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Abstract: Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds,
i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic
acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G
(4), along with three known metabolites (−)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-
3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the
molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory
activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-
methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and
cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell
line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation
and elastase release at a concentration of 10 µM, and compound 5 was also found to display strong
inhibitory activity against superoxide anion generation at the same concentration. Due to the
noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and
elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.

Keywords: Red Sea sponge; Spongia; seco-spongian diterpenoid; isoprenoid-derived amide
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1. Introduction

Marine sponges have been considered to be an important source for the discovery
of structurally diverse bioactive secondary metabolites [1]. Many natural products from
sponges have been shown to exhibit a variety of biological activities, such as antimicro-
bial [2–5], antiviral [6–8], antiprotozoal [8–10], cytotoxic [6,11–13], anti-inflammatory [14–16],
antioxidant [4,17,18], immunosuppressive [1,19,20], and antifeedant [21–23]. The genus
Spongia (Spongidae) has been chemically investigated since 1971 [24] and the studies have
led to the discovery of a series of furanoterpenes [24–26], spongian diterpenoids [27–32],
scalarane sesterterpenoids [33–35], sesquiterpene quinones [36,37], along with other kinds
of metabolites, for example, sterols [38–40] and macrolides [41].

We report, herein, the chemical investigation of an unidentified Spongia species inhab-
iting along the eastern coast of the Red Sea. This study afforded four new natural products
including a rare A-ring contracted diterpenoid, 17-dehydroxysponalactone (1), a C12 car-
boxylic acid, spongiafuranic acid A (2); a C12 hydroxamic acid, spongiafuranohydroxamic
acid A (3); and a furanyl trinorsesterpenoid, 16-epi-irciformonin G (4); along with three
known metabolites, (−)-sponalisolide B (5) [42], 18-nor-3,17-dihydroxyspongia-3,13(16),14-
trien-2-one (6) [43], and cholesta-7-ene-3β,5α-diol-6-one (7) [40] (Figure 1 and Supple-
mentary Materials Figures S1–S35 for 1–5). Furthermore, in order to discover bioactive
lead compounds, assays for the anti-inflammatory activity of the isolated compounds by
inhibition of the superoxide anion generation and elastase release in N-formyl-methionyl-
leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophils, and the
cytotoxicity of these compounds against three tumor cell lines, murine leukemia (P388),
human bile duct carcinoma (HuCCT), and human colon adenocarcinoma (DLD-1), and
a human dermal fibroblast (CCD-966SK) cell line were undertaken. Compounds 1 and 5
were shown to exhibit the promising anti-inflammatory activity.
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2. Results and Discussion

Compound 1 was obtained as a white powder. Its molecular formula C20H26O5
was established by the molecular ion peak at m/z 369.1672 [M + Na]+ in the HRESIMS,
consistent with eight degrees of unsaturation. The IR spectrum showed absorptions of
hydroxyl (3455 and 3401 cm−1) and lactone carbonyl (1752 cm−1) functionalities. The 13C
NMR spectroscopic data of 1 exhibited 20 carbon signals (Table 1), which were assigned by
the assistance of DEPT spectrum showing thirteen carbon signals of a diterpene, including
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three ring-juncture methyls (δC 26.9, 22.6, and 14.0; δH 1.24, 1.14, and 0.84) and a 3,4-
disubstituted furan ring (δC 137.1, CH; 134.8, CH; 136.8, C; and 119.6, C and δH 7.06,
1H, br s and 7.09, 1H, br s) [30,31,35,44]. On the basis of the number of unsaturations, 1
was, thus, suggested to be a pentacyclic 3,4-disubstituted furan diterpenoid. The NMR
spectroscopic data of 1 and 2D NMR corraltions (Figure 2) were similar to those of the
previously described sponalactone (8) [30], except that a hydroxymethyl in 8 was replaced
by a methyl at C-8 in 1. Compound 1 also possesses the same B, C, and D rings as 9 [32]
(Scheme 1).

Table 1. 1H and 13C NMR data (500 and 125 MHz, CDCl3) for 1.

