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Abstract: Seven new polyoxygenated steroids belonging to a new structural group of sponge
steroids, gracilosulfates A–G (1–7), possessing 3β-O-sulfonato, 5β,6β epoxy (or 5(6)-dehydro),
and 4β,23-dihydroxy substitution patterns as a common structural motif, were isolated from the
marine sponge Haliclona gracilis. Their structures were determined by NMR and MS methods.
The compounds 1, 2, 4, 6, and 7 inhibited the expression of prostate-specific antigen (PSA) in 22Rv1
tumor cells.
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1. Introduction

Marine organisms are known as a rich source of unique bioactive sulfate-containing metabolites [1].
Sulfated derivatives of different chemical classes (aliphatic compounds, steroids, terpenoids,
carotenoids, aromatic compounds, alkaloids, carbohydrates, etc.) have been identified from them [1–4].
Marine invertebrates such as starfishes, ophiuroids, and ascidians contain mainly mono- and
disulfated polyoxygenated steroids [1], which are almost exclusively marine secondary metabolites [1],
while terrestrial sulfated polyoxygenated steroids are relatively rare. In fact, there is only one report
concerning isolation of sulfated polyoxygenated steroid from plants [5].

Sulfated steroids represent one of the most numerous classes of sponge metabolites [1–3] Marine
sponges provide a great structural diversity of bioactive sulfated polyoxygenated steroids, including
nitrogen-containing [6], halogenated [7,8], monosulfated [9–17], disulfated [18], and trisulfated [7,8]
steroids, as well as tetra- [19] or pentasulfated dimeric steroid derivatives [20]. The monosulfated
polyoxygenated steroids account for only a part of these metabolites. Some of them show
antimicrobial [13] and/or antifungal [10,13,15] and cytotoxic [10] activities or enhance glucose uptake
via the AMPK signaling pathway [9].

During the search for bioactive compounds from the Northwestern Pacific deep-water marine
invertebrates [21,22], we collected the pale orange sponge Haliclona gracilis near Shikotan Island, Russia,
whose extract exhibited hemolytic and antifungal activities.

The genus Haliclona (order Haplosclerida, family Halinidae) is represented by more than 600
species [23]. Marine sponges of Haliclona genus have been extensively examined, and more than 200
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various bioactive metabolites including steroids, alkaloids, macrolides, polyketides, cyclic peptides,
long-chain sphingoid bases, merohexaprenoids, and cyclic bis-1,3-dialkylpyridinium salts have been
isolated, and different activities, including cytotoxic and antitumor effects, have been reported [1].

Sponges of Haliclona genus have provided very few sulfated steroids [1]. Thus, only two
trisulfated steroids have been isolated in one Indo-Pacific Haliclona sponge [17], while monosulfated
polyoxygenated steroids have never been isolated from this genus. Moreover, thus far, the sponge
H. gracilis has not been chemically investigated.

The 1H NMR analysis of the fractions obtained after diverse chromatographic separations
suggested the presence of polar metabolites, inspiring our extensive investigation. Here, we report
the details of the isolation and structure determination of compounds 1–7, belonging to a new group
of naturally occurring monosulfated polyoxygenated steroids with a 3β-O-sulfonato, 5β,6β-epoxy (or
5(6)-dehydro), or 4β,23-dihydroxy substitution pattern as a common structural motif. Additionally,
anticancer activities of 1, 2, 4, 6, and 7 were evaluated.

2. Results and Discussion

The concentrated EtOH extract of the sponge was partitioned between n-BuOH and H2O.
The organic extract was concentrated and the obtained residue was fractionated by flash chromatography
on a YMC gel column. Further separation using reversed-phase HPLC resulted in the isolation of
seven new steroids, gracilosulfates A–G (1–7, Figure 1).
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Figure 1. The structures of 1–7.

Compound 1 was isolated as a white, amorphous solid. The molecular formula of 1 was
determined to be C28H47NaO7S from the [M − Na]− ion peak at m/z 527.3045 in the (−)HRESIMS
spectrum. The fragment ion peak at m/z 97.9606 in the (−)HRESIMS/MS spectrum and absorption band
at 1213 cm−1 in the IR spectrum revealed the presence of a sulfate group in 1.

