 166.5, C
8 - 122.7, C
9 7.75 (s) 123.1, CH
10 - 144.3, C
11 2.82 (overlapped) 47.1, CH2
12 - 39.3, C
13 2.37 (s) 13.1, CH3
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Table 1. Cont.

Positions δH (Mult., J in Hz) δC, Type

14 1.19 (s) 27.5, CH3
15 1.19 (s) 27.5, CH3

In particular, correlations of H-9 with C-8 and the lactone C-7, of H-5 with C-4 and
C-8, and of H2-6 with C-7 defined the structure of the hydroxyisochroman-1-one moiety
of asperorlactone. The structure of the condensed dimethylated five-membered ring
was deduced from the correlation of H3-14/H3-15 with C-1, C-11, and C-12 and of H2-1
and H2-11 with C-2 and C-10. Finally, the remaining methyl group was attached at C-3,
following its correlations with C-2, C-3, and C-4.

Asperorlactone (1) is an optically active compound ([α]23
D − 19.8) with a single stere-

ocenter (C-5). We first tried to define the absolute configuration of 1 by employing the
modified Mosher’s method [22]; however, all the attempts to obtain the formation of the
MTPA esters from the corresponding chloride failed. Most likely, the reaction of the bulky
MTPA group with the hydroxyl group at C-5 was hindered by the methyl group present on
the condensed aromatic ring. Therefore, we decided to rely on computational calculations,
reasoning that comparison between experimental and quantum mechanically calculated
ECD spectrum could provide an unambiguous indication on the absolute configuration
of 1.

The structure of 1 was subjected to a geometry and energy optimization using DFT
with the mPW1PW91/6-311+G (d,p) functional and basis set combination using the Gaus-
sian 09 software. The reasonably populated conformations, their relative energy, and the
equilibrium room-temperature Boltzmann populations are reported in Figure 3. The two
major conformers 1a and 1b, accounting for 99.5% of the total population, differ almost
exclusively for the pseudorotation of the five-membered ring.
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Figure 3. The reasonably populated conformers 1a–1c of 1 and their calculated Boltzmann population.

TDDFT calculations were run using the functional CAM-B3LYP and the basis sets
6-31G (d,p) including at least 30 excited states in all cases, and using IEF-PCM for MeOH.
The rotatory strength values were summed after a Boltzmann statistical weighting, and
∆ε values were calculated by forming sums of Gaussian functions centered at the wave-
lengths of the respective electronic transitions and multiplied by the corresponding rotatory
strengths. Thus, the ECD spectra for R-1 and S-1 were obtained (Figure 4). The exten-
sive similarity of the first with the experimental ECD spectrum allowed us a confident
assignment of the absolute configuration of asperorlactone as 5R.

The isolation of asperorlactone (1), as well as of the related echinolactone D (2), is
of great relevance because, to our knowledge, this is the first report of illudalane-type
sesquiterpenes from an ascomycete (A. oryzae), since this class of metabolites has, until
now, been found exclusively in basidiomycetes.
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It has been reported that illudalanes derive biosynthetically from a humulene precur-
sor that, upon cyclization, would generate a protoilludane that finally would rearrange to
form the illudalane derivative [23]. In the light of this hypothesis, a possible biosynthesis
of asperorlactone is reported in Figure 5, where illudol [24] is a key intermediate that could
afford 1 by dehydration, oxidation, and four-membered ring opening.
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2.2. Pharmacological and Toxicological Evaluation of the Isolated Compounds

Illudalane sesquiterpenes, obtained from different sources, have been reported to
possess several biological properties, with a special focus on anticancer activities [25,26].
This prompted us to evaluate the antiproliferative activity of compounds 1–5 against three
human cancer cell lines, namely, lung carcinoma (A549), liver carcinoma (HepG2), and
breast carcinoma (MCF7). The obtained IC50 values are presented in Table 2. Compounds
1–5 generally showed moderate antiproliferative activity against all tested cell lines, invari-
ably with higher potency against lung carcinoma, as compared to liver or breast carcinoma.
As shown in Table 1, asperorlactone (1) and compound 2 were the most potent compounds
against three cancer cell lines, with the single exception of the activity of 5 against the
MCF-7 cell line. Additionally, interesting is the comparison between compounds 3 and 4,
evidencing that acetylation improves the activity against A549 and HepG2.
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Table 2. Antiproliferative activity of compounds 1–5 against three human cancer cell lines.