Position δH, m (J in Hz) δC, Type

1 3.87, 1H, br s 81.8, CH
2 - 83.3, C
3 - 180.6, C
4 - 47.6, C
5 1.90, 1H, d (11.5) 56.0, CH
6 1.63, 1H, br dd (10.5, 10.5) 18.3, CH2

1.66, 1H, m
7 1.64, 1H, m 40.0, CH2

2.16, 1H, br d (10.5)
8 - 34.4, C
9 1.96, 1H, d (11.5) 47.0, CH
10 - 46.4, C
11 1.68, 1H, m 20.2, CH2

1.78, 1H, dq (12.5, 6.5)
12 2.59, 1H, ddd (16.0, 12.5, 6.5) 19.7, CH2

2.76, 1H, dd (16.0, 6.0)
13 - 119.6, C
14 - 136.8, C
15 7.09, 1H, br s 134.8, CH
16 7.06, 1H, br s 137.1, CH
17 1.24, 3H, s 26.9, CH3
18 1.14, 3H, s 22.6, CH3
19 3.92, 1H, d (12.0) 74.6, CH2

4.37, 1H, d (12.0)
20 0.84, 3H, s 14.0, CH3

The relative and absolute configurations of 1 were established on the basis of nuclear
Overhauser effect (NOE) correlation analysis (Figure 3) and by comparison of the observed
NOE correlations with those of the related compounds [30,31], the observed pyridine-
induced solvent shifts [45], and biogenetic consideration. The NOESY spectrum of 1
showed NOE correlations of H3-17/H3-20 and H-5/H-9, depicting the 5R*,8R*,9S*,10R*-
configuration. H-1 displayed NOE interactions with the β-oriented H3-20 and H-11α
(δH 1.68, m), indicating the α-orientation of the H-1. Furthermore, the NOE correlations
of H-5/H3-18, H3-18/H-19α (δH 3.92) and H-19β (δH 4.37)/H3-20 disclosed the α- and
β-orientations of H3-18 and the γ-lactone ring, respectively, and the α-orientation of the
hydroxyl at C-2, accordingly. The analysis of the pyridine-induced deshielding effect of
the axial hydroxy groups was also employed to support the configuration of 1. Therefore,
the significant pyridine-induced downfield shifts (∆δ = δCDCl3 − δC6D5N) exerted on H-5
(∆δH = −0.24 ppm) could only be approached when 1-OH was axially oriented on the
same α-face of the molecule. Also, H3-18 exhibited pyridine-induced downfield shift
(∆δH = −0.14 ppm) due to the vicinal effect of 2-OH, which should be syn to H3-18 [45].
On the basis of the above findings, we propose that 1 can be derived from an intermediate
spongian 9, which was biosynthesized from the mevalonic acid pathway, after oxygenation
of the six-membered ring A and a subsequent ring contraction and formation of a five-
membered carbocycle, as illustrated in Scheme 1.
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Metabolite 2 was isolated as a colorless oil. Its molecular formula was determined to
be C12H16O3 from the HREIMS (m/z 231.0992 [M + Na]+), indicating the four degrees of
unsaturation. The IR spectrum displayed the absorptions of carboxylic acid (3105–2857
and 1708 cm–1) and olefin (1654 cm−1). The NMR data (Table 2) showed the presence of
a monosubstituted furan ring (δC 142.5, CH; 138.8, CH; 111.0, CH; and 124.7, C; δH 7.34,
7.20, and 6.27, each 1H, s) [24–26,42], a trisubstituted olefin (δC 124.7, CH; δH 5.22, 1H, s), a
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methyl (δC 15.9; δH 1.61, 3H, s) and a carbonyl group (δC 180.0, C). Other 1H NMR signals
in the shielded region (δH 2.25–2.47, 8H) were attributable to four methylene groups, as
depicted from the COSY (Figure 2) correlations. The methylene protons H2-6 (δH 2.25,
dt, J = 7.6, 7.2 Hz, 2H) was found to be further correlated with the olefinic proton (δH
5.22, dd, J = 7.2, 7.2 Hz, H-7) in 2. The detailed analysis of HMBC correlations (Figure 2)
resolved the carbon positions of the furan ring, olefinic double bond, and the carboxyl
group to be at C-1-C-4, C-7/C-8, and C-11, respectively. Furthermore, the methyl group
was positioned at C-8. The furanyl H-2 (δH 6.27, s), H-4 (δH 7.20, s), and the olefinic
proton H-7 (δH 5.22, dd, J = 7.2, 7.2 Hz, 2H) displayed HMBC correlations with the sp3

carbon C-5 (δC 24.8, CH2), and H3-12 (δH 1.61, s) showed HMBC correlations with C-7
(δC 124.7, CH) and C-9 (δC 34.2, CH2), while the signal of H2-9 (δH 2.32, dd, J = 7.6, 7.6 Hz,
2H) was found to be correlated with the carboxyl carbon (C-11, δC 180.0). Moreover, the
NOE correlations observed for H3-12 with H2-6 but not with H-5 and the chemical shift of
C-12 (δC < 20 ppm) assigned the E-configuration of the 7,8-double bond [46]. Therefore,
2 was determined to be a furanotrinorsesquiterpenoid carboxylic acid with the structure
of (E)-7-(furan-3-yl)-4-methylhept-4-enoic acid. The literature search showed that this
compound had been prepared as a synthetic intermediate during the total syntheses of
the furanosesquiterpenoids and dendrolasins [42,47], however, its NMR data had not been
reported. Therefore, this is the first report of 2 as a natural product, with the NMR data
assigned and reported for the first time.