The 1H NMR spectrum of 1 (Table 1) showed signals attributable to six methyl groups at δH 1.16
(s), 0.94 (d), 0.91 (d), 0.82 (d), 0.74 (d), and 0.70 (s); four oxygen-bearing methine protons at δH 4.27 (d),
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3.55 (br.d), 3.53 (br.d), and 3.17 (br.d); and a series of other methine and methylene multipletes. The 13C
NMR (Table 2) and DEPT spectra of 1 revealed the presence of 28 signals, corresponding to 6 methyls,
8 methylenes, 11 methines, and 3 nonprotonated carbons (one bearing oxygen atom). These data
evidenced a C-28 steroidal skeleton. Structure determination of 1 began with HMBC correlations from
CH3-19 to C-1, C-5, C-9, and C-10. The COSY correlations (Figure 2) delineated the spin system H2-1
to H-4, which included protons of oxygenated methines at C-3 and C-4 based on their characteristic
chemical shifts. The sequences of protons from H-6 to H-8, H-8 to H2-12, H-8 to H3-27, and H-24 to
H3-28 were also established from COSY correlations and indicated the third oxymethine group at
C-23. The cross peaks H-4/OH and H-23/OH in the COSY spectrum recorded in DMSO−d6 (Figure S11)
and the 13C chemical shifts for C-4 (δC 77.7) and C-23 (δC 71.7) implied OH substitution, while the
chemical shift for C-3 at δC 80.1 was more consistent with a sulfate half-ester O(SO3)Na [14]. The 13C
NMR signals at δC 64.2 (CH) and 66.4 (C) and 1H NMR signal at δH 3.17 indicated the presence of
trisubstituted epoxy ring [24]. The epoxy group was placed at C-5 and C-6 on the basis of HMBC
correlations from H2-1, H-4, and H-19 to C-5 and from H-6 to C-4, C-8, and COSY correlations H-6/H2-7.
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Figure 3. Δδ values (δS – δR) for 23(S)- and 23(R)-MTPA esters of compounds 1, 3, and 4. 

Figure 2. Key COSY and HMBC correlations for 1, and NOESY correlations for 1 and 4.

The large coupling constant of H-3 with H-2ax (J = 11.5 Hz) and small coupling constant of H-4 with
H-3 (J = 3.0 Hz) pointed to β orientations for the 3-O(SO3)Na and 4-OH groups. The configuration of the
5β,6β-epoxy group was established by the NOESY correlations H-6/H-4. The same evidence was earlier
used for β-orientation of epoxide group in a steroid from the soft coral Dendronephthya gigantea [25].
The key NOESY correlations H3-19/H-1β, H-2β, H-8, H-11β; H3-18/H-20, H-8, H-11β; H-9/H-1α,
H-14; H-1αH-3α; H-4α/H-6; and H-17/H-14α, H3-21 confirmed the 3β,4β,5β,6β configurations of the
oxygenated carbons and H-8β, H-9α, H-14α, and H-17α configurations of the ring portion in 1. The 20R
configuration was demonstrated by the NOESY cross-peak H3-18/H-20 and chemical shift value of
CH3-21 at δH 0.94 [26].

The absolute configuration at C-23 was assigned by application of the Mosher’s method.
Esterification of 1 with (R)- and (S)-α-methoxy-α-(trifluoromethyl)-phenylacetyl chlorides (MTPACl)
yielded the 23-MTPA adducts 1S and 1R, respectively, while C-4 hydroxy group was not modified.
Interpretation of 1H NMR chemical shift differences ∆δ between 1S and 1R (Figure 3) revealed that
the absolute configuration of C-23 is R. The JH23/H24 coupling constant was 7.3 Hz, which indicated
anti relationship of the H-23 and H-24 protons [27] (Figure 4). The NOESY cross peak for H2-22/H3-28
suggested the gauche relationship between the C-22 methylene and C-28 methyl groups, as shown in
Figure 3. These data allowed us to determine the 24S absolute configuration.
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H3-19 and C-5 (δC 130.0), and between olefinic proton at δH 5.70 and C-4 (δC 77.6), were consistent
with a double bond at C-5/C-6 position. The HMBC correlations from the oxymethine proton at δH

4.15 to C-13 and C-17 (Figure S32), in addition to COSY data (Figure S30), allowed placement of
a hydroxy group at C-15 position, whereas the HMBC correlations between H2-28 and C-23, C-24,
and C-25 confirmed the position of terminal methylene group at C-24. The coupling pattern associated
with H-15 (ddd, J = 7.9, 5.8, 2.2 Hz) indicated that the hydroxy group at C-15 is β-positioned [28].
The configurations of other stereocenters of the steroid nucleus were assigned by NOESY (Figure 2)
and coupling constants data (Table 1).
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Table 1. 1H NMR data for compounds 1–7 in CD3OD.

