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Abstract: Diatoms are the dominant component of the marine phytoplankton. Several diatoms
produce secondary metabolites, namely oxylipins, with teratogenic effects on their main predators,
crustacean copepods. Our study reports the de novo assembled transcriptome of the calanoid copepod
Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi. Differential
expression analysis was also performed between copepod females exposed to the diatom and the
control flagellate Prorocentrum minimum, which does not produce oxylipins. Our results showed that
transcripts involved in carbohydrate, amino acid, folate and methionine metabolism, embryogenesis,
and response to stimulus were differentially expressed in the two conditions. Expression of 27 selected
genes belonging to these functional categories was also analyzed by RT-qPCR in C. helgolandicus
females exposed to a mixed solution of the oxylipins heptadienal and octadienal at the concentration of
10 µM, 15 µM, and 20 µM. The results confirmed differential expression analysis, with up-regulation of
genes involved in stress response and down-regulation of genes associated with folate and methionine
metabolism, embryogenesis, and signaling. Overall, we offer new insights on the mechanism of action
of oxylipins on maternally-induced embryo abnormality. Our results may also help identify biomarker
genes associated with diatom-related reproductive failure in the natural copepod population at sea.
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1. Introduction

Diatoms are the dominant component of the marine phytoplankton, being responsible for
approximately 50% of primary production in the oceans, and 20% to 25% of all organic carbon fixation
on the planet [1]. It has been shown that several diatom species possess a complex infochemical
system that plays an important role in allelopathy [2], phytoplankton intercellular communication [3],
and phytoplankton bloom termination [4], thus shaping the structure of phytoplankton communities [5].
Several field observations have also demonstrated inhibitory effects of diatoms on the reproduction
of calanoid copepods during blooms occurring in the Adriatic Sea [6–8], in the English Channel [9],
in the Baltic Sea [10], and in the North and South Pacific Ocean [11,12]. Such harmful effects of
diatoms on copepod gametogenesis, hatching success, and naupliar fitness, is due to the production
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of lipid peroxidation compounds termed “oxylipins,” upon cellular wounding, e.g., after copepod
grazing. Oxylipins include polyunsaturated aldehydes (PUAs), as well as hydroxyacids, epoxy
alcohols, fatty acid hydroperoxides and highly reactive oxygen species (hROS) [13], that may act as
defensive metabolites by inducing congenital malformations in copepod offspring and apoptosis in
embryos, nauplii and adult females [7,14]. Reduced viability and apoptosis in copepod offspring have
been reported either following feeding on oxylipin-producing diatoms (for a review see [15] or after
indirect exposure of females to known concentrations of oxylipins [7,16,17]. Recent studies on sea
urchin embryos [18] and references therein) and cancer cell lines [19] have highlighted the molecular
pathways activated or repressed by PUAs, yet, the unequivocal mode of induction of teratogenesis
due to oxylipins in copepods still remains largely unknown.

The calanoid copepod Calanus helgolandicus is one of the key copepod species in European waters
contributing up to 6% to 93% of the mesozooplankton biomass [20]. The species belongs to the genus
Calanus, whose members are among the largest copepods and which constitute up to 90% of the
mesozooplankton biomass in most marine ecosystems [21]. Calanus species play a critical role as grazers
of microplankton and prey of juvenile and adult stages of commercially important fish species [22],
and also contribute to biogeochemical cycles through vertical migrations [23]. Calanus helgolandicus
is distributed over a wide range of habitats, from open oceans to coastal environments and is very
abundant in the temperate Atlantic Ocean, in the North Sea and in the Mediterranean basin [24,25].
In this area it is considered a “boreal” cold-water species, showing abundance peaks from February
to April in both the Adriatic and the Tyrrhenian Seas [20,24]. In recent years, C. helgolandicus
became a model species for multigeneration cultivation [26] and to investigate copepod molecular
responses to oxylipin-producing diatoms, using a gene-target approach and RT-qPCR techniques.
In particular, these studies have shown that two days of feeding on the ubiquitous bloom-forming and
oxylipin-producing diatom Skeletonema marinoi, inhibits a series of genes involved in stress defense,
aldehyde detoxification and control of apoptosis in C. helgolandicus females [27–29]. In another study
based on suppression subtractive hybridization techniques and Expressed Sequence Tags (ESTs)
libraries, it has been shown that S. marinoi activated a generalized cellular stress response (CSR) in
C. helgolandicus females, by over-expressing genes of molecular chaperones and signal transduction
pathways that ultimately protect the copepod from the immediate effects of the diatom diet [30].