Table 2. 1H and 13C NMR data for compounds 2 and 3.

2 3

# δH, m (J in Hz)
a δC

b δH, m (J in Hz)
a δC

b

1 7.34, 1H, brs 142.5, CH 7.35, 1H, brs 142.9, CH
2 6.27, 1H, brs 111.0, CH 6.27, 1H, brs 111.2, CH
3 - 124.7, C - 125.1, C
4 7.20, 1H, s 138.8, CH 7.21, 1H, s 139.1, CH

5 2.45, 2H, dt
(7.6, 7.6) 24.8, CH2

2.40, 2H, dt
(7.6, 7.6) 24.4, CH2

6 2.25, 2H, dt
(7.6, 7.2) 28.3, CH2

2.25, 2H, dt
(7.6, 7.6) 28.1, CH2

7 5.22, 1H, dd
(7.2, 7.2) 124.7, CH 2.08, 2H, dd

(7.2, 7.6) 39.1, CH2

8 - 133.7, C - 139.7, C

9 2.32, 2H, dd
(7.6, 7.6) 34.2, CH2

5.34, 1H, dd
(6.0, 6.0) 115.5, CH

10 2.47, 2H, m 32.9, CH2 3.10, 2H, d (6.8) 33.2, CH2
11 - 180.0, C - 176.1, C
12 1.61, 3H, s 15.9, CH3 1.65, 3H, s 16.5, CH3

a Spectrum recorded at 400 MHz in CDCl3.b Spectrum recorded at 100 MHz in CDCl3.

Metabolite 3 exhibited almost the same NMR data as those of 2 (Table 2) from C-1
to C-6, with the carbon chemical shifts of the trisubstituted double bond (δC 139.7, C
and 115.5, CH; δH 5.34, dd, J = 6.0, 6.0 Hz, 1H) and the carbonyl group (δC 176.1, C) in
3 showing significant differences of ∆δC −6.0, +9.2, and −3.9 ppm as compared with
those of the corresponding carbons in 2, respectively. As illustrated by 1H-1H COSY
correlations (Figure 2), the double bond has been isomerized from the C-7/C-8 position
in 2 to the C-8/C-9 position in 3. However, the IR spectrum displayed the absorptions of
the hydroxyl and NH groups (3407-2858 cm–1), carbonyl group (1705 cm–1), and olefin
(1634 cm–1) functionalities. Furthermore, the HREIMS m/z 246.1098 [M + Na]+ established
the molecular formula of 3 to be C12H17NO3 and the chemical shift of the carbonyl group
(176.1 ppm), showing that a hydroxamic acid moiety [48–51] replaced a carboxylic acid
group at C-11 in 3.
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Compound 4 was isolated as a colorless oil, [α]25
D +4.4 (c 0.74, CHCl3). The ESIMS

and NMR spectroscopic data (Table 3) established the molecular formula C22H32O4 for 4.
The IR absorptions 3432, 1769, and 1647 cm–1 revealed the presence of hydroxyl, carbonyl,
and olefin functionalities, respectively. Moreover, it was found that the NMR data of
4 was the same as those of irciformonin G (10) [52] in all aspects except for those at
positions 17 and 18−20 (Table 4), proposing 4 as an isomer of 10. By using Mosher’s
method [53,54], the 15R absolute configuration in 4 was established based on the calculated
∆δH (δS − δR) values of protons neighboring C-15 of (S)- and (R)-α-methoxy-α-(trifluorome-
thyl)-phenylacetyl (MTPA) esters 4a and 4b, respectively (Figure 4). After the assignment
of the 15R configuration, the 13C NMR data of C-15 to C-20 of 4 were further compared
with the corresponding data of irciformonin G (10), (+)-sponalisolide A (11), and 8-epi-(+)-
sponalisolide A (12) [42] of known absolute configurations (Table 4 and Figure 5). The
15R,16R-configuration of 4 was, thus, confirmed as those of the 7R, 8R configured 12, while
10 and 11 possessed the same configurations (R,S) at the corresponding asymmetric carbons.
From the above findings, compound 4 was, thus, identified as 16-epi-irciformonin G.