Position
1 2 3 4 5 6 7

δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz)

1α 1.39, m 1.37, m 1.37, m 1.15, m 1.37, m 1.31, m 1.15, m
1β 1.05, m 2.10, m 2.06, m 1.90, m 2.07, m 2.12, dt (13.3, 3.3) 1.89, dt (13.3, 3.3)
2α 1.82, m 1.84, m 1.82, m 1.81, m 1.83, m 1.84, m 1.82, m
2β 2.10, m 2.12, m 2.10, m 2.11, m 2.11, m 2.21, m 2.12, m
3 4.27, ddd (11.5, 4.1, 3.0) 4.29, ddd (11.5, 4.1, 3.0) 4.27, ddd (11.5, 4.1, 3.0) 4.18, ddd (12.2, 4.3, 3.3) 4.28, ddd (11.5, 4.1, 3.0) 4.19, ddd (12.0, 3.9, 3.1) 4.18, ddd (11.7, 4.0, 3.1)
4 3.55, br d (3.0) 3.58, br d (3.0) 3.56, br d (3.0) 4.42, dd (3.3, 1.3) 3.57, br d (3.0) 4.40, dd (3.3, 1.3) 4.42, dd (3.3, 1.3)
5
6 3.17, br d (2.7) 3.12, br d (2.7) 3.17, br d (2.5) 5.70, dd (5.0, 2.4) 3.19, br d (2.5) 5.59, dd (4.2, 3.0) 5.70, dd (5.0, 2.4)

7α

7β

1.29, m

2.08, m

1.35, m

2.19, m

1.27, m

2.08, m

1.68, ddd (18.2, 10.3, 2.3)

2.40, m

1.32, m

2.39, m

1.80, ddd (18.0, 9.8, 2.6)
2.53, ddd (18.8, 6.6, 4.3)

1.68, ddd (18.0, 10.3, 2.3)
2.39, m

8 1.43, m 1.79, m 1.42, m 1.99, dd (10.8, 5.7) 1.85, m 2.42, m 1.99, m
9 0.68, dd (12.0, 4.5) 0.78 dd, (11.5, 3.0) 0.68, dd, (11.6, 4.7) 0.98, m 0.74, m 1.01, m 0.98, m

11α
11 β

1.40, m
1.43, m 4.14, br q, (3.0) 1.40, m

1.44, m
1.50, m
1.52, m

1.38, m
1.43, m 4.29, br q, (3.4) 1.49, m

1.51, m
12α 1.14, m 1.30, m 1.12, m 1.18, m 1.10, m 1.36, m 1.18, m
12 β 2.02, m 2.23, dd, (13.3, 3.0) 2.02, m 2.03, dt (12.6, 3.6) 1.97, dt (12.3, 3.7) 2.22, m 2.03, dt (12.5, 3.3)
13
14 0.95, m 0.94, m 0.94, m 0.90, m 0.78, dd (11.3, 5.7) 0.89, m 0.90, m

15 1.64, m
1.05, m

1.65, m
1.15, m

1.64, m
1.06, m 4.15, ddd (7.9, 5.8, 2.2) 4.15, ddd (8.1, 5.7, 2.3) 4.18, ddd (7.8, 5.7, 2.2) 4.15, ddd (7.7, 5.6, 2.0)

16 1.86, m
1.36, m

1.83, m
1.39, m

1.86, m
1.35, m

2.40, m
1.41, ddd (14.3, 10.4, 2.3)

2.36, m
1.37, m

2.37, m
1.41, m

2.40, m
1.39, m

17 1.08, m 1.03, m 1.08, m 1.05, m 1.02, m 1.00, m 1.07, m
18 0.70, s 0.93, s 0.69, s 1.00, s 0.94, s 1.20, s 0.99, s
19 1.16, s 1.43, s 1.16, s 1.24, s 1.19, s 1.49, s 1.24, s
20 1.73, m 1.72, m 1.72, m 1.88, m 1.86, m 1.88, m 1.87, m
21 0.94, d (6.7) 0.96, d (6.7) 0.95, d (6.7) 1.02, d (6.7) 0.99, d (6.7) 1.04, d (6.7) 0.97, d (6.7)

22 1.41, m
1.04, m

1.39, m
1.03, m

1.48, m
0.98, m

1.59, ddd (13.7, 10.3, 2.3)
1.11, m

1.57, ddd (14.1, 10.5, 2.7)
1.10, m

1.58, ddd (14.1, 10.5, 2.5)
1.11, m

1.43,
1.07, m

23 3.53, ddd (9.1, 7.3, 2.0) 3.53, ddd (9.4, 7.3, 2.0) 3.70, m 4.13, br d (10.5) 4.11, br d (10.5) 4.13, br d (10.5) 3.55, ddd (9.3, 7.1, 2.0)