These studies provided the first molecular evidence of the harmful effects of oxylipin-producing
diatoms on copepods. However, genome-wide approaches such as next-generation transcriptome
sequencing could allow the identification of a higher number of transcripts involved in the process,
leading to the discovery of the molecular pathways targeted by diatom oxylipins and helping to explain
the mechanism of teratogenesis in copepods.

To date, relatively little is known about copepod encoded genes, with genomic resources
and RNA-Seq studies limited to a small number of species [31]. Among them, the calanoids
Calanus finmarchicus [32], Calanus sinicus [33], Neocalanus flemingeri [34], Temora longicornis [35],
and Acartia tonsa [36]. In these species, RNA-Seq analysis has been used to generate molecular
resources to address physiological and ecological questions such as diapause, lipid biosynthesis,
molting and response to abiotic and biotic stressors [32–39] and also to develop molecular markers
(SNPs and microsatellites) for studying population genetic diversity [40].

In the present study, we performed a de novo transcriptome assembly and Differential Gene
Expression analysis of C. helgolandicus females feeding for five days on the oxylipin-producing diatom
S. marinoi, with respect to a diet of the dinoflagellate Prorocentrum minimum that does not produce these
compounds. The S. marinoi strain used originates from the Northern Adriatic Sea, where it dominates
the winter-spring phytoplankton bloom [41] and is reported to produce up to fourteen different
oxylipins, including the PUAs heptadienal and octadienal [13]. In order to anchor C. helgolandicus
molecular responses to direct PUAs ingestion, we also performed gene expression analysis in copepod
females exposed for five days to increasing concentrations of heptadienal and octadienal. Specific
aims were to: (1) investigate the complete gene expression landscape of C. helgolandicus females using
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transcriptome sequencing technology, (2) characterize the transcriptional profile and identify specific
gene targets affected in C. helgolandicus females feeding on S. marinoi, (3) evaluate quantitative expression
of these target genes in females exposed to PUAs. Our ultimate goal was to identify the copepod
genes potentially associated with diatom- and oxylipin-induced reproductive failure and teratogenesis,
in order to better understand zooplankton physiological ecology, as well as chemically-mediated
diatom-copepod interactions at sea.

2. Results

2.1. Transcriptome Sequencing, De-Novo Assembly and Annotation

RNA samples extracted from C. helgolandicus females fed for five days on either S. marinoi or
P. minimum had a mean concentration of 460 ng/µL, RIN ≥ 9, and A260/A230 and A260/A280 ratios ~ 2.0
and were therefore used for cDNA library construction and Illumina sequencing. Illumina-based
RNA-Seq of six cDNA libraries in three lanes generated a total of 727 million reads for a total length of
36,324,516,700 bp. After trimming of low-quality reads (quality scores < 20) and short-read sequences
(less than 20 bp), a total of 606 million high-quality reads (83.4%) were obtained. The de novo assembly
of this 606 million cleaned short reads generated 238,922 transcripts with the average length of 750 bp
(N50 = 1114), for a total length of 179,248,227 bp. By splicing and redundancy removing, and filtering
out low abundant transcripts, the assembly eventually resulted in 30,339 “Trinity predicted genes”
or unigenes (total length = 43,310,775 bp, N50 = 1784 bp and average length = 1427 bp) (Table 1).
This represented our C. helgolandicus reference transcriptome and contained either singletons as well
as the longest isoform of transcripts having multiple isoforms. Minimum and maximum length
of sequences was 200 bp and 25,500 bp, respectively, while >50% of unigenes were 1000–5000 bp.
The whole size distribution of unigenes is shown in Figure S1.