Table 3. 1H and 13C NMR data for compounds 4, 5, and (–)-sponalisolide B.

4 5 (-)-Sponalisolide B

# δH, m (J in Hz) a δC
b # δH, m (J in Hz) a δC

b δH, m (J in Hz) c δC
d

1 7.34, 1H, brs 142.5, CH 1 7.34, 1H, brs 142.6, CH 7.33, 1H, t (1.6) 142.7, CH
2 6.28, 1H, brs 111.1, CH 2 6.27, 1H, brs 111.0, CH 6.26, 1H, brs 111.1, CH
3 − 124.9, C 3 − 124.7, C − 124.9, C
4 7.21, 1H, s 138.8, CH 4 7.20, 1H, s 138.8, CH 7.20, 1H, brs 139.0, CH

5 2.45, 2H, t (7.5) 25.0, CH2 5 2.45, 2H, t (7.5) 24.8, CH2
2.44, 2H, dd

(7.7, 7.3) 24.9, CH2

6 2.24, 2H, dt
(7.5, 7.0) 28.4, CH2 6 2.25, 2H, dt

(7.5, 7.0) 28.3, CH2
2.24, 2H, ddd
(14.6, 7.3, 7.0) 28.5, CH2

7 5.16, 1H, t, (6.0) 123.9, CH 7 5.23, 1H, t (7.0) 125.1, CH 5.22, 1H, t (7.0) 125.2, CH
8 − 135.5, C 8 − 134.1, C − 134.2, C

9 2.00, 2H, dd,
(7.5, 7.0) 39.5, CH2 9 1.61, 3H, s 16.0, CH3 1.60, 3H, s 16.1, CH3

10 2.08, 2H, m 26.5, CH2 10 2.35, 2H, m 34.7, CH2 2.33, 2H, m 35.1, CH2
11 5.17, 1H, t, (6.0) 125.4, CH 11 2.34, 2H, m 34.9, CH2 2.33, 2H, m 34.9, CH2
12 − 134.3, C 12 − 173.3, C − 173.5, C

13 2.24, 1H, m;
2.07, 1H, m 36.2, CH2 1’ − 175.4, C − 175.6, C

14 1.50, 1H, m;
1.58, 1H, m 28.9, CH2 2’ 4.50, 1H, ddd,

(11.5, 8.5, 5.5) 49.3, CH 4.52, 1H, ddd,
(11.7, 8.6, 5.8) 49.4, CH

15 3.51, 1H, br d (10.5) 76.7, CH 3’

2.86, 1H, ddd,
(12.0, 8.5, 6.0)
2.08, 1H, qd,

(11.5, 9.0)

30.7, CH2

2.82, 1H, ddd,
(12.2, 8.6, 5.8);
2.08, 1H, qd,

(11.7, 9.1)

30.7, CH2

16 − 88.7, C 4’
4.47, t (9.5)

4.27, 1H, ddd,
(11.5, 9.5, 6.0)

66.1, CH2

4.45, 1H, t, (9.5);
4.27, 1H, ddd,
(11.3, 9.5, 5.8)

66.2, CH2

17 2.63, 2H, dd (9.0, 7.5) 29.2, CH2 NH 6.00 brs − 6.16 brs −

18
1.92, 1H, ddd (13.0, 8.0,

8.0);
2.20, 1H, m

30.6, CH2

19 − 176.7, C
20 1.37, 3H, s 21.3, CH3
21 1.61, 3H, s 16.0, CH3
22 1.61, 3H, s 15.9, CH3

a Spectrum recorded at 500 MHz in CDCl3.b Spectrum recorded at 125 MHz in CDCl3. c Spectrum recorded at 400 MHz in CDCl3 [42].
d Spectrum recorded at 125 MHz in CDCl3 [42].
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Table 4. Selected 13C NMR data at C-15-C-20 of 4 and 10 and the correspondent carbons C-7-C-12 of
the related compounds 11 and 12.

4 a 10 (15R,16S)
b C# 11 (7R,8S) c 12 (7R,8R) c

C-15 76.7 75.5 C-7 75.1 76.2
C-16 88.7 88.9 C-8 88.9 88.9
C-17 29.2 27.8 C-9 27.6 29.2
C-18 30.6 29.5 C-10 29.5 30.7
C-19 176.7 177.3 C-11 177.1 176.6
C-20 21.3 23.0 C-12 23.1 21.4

a Spectrum recorded at 125 MHz in CDCl3.b Spectrum recorded at 75 MHz in CDCl3 [52].c Spectrum recorded at
125 MHz in CDCl3 [42].
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Figure 5. Structures of known compounds 10–12.