24 1.29, m 1.28, m 1.38, m
1.14, m 1.31, m

25 1.91, m 1.91, m 1.75, m 2.26, septet (6,7) 2.24, septet (6,7) 2.25, septet (6,7) 1.93, m
26 0.82, d (6.6) 0.82, d (6.6) 0.90, d (6.8) 1.06, d (6.9) 1.05, d (6.8) 1.06, d (6.8) 0.83, d (6.9)
27 0.91, d (6.6) 0.91, d (6.6) 0.91, d (6.8) 1.08, d (6.9) 1.07, d (6.8) 1.08, d (6.8) 0.92, d (6.9)

28 0.74, d (6.8) 0.74, d (6.8) 5.03, t (1.2)
4.84, br s

5.03, t (1.2)
4.84, br s

5.03, t (1.2)
4.84, br s 0.75, d
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The absolute configuration at C-23 was deduced by theMTPA method. Treatment of
4 with (R)- and (S)- MTPACl yielded the corresponding 4,23-bis-MTPA adducts 4S and 4R,
respectively. The ∆δ values around the C-23 stereocenter between the adducts 4S and 4R
(Figure 3) indicated the 23S configuration and, therefore, the structure of 4 was assigned as (20R,
23S)-4β,15β,23-trihydroxy-24-methylenecholest-5(6)-en-3βyl sulfate.

The molecular formula of C28H45NaO8S was assigned by HRESIMS to gracilosulfate E (5).
The 1D (Tables 1 and 2) and 2D NMR analysis showed that gracilosulfate E (5) differs from 4 in
the 5,6-epoxy group, replacing trisubstituted double bond. The configurations of the ring moiety
were assigned on the basis of the analyses of proton–proton coupling constants (Table 1) and NOESY
data. The absolute configuration of the side chain of 5 was determined to be the same as in 4
by comparison of 1H and 13C chemical shifts. Thus, gracilosulfate E (5) was determined to be
(20R,23R)-4β,15β,23-trihydroxy-5β,6β-epoxy-24-methylenecholest-3β yl sulfate.

Gracilosulfate F (6) of molecular formula C28H45NaO8S was a close analogue of gracilosulfate
D (4) showing only an additional oxygen atom. Inspection of 1D (Tables 1 and 2) and 2D NMR data
allowed placement of an additional hydroxy group at C-11. The configuration at C-11 was deduced
from NOESY correlation of H-11 to axial proton H-1 and small vicinal coupling constant of H-11
(Table 1), which is consistent with an equatorial disposition for this proton, thereby placing the hydroxy
group in an axial position. The configurations of remaining stereogenic centers of the ring portion
were the same as those of 4, as established on the basis of analyses of proton–proton coupling constants
(Tables 1 and 2) and NOESY data. The absolute configuration of the side chain was determined to be
the same as that of 4 by comparison of 1H and 13C chemical shifts, and finally the structure of 6 was
established as (20R, 23R)-4β,11β,15β,23-tetrahydroxy-24-methylenecholest-5(6)-en-3βyl sulfate.

Gracilosulfate G (7) showed the molecular formula C28H47NaO7S as determined by HRESIMS.
On the basis of the results of the 1D NMR spectra, we were able to assign a trisubstituted
double bond and four oxygen-bearing methine groups. The same steroid core constitution and
configurations as in gracilosulfate D (4) were inferred from 1D (Tables 1 and 2) and 2D NMR
analysis. The proton and carbon resonances attributable to the side chain of 7 were coincident
with those of 1 and 2 (Tables 1 and 2). Thus, gracilosulfate G was defined as (20R, 23R,
24S)-4β,15β,23-trihydroxy-24-methylcholest-5(6)-en-3βyl sulfate.