Compound IC50 (µM) for the Different Carcinoma Cell Lines

A549 (Lung) HepG2 (Liver) MCF-7 (Breast)

1 72.7 ± 1.1 86.6 ± 3.2 106.5 ± 4.2
2 55.7 ± 2.5 148.4 ± 5.6 128.0 ± 2.8
3 208.5 ± 6.8 220.4 ± 3.6 225.4 ± 5.1
4 89.4 ± 2.3 126.8 ± 6.4 170.7 ± 4.5
5 97.5 ± 2.6 242.6 ± 6.4 158.2 ± 5.5

Doxorubicin 2.1 ± 0.08 2.2 ± 0.15 1.9 ± 0.05

As anticipated, screening in zebrafish embryos provides an excellent environment
in which the toxicity of a compound on noncancer cells and systems could be predicted.
Thus, the zebrafish embryos model was used to evaluate the animal toxicity of compounds
1–5 (Figure 6). The LC50 values (the concentration required to kill 50% of embryos) of
all the tested compounds were higher than the 1 mg/mL range, indicating their safety
on noncancer cells and selectivity indices >50. The zebrafish embryos that were treated
with compounds 2, 3, and 5 did not exhibit any observable toxicity, and they developed
normally up to 3 days post treatment. On the other hand, compound 4, for which the initial
development and growth of zebrafish embryos was normal, induced the death of 100%
of treated embryos after 24 h post treatment. The zebrafish embryos that were treated
with more than 200 µM compound 1 (higher than IC50) developed normally; however, the
embryos exhibited cardiac toxicity (cardiac edema and cardiac hypertrophy, black arrow in
Figure 6) after 2 days post treatment.
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Figure 6. In vivo screening of compounds 1–5 in zebrafish embryos. Representative micrograph
of embryos at 3 days poster fertilization, which were treated with compounds 1–5. The zebrafish
embryos treated with compounds 2, 3, and 5 developed normally, and there were no obvious
differences in morphology and growth between control and treated embryos. The zebrafish embryos
treated with >200 µM of 1, however, had cardiac edema and cardiac hypertrophy (black arrow). The
zebrafish embryos treated with compound 4 developed normally but were found dead on day 2. All
the images are in same magnification, scale is 200 µm.

3. Materials and Methods
3.1. Fungal Material

Aspergillus oryzae was isolated from the marine sediment collected at −50 m off Jeddah,
Red Sea, Saudi Arabia, in October 2018. The fungal identification was conducted by DNA
amplification and sequencing of the internal transcribed spacer region (GenBank accession
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No. MH608347) followed by a subsequent BLAST search in NCBI according to the protocol
described before [27]. The specimen of the fungal strain was deep-frozen and deposited at
the authors’ lab (R.O., S.P.).

3.2. Fermentation, Extraction, and Isolation

A. oryzae was cultivated in 20 Erlenmeyer flasks on solid rice medium containing
(100 g rice, 3.5 g sea salt, and 110 mL of demineralized water). After autoclaving at 121 ◦C
for 20 min and then cooling to room temperature, each flask was inoculated and then
incubated at 20 ◦C under static conditions. After four weeks, 500 mL EtOAc was added
to each flask to stop the fermentation and extract. The total extract was collected after
the flasks had been shaken at 150 rpm for 8 h on a laboratory shaker. The obtained crude
extract after evaporation of the EtOAc (7 g) was then partitioned between n-hexane and
MeOH. The polar phase was then subjected to Sephadex LH-20 column (100 × 2.5 cm)
using 100% methanol as an eluting solvent. Similar fractions were combined with each
other according to TLC readings and further purified by semipreparative HPLC using
gradient system MeOH-H2O from 40:60 to 70:30 in 30 min to afford 1 (3.5 mg), 2 (5.0 mg),
3 (7.0 mg), 4 (5.0 mg), and 5 (2.6 mg).

Asperorlactone (1). Colorless oil; [α]23
D −19.8 (c 0.6, MeOH); UV λmax (MeOH) nm (log ε):

230 (4.6); ECD λmax (MeOH) nm (∆ε): 238 (+ 9.6), 265 (−4.8); 1H NMR (700 MHz, CD3OD),
and 13C NMR (175 MHz, CD3OD); see Table 1; ESIMS m/z 269.1150 [M + Na]+ (calc. for
C15H18 O3 Na m/z 269.1154).