(−)-Sponalisolide B (5) was isolated as a colorless oil, [α]25
D −8.5 (c 0.34, CHCl3).

Through detailed analysis of NMR spectroscopic data (Table 3), in particular two- dimen-
sional (2D) NMR correlations, the structure of 5 was established to be identical to that of
the known (-)-sponalisolide B [42]. However, the coupling constants and spin-spin splitting
patterns of the proton H2-6 (δH 2.25, dt, 2H, J = 7.5, 7.0 Hz at 500 MHz in CDCl3) were
wrongly assigned. We, herein, reanalyzed the spectrum and provided the correct NMR
data for 5.

With the aim of discovering bioactive compounds from these isolates, the cytotoxic
activities of the isolated compounds 1−7 against the proliferation of three cancer cell lines
including murine leukemia (P388), human bile duct carcinoma (HuCCT), and human
colon adenocarcinoma (DLD-1), and a human dermal fibroblast cell line (CCD-966SK) were
evaluated, using the Alamar Blue assay [55,56]. The results indicated that none of the
tested metabolites exhibited cytotoxic activity (IC50 > 20 µg/mL).

The anti-inflammatory activities of compounds 1−7 on inhibition of superoxide anion
(O2
−) generation and elastase release in the fMLF/CB-stimulated human neutrophils [57–59]

were also evaluated. The results (Table 5) showed that 1 exhibited potent activity to inhibit
the superoxide anion generation (91.38 ± 2.91%) and elastase release (90.29 ± 7.71%) at
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10 µM, with the IC50 values of 3.37 ± 0.21 and 4.07 ± 0.60 µM, respectively. Compound
5 was also found to display significant inhibitory activity against the superoxide anion
generation (IC50 = 5.31 ± 1.52 µM), and the percentage of inhibition was 67.12 ± 6.00% at
10 µM. Due to the noncytotoxic character and the potent activity toward the superoxide
anion generation and elastase release, 1 and 5 can be considered to be the promising
anti-inflammatory agents.

Table 5. Effects of compounds 1−7 on superoxide anion generation and elastase release in N-formyl-methionyl-leucyl
phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophils.

Compound
Superoxide Anion Elastase

IC50 (µM) a Inh % IC50 (µM) a Inh %

1 3.37 ± 0.21 91.38 ± 2.91 *** 4.07 ± 0.60 90.29 ± 7.71 ***
2 − b 3.47 ± 0.68 ** − 14.03 ± 3.28 *
3 − 8.85 ± 3.73 − 18.00 ± 6.08 *
4 − 2.61 ± 1.26 − -1.07 ± 7.93
5 5.31 ± 1.52 67.12 ± 6.00 *** − 35.18 ± 8.03 **
6 − 9.44 ± 5.04 − 19.24 ± 3.86 **
7 − 12.79 ± 6.01 − 25.87 ± 4.18 **

LY294002 c 1.88 ± 0.77 90.27 ± 3.87 *** 2.58 ± 0.67 77.59 ± 2.34 ***

Percentage of inhibition (Inh %) at 10 µM. Results are presented as mean ± SEM (n ≥ 3). * p < 0.05, ** p < 0.01, *** p < 0.001 as compared
with the control (DMSO). a Concentration necessary for 50% inhibition (IC50). b The compound is not considered to be anti-inflammatory
when IC50 value is >10 µM. c A phosphatidylinositol-3-kinase inhibitor was used as a positive control.

3. Materials and Methods
3.1. General Procedures

Measurements of optical rotations and IR spectra were carried out on a JASCO P-
1020 polarimeter and FT/IR-4100 infrared spectrophotometer (JASCO Corporation, Tokyo,
Japan), respectively. ESIMS and HRESIMS were performed on a Bruker APEX II (Bruker,
Bremen, Germany) mass spectrometer. The NMR spectra were recorded on a Varian 400MR
FT-NMR at 400 and 100 MHz for 1H and 13C, respectively or a Varian Unity INOVA500
FT-NMR at 500 and 125 MHz for 1H and 13C, respectively (Varian Inc., Palo Alto, CA,
USA). Silica gel or reversed-phase (RP-18, 230–400 mesh) silica gel was used for column
chromatography and analytical thin-layer chromatography (TLC) analysis (Kieselgel 60
F-254, 0.2 mm, Merck, Darmstadt, Germany), respectively. Isolation and purification of
compounds by high-performance liquid chromatography (HPLC) were achieved using
an Hitachi L-2455 HPLC apparatus (Hitachi, Tokyo, Japan) equipped with a Supelco C18
column (250 × 21.2 mm, 5 µm, Supelco, Bellefonte, PA, USA).