Next, antitumor activity of compounds 1, 2, 4, 6, and 7 were determined in human prostate cancer
cells 22Rv1. Of note, this cell line reveals resistance to androgen receptor (AR)-targeted therapy due
to the expression of AR-V7 (AR transcript variant V7), which lacks the androgen-binding site [29,30].
The compounds exhibited moderate cytotoxic activity in the cancer cells after 48 h of treatment. Thus,
compound 7 exhibited IC50 = 64.4 ± 14.9 µM, while the other tested compounds had IC50 > 100 µM
(docetaxel was used as a positive control and exhibited IC50 = 17.3 ± 6.3 nM). However, all compounds
were able to effectively inhibit the expression of PSA (prostate-specific antigen) in 22Rv1 cells (Figure 5).
Earlier, only two monosulfated polyoxygenated steroids have been shown to exert cytotoxic activity on
human cancer cell lines [10]. On the other hand, non-sulfated polyoxygenated steroid aragusterol with
potent antitumor activities was isolated from a sponge of the genus Xestospongia [31]. Interestingly,
for compounds 6 and 7, this effect was already detected at a concentration of 10µM. PSA is a well-known
downstream target of AR signaling. Thus, suppression of PSA expression may indicate an inhibition
of this pathway. AR signaling is essential for the growth and survival of prostate cancer cells, with its
targeting playing a central role in the modern therapy of advanced prostate cancer. The ability of the
isolated compounds to suppress AR signaling can be explained by the similarity of their structures
to androgen ligands, which may result in a binding to androgen receptors and therefore blocking of
AR-mediated signaling in prostate cancer cells.
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Table 2. 13C NMR dataa for compounds 1–7 in CD3OD.

Position
1 2 3 4 5 6 7

δC, Type δC, Type δC, Type δC, Type δC, Type δC, Type δC, Type

1 39.2, CH2 40.2, CH2 39.2, CH2 39.2, CH2 39.2, CH2 38.2, CH2 39.4, CH2
2 23.7, CH2 24.1, CH2 23.7, CH2 24.6, CH2 23.7, CH2 24.0, CH2 24.4, CH2
3 80.1, CH 79.9, CH 80.1, CH 82.5, CH 80.1, CH 82.0, CH 82.1, CH
4 77.7, CH 78.0, CH 77.7, CH 77.6, CH 77.7, CH 76.9, CH 77.6, CH
5 66.4, C 66.2, C 66.4, C 144.1, C 66.3, C 145.4, C 144.1, C
6 64.2, CH 63.3, CH 64.2, CH 130.0, CH 64.2, CH 129.5, CH 130.0, CH
7 34.2, CH2 33.6, CH2 34.2, CH2 33.0, CH2 33.6, CH2 33.2, CH2 33.0, CH2
8 31.7, CH 28.8, CH 31.7, CH 29.4, CH 27.4, CH 26.4, CH 29.5, CH
9 53.9, CH 57.8, CH 53.9, CH 52.9, CH 54.3, CH 56.2, CH 59.2, CH

10 36.9, C 37.9, C 36.9, C 38.0, C 36.9, C 38.6, C 38.1, C
11 23.1, CH2 69.5, CH 23.1, CH2 22.1, CH 23.1, CH2 69.5, CH 22.2, CH
12 41.8, CH2 51.1, CH2 41.8, CH2 43.0, CH2 43.1, CH2 52.3, CH2 43.0, CH2
13 44.1, C 43.7, C 44.1, C 44.0, C 43.9, C 43.4, C 44.0, C
14 58.1, CH 61.2, CH 58.1, CH 63.5, CH 62.8, CH 65.6, CH 63.6, CH
15 25.9, CH2 25.7, CH2 25.9, CH2 71.3, CH 70.9, CH 71.3, CH 71.2, CH
16 29.8, CH2 29.7, CH2 29.8, CH2 42.7, CH2 42.6, CH2 42.3, CH2 42.6, CH2
17 59.0, CH 59.8, CH 58.9, CH 59.1, CH 59.0, CH 59.9, CH 59.4, CH
18 12.8, CH3 16.1, CH3 12.8, CH3 15.7, CH3 15.4, CH3 18.1, CH3 15.6, CH3
19 19.1, CH3 21.8, CH3 19.1, CH3 22.0, CH3 19.0, CH3 25.3, CH3 21.9, CH3
20 34.1, CH 34.2, CH 34.1, CH 34.2, CH 34.2, CH 34.3, CH 33.9, CH
21 19.5, CH3 19.5, CH3 19.7, CH3 19.6, CH3 19.5, CH3 19.5, CH3 19.7, CH3
22 41.7, CH2 41.8, CH2 46.2, CH2 45.0, CH2 45.1, CH2 45.1, CH2 41.9, CH2
23 71.7, CH 71.8, CH 68.1, CH 72.5, CH 72.5, CH 72.6, CH 71.8, CH
24 47.4, CH 47.4, CH 49.5, CH 162.4, C 162.3, C 162.4, C 47.4, CH
25 29.6, CH 29.6, CH 26.4, CH 32.2, CH 32.1, CH 32.2, CH 29.6, CH
26 22.5, CH3 22.5, CH3 24.4, CH3 24.4, CH3 24.4, CH3 24.4, CH3 22.5, CH3
27 18.3, CH3 18.4, CH3 23.3, CH3 23.6, CH3 23.7, CH3 23.7, CH3 18.4, CH3
28 11.3, CH3 11.3, CH3 106.8, CH2 106.8, CH2 106.8, CH2 11.4, CH3

a Assignments were confirmed by HSQC and HMBC (8Hz) data.
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3. Materials and Methods