Table 1. Summary statistics of Calanus helgolandicus RNA-Seq analysis.

Category Number/Length

Reads from raw data 726,490,334
Average read length (bp) 50

Reads after trimming 605,681,621
Percentage retained 83.4%

Unigenes 30,339
Average length (bp) 1427

N50 (bp) 1784

BLASTx similarity search of 30,339 C. helgolandicus unigenes against non-redundant (nr) protein
database resulted in 21,336 (70.3% of the total) matched unigenes and 9001 sequences (29.7%) without
BLASTx hits, whereas 2 unigenes had only InterProScan exceeding BLASTx size limit of 18,000 bp
in Blast2GO. Slightly lower matches were obtained against Swissprot database, with 19,386 matched
unigenes (63.9%). The e-value distribution showed that 21.9% and 14.9% of the unigenes have strong
homology in the nr database, with BLASTx results ranging from 0 to 1 × 10−100 and from 1 × 10−100 to
1 × 10−60, respectively; whereas 89.4% of the hits have a similarity ranging from 30% to 80% (Figure S2).

The species distribution of the best matches (top-hit) against the nr database of C. helgolandicus
transcriptome shows that the highest number of matched unigenes have similarities with the copepods
Eurytemora affinis and Tigriopus californicus, followed by other crustaceans, arthropods and copepod
species, thus reflecting both phylogenetic relationship and abundant genomic information for those
species (Figure S3).

Blast2GO analysis showed that 18,167 unigenes with significant BLASTx matches were functionally
annotated (59.9% of the total), receiving in total 376,891 GO terms annotations. These GO terms
were distributed as to 231,406 (61.4%) biological processes, 67,273 (17.8%) molecular functions and
78,212 (20.8%) cellular components. It should be noted that multiple GO terms could be assigned
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to the same unigene. Within the biological process category, cellular process (12,862 out of 18,167
annotated unigenes, 70.8%), metabolic process (11,254 unigenes, 61.9%), developmental process
(9002 unigenes, 49.6%), and response to stimulus (7576 unigenes, 41.7%), were among the most
represented categories, followed by other important processes such as signaling (5892 unigenes,
32.4%), reproduction (4248 unigenes, 23.4%) and growth (2324 unigenes, 12.8%) (Figure 1a). Within the
molecular function category, the highest number of unigenes were assigned to binding (10,518 unigenes,
57.9%) and catalytic activity (6637 unigenes, 36.5%) (Figure 1b). Finally, in the cellular component
category, cell (14,304 unigenes, 78.7%) and organelle (12,814 unigenes, 70.5%) were most highly
represented (Figure 1c).
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Figure 1. GO categories of annotated unigenes of Calanus helgolandicus transcriptome. GO distribution
by level 2 of unigenes assigned to the three main GO categories: (a) Biological processes, (b) molecular
function and (c) cellular components. Only top 20 GO terms are shown.

There was no difference between the C. helgolandicus transcriptome and Drosophila melanogaster
genome when comparing the proportions of unigenes in the top 20 2nd level GO functional categories,
suggesting that the sequenced C. helgolandicus transcriptome did not lack any major functional
categories of genes (Figure S4).