3.2. Animal Material

The sponge Spongia sp. was collected during March 2016, off the Red Sea Coast at
Jeddah, Saudi Arabia (21o22′11.08′′ N, 39 o06′56.62′′ E). A voucher sample (RSS-1) has
been deposited at the Department of Pharmacognosy, College of Pharmacy, King Saud
University, Saudi Arabia.

3.3. Extraction and Separation

The Spongia sp. was collected and freeze-dried. The freeze-dried material (550 g
dry wt) was minced and extracted exhaustively with EtOAc/MeOH/CH2Cl2 (1:1:0.5)
(3 × 10 L). The solvent-free extract was suspended in water and partitioned with CH2Cl2,
EtOAc, and then n-BuOH saturated with water to obtain CH2Cl2 (18.47 g), EtOAc (0.782 g),
and n-BuOH (1.0 g) fractions. The CH2Cl2 fraction was chromatographed over silica gel
column, using EtOAc in n-hexane (0% to 100%, stepwise), to yield 12 fractions (F1–F12). F6
(1.21 g), eluted with n-hexan/EtOAc (1:1), was re-chromatoraphed over a RP-18 column
using MeOH in H2O (50% to 100%, stepwise) to give 15 subfractions (F6-1 to F6-15). F6-5
(83.0 mg), F6-8 (85.2 mg), F6-11 (21.1 mg), and F6-14 (23.5 mg) were purified on RP-18



Mar. Drugs 2021, 19, 38 9 of 13

HPLC separately, using MeOH/H2O (1.4:1), CH3CN/H2O (1:1.7), MeOH/H2O (1.5:1),
and CH3CN/H2O (1.6:1), in order, to afford 2 (55.5 mg) from F6-8, 6 (6.2 mg) from F6-5, 1
(10.2 mg) from F6-11, and 4 (7.4 mg) from F6-14. F7 (1.1 g), eluted with n-hexane/EtOAc
(1:3), was isolated using RP-18 silica gel column chromatography and MeOH in H2O (50%
to 100%, stepwise) as a mobile phase to result in 20 subfractions (F7-1 to F7-20). F7-4
(16.1 mg) and F7-6 (25.7 mg) were further separated on RP-18 HPLC, using CH3CN/H2O
(1:1.7) and (1:2.5), separately, to afford 3 (4.6 mg) from F7-4, 5 (9.1 mg) and 7 (4.3 mg)
from F7-6.

3.3.1. 17-Dehydroxysponalactone (1)

White powder, [α]25
D +27.7 (c = 0.71, CHCl3); IR (neat) νmax 3455, 3401, 2962, 2927,

2864, 1752, 1663, 1455, 1387, 1186, 1150, 1111, 1060, 1019, 890.0, and 757 cm–1; 1H NMR
(500 MHz, CDCl3); and 13C (125 MHz, CDCl3) data, see Table 1. ESIMS m/z 369 [M + Na]+;
1H NMR (C5D5N, 400 MHz) δH 7.37 (1H, br s, H-16), 7.26 (1H, br s, H-15), 4.44 (1H, d,
J = 9.6 Hz, H-19), 4.30 (1H, br s, H-1), 3.94 (1H, d, J = 9.6 Hz, H-19), 2.66 (1H, m, H-12), 2.60
(1H, m, H-12), 2.26 (1H, m, H-9), 2.14 (1H, d, J = 11.5 Hz, H-5), 2.12 (1H, m, H-7), 1.76 (1H,
m, H-11), 1.67 (1H, m, H-6), 1.60 (1H, m, H-11), 1.57 (1H, m, H-6), 1.56 (1H, m, H-7), 1.28
(3H, s, H3-18), 1.24 (3H, s, H3-17), 0.94 (3H, s, H3-20); 13C NMR (C5D5N, 100 MHz) δC 181.0
(C, C-3), 138.0 (CH, C-15), 136.0 (C, C-14), 135.7 (CH, C-16), 120.5 (C, C-13), 84.3 (C, C-2),
82.7 (CH, C-1), 74.4 (CH2, C-19), 57.0 (CH, C-5), 47.8 (CH, C-9), 47.6 (C, C-4), 47.0 (C, C-10),
40.9 (CH2, C-7), 35.1 (C, C-8), 27.4 (CH3, C-17), 23.8 (CH3, C-18), 20.9 (CH2, C-11), 20.4
(CH2, C-12), 18.9 (CH2, C-6), 14.5 (CH3, C-20). HRESIMS m/z 369.1672 [M + Na]+ (calcd for
C20H26O5Na, 369.1673).