3.1. General Procedures

Optical rotations were measured using a PerkinElmer 343 polarimeter (Waltham, MA, USA). IR
spectra were recorded using spectrophotometer Equinox 55 (Bruker, Ettlingen, Germany). The 1H
and 13C NMR spectra were obtained using Bruker Avance III-700 and Bruker Avance III HD-500
spectrometers (Bruker, Ettlingen, Germany). Chemical shifts were referenced with Me4Si as an internal
standard. ESI mass spectra (including HRESIMS) were measured using Bruker maXis Impact II mass
spectrometer (Bruker Daltonics, Bremen, Germany). Low-pressure column liquid chromatography
was performed using YMC Gel ODS-A (YMC Co., Ltd., Kyoto, Japan). HPLC was performed using
Shimadzu Instrument equipped with RID-10A refractive index detector (Shimadzu Corporation, Kyoto,
Japan) and YMC-Pack ODS-A (250 × 10 mm) column (YMC Co., Ltd., Kyoto, Japan).

3.2. Animal Material

Specimens of Haliclona gracilis were collected off the coast of Shikotan Island (43◦28′0 N; 146◦48′9 E)
by dredging at 145 m depth on June 2017, and identified by Grebnev B. B. using the morphology
of skeleton and spicules. Comparison the data of #050-078 with the corresponding characteristics
of Haliclona gracilis and their complete coincidence supported the sponge identification as Haliclona
gracilis [32]. A voucher specimen is deposited under registration number 050-078 in the collection of
marine invertebrates of the Pacific Institute of Bioorganic Chemistry (Vladivostok, Russia).

3.3. Extraction and Isolation

The freshly collected specimens were immediately frozen and stored at −18 ◦C until use. Animal
material (dry weight 20 g) were crushed and extracted with EtOH (2 × 1 L). The EtOH extract after
evaporation in vacuo was partitioned between H2O and n-BuOH. The n-BuOH-soluble materials
were partitioned with aqueous EtOH and n-hexane. The EtOH-soluble layer was fractioned by
flash column chromatography on YMC gel ODS-A (75 µm), eluting with a step gradient of H2O
– EtOH (100:0 − 20:80) with monitoring by HPLC. The fractions that eluted with 40% EtOH were
further purified by repeated reversed-phase HPLC (YMC ODS-A column (250 × 10 mm), 1.5 mL/min,
H2O-EtOH, 40:60 +1% AcONH4) to afford, in order of elution, compounds 6 (2 mg), 2 (3 mg), 4 (6 mg),
5 (1 mg), 3 (1 mg), 7 (4 mg), and 1 (8 mg) with retention times (tR) of 14.0, 17.5, 18.4, 22.5, 26.2, 32.5,
and 36.1 min, respectively.

3.4. Compound Characterization Data

Gracilosulfate A (1): white, amorphous solid; [α]20
D +6 (c 0.2, EtOH); IR (KBr) νmax 3467, 2957, 1457,

1242, 1002, 939 cm−1; 1H, 13C NMR, Tables 1 and 2; HRESIMS m/z 527.3045 [M−Na]− (calcd for
C28H47O7S, 527.3048).

Gracilosulfate B (2): white, amorphous solid; [α]20
D +22 (c 0.2, EtOH); IR (KBr) νmax 3446, 2947, 1457, 1242,

937 cm−1; 1H, 13C NMR, Tables 1 and 2; HRESIMS m/z 543.3002 [M−Na]− (calcd for C28H47O8S, 543.2997).

Gracilosulfate C (3): white, amorphous solid; [α]20
D ≈0 (c 0.1, EtOH); IR (KBr) νmax 3465, 2960, 1450, 1240

cm−1; 1H, 13C NMR, Tables 1 and 2; HRESIMS m/z 513.2891 [M−Na]− (calcd for C27H45O7S, 513.2891).