3.3. Computational Calculations

A preliminary conformational search on each stereoisomer was performed by Simu-
lated Annealing in the INSIGHT II package. The MeOH solution phases were mimicked
through the value of the corresponding dielectric constant. Using the steepest descent
followed by quasi-Newton–Raphson method (VA09A) the conformational energy was min-
imized. Restrained simulations were carried out for 500 ps using the CVFF force field as
implemented in Discovery software (Version 4.0 Accelrys, San Diego, USA). The simulation
started at 1000 K, and then the temperature was decreased stepwise to 300 K. The final step
was again the energy minimization, performed in order to refine the conformers obtained,
using the steepest descent and the quasi-Newton–Raphson (VA09A) algorithms succes-
sively. Both dynamic and mechanic calculations were carried out by using 1 (kcal/mol)/A°

2 flat well distance restraints. In total, 100 structures were generated. TDDFT calculations
were run using the functional CAM-B3LYP and the basis sets 6-31G (d,p) including at least
30 excited states in all cases, and using IEF-PCM for MeOH. The rotatory strength values
were summed after a Boltzmann statistical weighting, and ∆ε values were calculated by
forming sums of Gaussian functions centered at the wavelengths of the respective electronic
transitions and multiplied by the corresponding rotatory strengths. The ECD spectra that
were obtained were UV-corrected and compared with the experimental ones.

3.4. In Vitro Antiproliferative Activity

The antiproliferative activity of compounds was measured using MTT (3-(4, 5-dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. A549 (lung), HepG2 (liver), and
MCF-7 (breast) cancer cells were purchased from the American Type Cell Collection (ATCC,
Manassas, VA, USA). The cells were seeded at 5 × 104 cells/well (in 100 µL of DMEM) in
96-well microplates. After 24 h incubation at 37 ◦C, serial dilution (15–250 µM) of each
compound was added and incubated for 48 h. Thereafter, 10 µL of the MTT solution
(5 mg/mL) was added to each well. After 4 h incubation with the MTT solution, a volume
of 100 µL of acidified isopropanol was added to solubilize the formazan product and
incubated on a shaker for a further 10 min. Reduced MTT was assayed at 570 nm using a
microplate reader (BioTek, Winoosky, VT, USA). Control groups received the same amount
of DMSO (0.1%), untreated cells were used as a negative control, whereas cells treated with
doxorubicin were used as a positive control. The IC50 (concentration that caused more
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than 50% inhibition of proliferation) was calculated from a dose-dependent curve. The cell
viability percent was calculated = mean absorbance of treated sample/mean absorbance of
control ×100.

3.5. Zebrafish Toxicity Screening

Wild-type zebrafish strain AB/Tuebingen TAB-14(AB/TuebingenTAB-14) (Catalog
ID: ZL1438) were obtained from zebrafish international resource center and grown in an
animal facility at the Department of Zoology, King Saud University, Riyadh, Kingdom of
Saudi Arabia. The fish were maintained and bred following guidelines of the Institutional
Animal Care and Use Committee (ICUAC) and zebrafish book. The fertilized embryos were
obtained by natural pairwise breeding of adult fish. The fertilized embryos were sorted,
dead embryos were removed, and synchronous stage embryos were used for screening.

A stock solution of 25 mM was made by dissolving the compounds in molecular
biology grade DMSO (Sigma Aldrich, St. Louis, MI, USA). Zebrafish embryos were
exposed to serial dilution (1, 5, 15, 45, 150, and 300 µM) of each compound. The embryos
were remained exposed to the compounds for 3 days, and the embryos medium containing
the compounds were changed every day. The response of the embryos toward mortality,
and embryonic toxicity (teratogenicity) was monitored once after 12 h and then after
every 24 h until the end of the experiment. The experiment was repeated at least three
times (triplicate biological repeats) by using a new batch of embryos every time. LC50 for
zebrafish embryonic toxicity was calculated by using an updated Probit analysis by Finney
method [28].

4. Conclusions

Samples of A. oryzae, obtained from the Red Sea sediments collected off Jeddah, Saudi
Arabia, afforded the first illudalane sesquiterpenoids isolated from an ascomycete, in-
cluding the new asperorlactone (1), characterized by hydroxylation of the lactone ring.
Elucidation of the structure and absolute configuration of this compound needed applica-
tion of ESIMS and NMR spectral analyses and computational calculations of ECD spectra.
The isolated compounds showed moderate antiproliferative activity against three human
carcinoma cell lines (lung, liver, and breast). The zebrafish embryo model was used to
evaluate the animal toxicity of compounds and selected echinolactone D (2) and the rare
pyrone 3 as targets worthy of further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19060333/s1, Figures S1–S5: 1D and 2D NMR spectra of asperorlactone (1).
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