3.3.2. Spongiafuranic Acid A (2)

Colorless oil, IR (neat) νmax 3105, 2920, 2918, 2857, 1708, 1654, 1500, 1446, 1386, 1298,
1210, 1163, 1024, and 874 cm–1; 1H NMR (400 MHz, CDCl3); and 13C (100 MHz, CDCl3)
data, see Table 2. ESIMS m/z 231 [M + Na]+. HRESIMS m/z 231.0994 [M + Na]+ (calcd for
C12H16O3Na, 231.0997).

3.3.3. Spongiafuranohydroxamic Acid A (3)

Colorless oil, IR (neat) max 3407, 3252, 2918, 2858, 1704, 1634, 1442, 1372, 1298, 1205,
1136, 1027, and 963 cm–1; 1H NMR (400 MHz, CDCl3); and 13C (100 MHz, CDCl3) data,
see Table 2. ESIMS m/z 246 [M + Na]+. HRESIMS m/z 246.1098 [M + Na]+ (calcd for
C12H17NO3Na, 246.1100).

3.3.4. 16-Epi-Irciformonin G (4)

Colorless oil, [α]25
D +4.4 (c 0.74, CHCl3); IR (neat) νmax 3432, 2920, 2851, 1769, 1647,

1557, 1456, 1384, 1239, 1162, 1089, 944, 874, and 776 cm–1; 1H NMR (500 MHz, CDCl3); and
13C (125 MHz, CDCl3) data, see Table 3. ESIMS m/z 383 [M + Na]+. HRESIMS m/z 383.2195
[M + Na]+ (calcd for C22H32O4Na, 383.2198).

3.3.5. Preparation of (S)- and (R)-MTPA Esters of 4

To a solution of 4a (1 mg, 2.8 µM) in pyridine (100 µL), R-(−)-MTPA-Cl (5 µL) was
added and left to react overnight at RT. The reaction was ended by addition of water
(1.0 mL), and the mixture was further processed, as previously described [53,54], to afford
(S)-MTPA ester (4a, 1.4 mg, 2.4 µM). The correspondent (R)-MTPA ester (4b, 0.9 mg,
1.6 µM) was similarly obtained from the reaction of S-(+)-MTPA-Cl with 4. 1H NMR
(CDCl3, 400 MHz) of 4a: δH 7.340 (1H, br dd, J = 1.8, 1.8 Hz, H-1), 7.208 (1H, br s, H-4),
6.275 (1H, br s, H-2), 5.164 (1H, dd, J = 8.0, 8.0 Hz, H-11), 5.113 (1H, m, H-7), 2.489 (1H, m,
H-18a), 2.450 (2H, dd, J = 7.6, 7.6 Hz, H2-5), 2.426 (1H, m, H-18a), 1.593 (3H, H3-21), 1.559
(3H, H3-22), and 1.355 (3H, H3-20). 1H NMR (CDCl3, 400 MHz) of 4b: δH 7.338 (1H, br s,
H-1), 7.206 (1H, br s, H-4), 6.275 (1H, br s, H-2), 5.174 (1H, ddd, J = 9.2, 9.2, 3.2 Hz, H-11),
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5.065 (1H, br dd, J = 7.8, 7.8 Hz, H-7), 2.563 (1H, m, H-18a), 2.541 (1H, m, H-18a), 2.447 (2H,
dd, J = 8.0, 8.0 Hz, H2-5), 1.570 (3H, H3-21), 1.532 (3H, H3-22), and 1.376 (3H, H3-20).

3.4. In Vitro Bioassays
3.4.1. Anti-Inflammatory Activity

Human neutrophils were isolated from the blood of healthy adult volunteers and
enriched by using dextran sedimentation, Ficoll–Hypaque gradient centrifugation, and
hypotonic lysis, as described previously [59]. Then, neutrophils were incubated in Ca2+-free
HBSS buffer (pH 7.4, ice-cold).

Superoxide Anion Generation

Neutrophils (6 × 105 cells/mL) incubated (with 0.6 mg/mL ferricytochrome c and
1 mM Ca2+) in HBSS at 37 ◦C were treated with DMSO (as control) or tested compound for
5 min. Neutrophils were primed by 1 µg/mL cytochalasin B (CB) for 3 min before being
activated by 100 nM fMLF for 10 min. The change of superoxide anion generation was
spectrophotomically measured at 550 nm (U-3010, Hitachi, Tokyo, Japan) [57,58]. LY294002
[2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran- 4-one] was used as a positive control.