Gracilosulfate D (4): white, amorphous solid; [α]20
D −40 (c 0.2, EtOH); IR (KBr) νmax 3436, 2956, 1457,

1242, 1065, 998 cm−1; 1H, 13C NMR, Tables 1 and 2; HRESIMS m/z 525.2890 [M−Na]− (calcd for
C28H45O7S, 525.2891).
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Gracilosulfate E (5): white, amorphous solid; [α]20
D ~0 (c 0.1, EtOH); IR (KBr) νmax 3440, 2938, 1457, 1241,

936 cm−1; 1H, 13C NMR, Tables 1 and 2; HRESIMS m/z 541.2845 [M−Na]− (calcd for C28H45O8S, 541.2841).

Gracilosulfate F (6): white, amorphous solid; [α]20
D −17 (c 0.2, EtOH); IR (KBr) νmax 3456, 2942, 1457, 1242,

998 cm−1; 1H, 13C NMR, Tables 1 and 2; HRESIMS m/z 541.2840 [M−Na]− (calcd for C28H45O8S, 541.2841).

Gracilosulfate G (7): white, amorphous solid; [α]20
D −32 (c 0.1, EtOH); IR (KBr) νmax 3440, 2932,

1653, 1457, 1240 cm−1; 1H, 13C NMR, Tables 1 and 2; HRESIMS m/z 527.3057 [M − Na]− (calcd for
C28H47O7S, 527.3048).

Preparation of MTPA esters of compounds 1, 3, and 4

To duplicate solutions of compound 1 (2 mg each) in 100 µL of anhydrous pyridine, we added (R)-
or (S)-MTPACl (10 µL). After stirring for 30 min at rt, the reaction mixtures were concentrated under
reduced pressure and separated by HPLC (YMC ODS-A column (250 × 10 mm), H2O-EtOH, 24:76 +

1% AcONH4) to afford the (S)- or (R)-MTPA esters of 1. The (S)- or (R)-MTPA derivatives of 3 and 4
were also prepared in a similar manner.

(S)-MTPA ester of 1 (1S): white, amorphous solid; 1H NMR (CD3OD, 500 MHz) δH 5.35 (1H, dd, J = 11.2,
4.7 Hz, H-23), 1.76 (1H, m, H-22), 1.52 (1H, m, H-24), 1.47 (1H, m, H-25), 1.39 (1H, m, H-20), 1.13
(1H, m, H-22), 0.99 (3H, d, J = 6.7 Hz, H-21), 0.94 (3H, d, J = 6.6 Hz, H-27), 0.86 (3H, d, J = 6.6 Hz,
H-26), 0.76 (3H, d, J = 6.7 Hz, H-28), 0.62 (3H, s, H-18). HRESIMS m/z 779.3210 [M + Cl]− (calcd for
C38H55ClF3O9S, 779.3213).

(R)-MTPA ester of 1 (1R): white, amorphous solid; 1H NMR (CD3OD, 500 MHz) δH 5.36 (1H, dd, J = 11.2,
4.7 Hz, H-23), 1.69 (1H, m, H-22), 1.57 (1H, m, H-24), 1.50 (1H, m, H-25), 1.13 (1H, m, H-20), 1.04
(1H, m, H-22), 0.97 (3H, d, J = 6.6 Hz, H-27), 0.92 (3H, d, J = 6.7 Hz, H-21), 0.89 (3H, d, J = 6.6 Hz,
H-26), 0.87 (3H, d, J = 6.7 Hz, H-28), 0.45 (3H, s, H-18). HRESIMS m/z 779.3210 [M + Cl]− (calcd for
C38H55ClF3O9S, 779.3213).

(S)-MTPA ester of 3 (3S): white, amorphous solid; 1H NMR (CD3OD, 500 MHz) δH 5.33 (1H, m,
H-23), 1.78 (1H, m, H-22), 1.49 (1H, septet, J = 6.6 Hz„ H-25), 1.41 (1H, m, H-20), 1.30 (1H, m,
H-24), 1.19 (1H, m, H-22), 0.99 (3H, d, J = 6.5 Hz, H-21), 0.98 (1H, m, H-24), 0.90 (3H, d, J = 6.6 Hz,
H-27), 0.87 (3H, d, J = 6.6 Hz, H-26), 0.63 (3H, s, H-18). HRESIMS m/z 765.3060 [M + Cl]− (calcd for
C37H53ClF3O9S, 765.3056).