Elastase Release

Neutrophils (6 × 105 cells/mL) incubated (with 100 µM MeO-Suc-Ala-Ala-Pro-Val-p-
nitroanilide and 1 mM Ca2+) in HBSS at 37 ◦C were treated with DMSO or the tested com-
pound for 5 min. Neutrophils were, then, activated with fMLF (100 nM)/CB (0.5 µg/mL)
for 10 min. The change of elastase release was spectrophotomically measured at 405 nm
(U-3010, Hitachi, Tokyo, Japan) [58].

3.4.2. Cytotoxic Activity

P388, HuCCT-1, DLD-1, and CCD-966SK cell lines were purchased from the American
Type Culture Collection (ATCC). Cytotoxicities of compounds 1–7 were measured using
Almar Blue assay [55,56], with doxorubicin hydrochloride used as a positive control.

3.4.3. Statistical Analysis

Data are displayed as the mean ± SEM and comparisons were performed by one-way
ANOVA with Dunnett analysis. All results were obtained from more than 3 biological
replicates. A p value of 0.05 or less was considered to be significant. The software Prism
(GraphPad Software, San Diego, CA, USA) was used for the statistical analysis.

4. Conclusions

The chemical investigation of dichloromethane-soluble fraction of the organic extract
of a Red Sea sponge Spongia sp. resulted in the isolation and identification of a rare A-ring
contracted secospongian diterpenoid 17-dehydroxysponalactone (1) and three new furano-
norterpenoids 2–4. Compound 1 was found to be noncytotoxic but was shown to exhibit
potent inhibitory activity against the superoxide anion generation and elastase release
in the fMLF/CB-induced neutrophils, and 5 was also found to display strong inhibitory
activity against the superoxide anion generation. Therefore, 1 and 5 are the promising
candidates for further development of anti-inflammatory agents.

Supplementary Materials: HRESIMS, 1H, 13C, DEPT, HMQC, COSY, HMBC ,and NOESY spectra
of new compounds 1–4 are available online at https://www.mdpi.com/1660-3397/19/1/38/s1,
Figure S1: HRESIMS spectrum of 1, Figure S2: 1H NMR spectrum of 1 in CDCl3 at 500 MHz,
Figure S3: 13C NMR spectrum of 1 in CDCl3 at 125 MHz, Figure S4: HSQC spectrum of 1 in CDCl3,
Figure S5: 1H -1H COSY spectrum of 1 in CDCl3, Figure S6: HMBC spectrum of 1 in CDCl3, Figure S7:
NOESY spectrum of 1 in CDCl3, Figure S8: HRESIMS spectrum of 2, Figure S9: 1H NMR spectrum
of 2 in CDCl3 at 400 MHz, Figure S10: 13C NMR spectrum of 2 in CDCl3 at 100 MHz, Figure S11:
HSQC spectrum of 2 in CDCl3, Figure S12: 1H -1H COSY spectrum of 2 in CDCl3, Figure S13: HMBC
spectrum of 2 in CDCl3, Figure S14: NOESY spectrum of 2 in CDCl3, Figure S15: HRESIMS spectrum
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of 3, Figure S16: 1H NMR spectrum of 3 in CDCl3 at 400 MHz, Figure S17: 13C NMR spectrum
of 3 in CDCl3 at 100 MHz, Figure S18: HSQC spectrum of 3 in CDCl3, Figure S19: 1H -1H COSY
spectrum of 3 in CDCl3, Figure S20: HMBC spectrum of 3 in CDCl3, Figure S21: NOESY spectrum of
3 in CDCl3, Figure S22: HRESIMS spectrum of 4, Figure S23: 1H NMR spectrum of 4 in CDCl3 at
500 MHz, Figure S24: 13C NMR spectrum of 4 in CDCl3 at 125 MHz, Figure S25: HSQC spectrum of 4
in CDCl3, Figure S26: 1H NMR spectrum of 4 in CD3OD at 400 MHz, Figure S27: 13C NMR spectrum
of 4 in CD3OD at 100 MHz, Figure S28: HSQC spectrum of 4 in CD3OD, Figure S29: 1H -1H COSY
spectrum of 4 in CD3OD, Figure S30: HMBC spectrum of 4 in CD3OD, Figure S31: NOESY spectrum
of 4 in CD3OD, Figure S32: HRESIMS spectrum of 5, Figure S33: 1H NMR spectrum of 5 in CDCl3 at
500 MHz, Figure S34: 13C NMR spectrum of 5 in CDCl3 at 125 MHz, Figure S35: HSQC spectrum of
5 in CDCl3.
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