(R)-MTPA ester of 3 (3R): white, amorphous solid; 1H NMR (CD3OD, 500 MHz) δH 5.30 (1H, m,
H-23), 1.62 (1H, m, H-24), 1.68 (1H, m, H-22), 1.38 (1H, m, H-24), 1.59 (1H, septet, J = 6.6 Hz„
H-25), 1.16 (1H, m, H-20), 1.14 (1H, m, H-22), 0.89 (3H, d, J = 6.5 Hz, H-21), 0.95 (3H, d, J = 6.6 Hz,
H-27), 0.92 (3H, d, J = 6.6 Hz, H-26), 0.42 (3H, s, H-18). HRESIMS m/z 765.3060 [M + Cl]− (calcd for
C37H53ClF3O9S, 765.3056).

Bis(S)-MTPA ester of 4 (4S): white, amorphous solid; 1H NMR (CD3OD, 500 MHz) δH 6.02 (1H, dd,
J = 3.3, 1.1 Hz, H-4), 5.47 (1H, brd, J = 11.1 Hz, H-23), 4.87 (1H, t, J = 1.2 Hz, H-28), 4.84 (1H, brs, H-28),
1.91 (1H, m, H-22), 2.25 (1H, septet, J = 6.6 Hz, H-25), 1.67 (1H, m, H-20), 1.28 (1H, m, H-22), 1.10 (3H,
d, J = 6.6 Hz, H-27), 1.03 (6H, d, J = 6.6 Hz, H-21, 26), 0.93 (3H, s, H-18). HRESIMS m/z 957.3675 [M −
Na]− (calcd for C48H59F6O11S, 957.3688).

Bis(R)-MTPA ester of 4 (4R): white, amorphous solid; 1H NMR (CD3OD, 500 MHz) δH 5.91 (1H, dd,
J = 3.3, 1.1 Hz, H-4), 5.52 (1H, brd, J = 11.1 Hz, H-23), 5.07 (1H, t, J = 1.2 Hz, H-28), 5.01 (1H, brs, H-28),
2.32 (1H, septet, J = 6.6 Hz, H-25), 1.89 (1H, m, H-22), 1.43 (1H, m, H-20), 1.21 (1H, m, H-22), 0.94 (3H,
d, J = 6.5 Hz, H-21), 1.12 (3H, d, J = 6.6 Hz, H-27), 1.08 (3H, d, J = 6.6 Hz, H-26), 0.55 (3H, s, H-18).
HRESIMS m/z 957.3675 [M − Na]− (calcd for C48H59F6O11S, 957.3688).
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3.5. Bioactivity Assay

3.5.1. Reagents

The MTT reagent (thiazolyl blue tetrazolium bromide) was purchased from Sigma
(Taufkirchen, Germany).

3.5.2. Cell Lines and Culture Conditions

The human prostate cancer cell line 22Rv1 was purchased from ATCC (Manassas, VA, USA).
Cells were cultured according to the manufacturer’s instructions in RPMI media containing 10% FBS
(Invitrogen, Carlsbad, USA). Cells were continuously kept in culture for a maximum of 3 months,
and were routinely examined for stable phenotype and mycoplasma contamination.

3.5.3. In Vitro MTT-Based Drug Sensitivity Assay

The in vitro cytotoxicity of individual substances was evaluated using a MTT-based assay, which
was performed as previously described [33]. Treatment time was 48 h.

3.5.4. Western Blotting

Preparation of protein extracts and Western blotting were performed as described previously [34].
For the detection of PSA, expression the anti-PSA/KLK3 antibodies was used (Cell Signaling, #5365,
1:1000). Treatment time was of 24 h.

4. Conclusions

In summary, we isolated gracilosulfates A-G, new steroids from the marine sponge H. gracilis,
possessing a rare 3β-O-sulfonato, 4β-hydroxy moiety [1]. To date, only one pregnane steroid [35]
and two polyhydroxy steroids [36] with such a fragment have been isolated from the sponge Stylopus
australis and the starfish Coscinasterias tenuispina, respectively. In addition, the 5β,6β epoxy fragment
is unprecedented in sulfated steroids [1]. Finally, the combination of 3β-O-sulfonato, 5β,6β-epoxy
(or 5(6)-dehydro), and 4β,23-dihydroxy moieties is unprecedented, taking into account structures of
all previously known natural sulfated steroids. Interestingly, these compounds are able to inhibit
PSA expression in human hormone-independent prostate cancer cells, suggesting inhibition of AR
signaling, a central target for the treatment of advanced prostate cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/9/454/s1,
Copies of HRESIMS, and 1D- and 2D-NMR spectra of 1–7, and photo of the marine sponge Haliclona gracilis
(#050-078).
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