Mapping the 30,339 C. helgolandicus unigenes against the KEGG pathway database resulted in
6361 unigenes with assigned KO numbers, for a total of 4710 KO terms associated with the unigenes.
Using a pathway reconstruction module, these KEGG annotated unigenes were further categorized into
six different functional groups. Specifically, 2663 unigenes were assigned to metabolism (41.9%), 1231 to
genetic information processing (19.3%), 1542 to environmental information processing (24.2%), 1312 to
cellular processes (20.6%), 2569 to organismal systems (40.4%), and 2872 to human diseases, which was
the largest group (45.1%). Interestingly, signal transduction belonging to environmental information
processing group was the most represented KEGG category in C. helgolandicus transcriptome (22.5%),
followed by cancers (15.3%) and infectious diseases (15.2%) (Figure 2). A summary of the statistics of
the unigene annotation for C. helgolandicus is shown in Table 2.
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Figure 2. KEGG functional group classification of Calanus helgolandicus transcriptome. Number of unigenes
assigned to six KEGG functional groups: metabolism (blue), genetic information processing (orange),
environmental information processing (black), cellular processes (green), organismal systems (purple),
and human diseases (red).

Table 2. Annotation statistics of Calanus helgolandicus unigenes. Nr: non-redundant protein database;
SwissProt database; GO: gene onthology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Database Number %

All unigenes 30,339 100
Nr 21,337 70.3

Swissprot 19,386 63.9
GO 18,167 59.9

KEGG 6361 21.0

2.2. Differential Expression Analysis

Analysis of expression levels of unigenes showed that 280 sequences were differentially expressed
in C. helgolandicus, with 117 unigenes significantly up-regulated and 163 unigenes significantly
down-regulated in S. marinoi-fed compared to P. minimum-fed females (FDR ≤ 0.05). All DEGs were
further mapped against nr and Swissprot databases, to infer the biological function in which they were
involved. Overall, 117 (52 up-regulated and 65 down-regulated) out of 280 DEGs were functionally
annotated against nr and Swissprot databases and assigned one or more specific GO term (Table S1).
More specifically, in the biological process category, up-regulated DEGs were allocated to a higher
number of different but functionally-related GO terms with respect to down-regulated DEGs (74 vs. 47,
respectively), of which 88% contained <5 sequences, with respect to 75% for down-regulated genes.
This suggested that up-regulated genes encoded for proteins acting in multiple and interconnected
metabolic, organismal and cellular processes, such as response to stimulus/stress, protein folding,
signaling, biological regulation, lipid metabolic and glutathione metabolic processes (Table S2).
In contrast, down-regulated genes showed a lower level of sequence redundancy among terms and
were distributed into a more restricted GO list which mainly comprised metabolic and catabolic
processes of e.g., organonitrogen compounds (amino acids and nucleotides), proteins, carbohydrates
and well-defined amino acids (e.g., serine, glycine and threonine, cysteine, and methionine) (Table S3).
It is possible, hence, that the response of C. helgolandicus to S. marinoi feeding is, on the one hand,
the overall activation (up-regulation) of several basic organismal-related and stimulus-related cellular



Mar. Drugs 2020, 18, 392 6 of 26

processes, and on the other hand, a reduction (down-regulation) of specific protein—amino acid- and
glucose-related metabolic pathways. This output is confirmed by the enrichment analysis on up- and
down-regulated gene datasets with respect to all DEGs. The analysis showed that within the biological
process category, the GO cellular process (FDR = 6.3 × 10−3) and protein folding (FDR = 1.1 × 10−2)
were significantly enriched in the up-regulated gene set with respect to DEGs. Whereas, GO terms
metabolic process (FDR = 1.0 × 10−4), organic substance metabolic process (FDR = 2.0 × 10−4), primary
metabolic process (FDR = 1.3 × 10−3), nitrogen compound metabolic process (FDR = 2.2 × 10−2) and
carbohydrate metabolic process (FDR = 4.3 × 10−2), were enriched in the down-regulated unigenes.

KEGG pathway analysis on DEGs resulted in 56 KO groups assigned to 34 up- and 30 down-regulated
genes. Distribution of these unigenes within different pathway subcategories reflected previous GO
annotation and enrichment results. Up-regulated unigenes, in fact, were mainly allocated to lipid
metabolism (12%), xenobiotics biodegradation (i.e., drug metabolism) (15%), folding and degration
(i.e., protein processing in endoplasmic reticulum) (21%), signaling (i.e., MAPK signaling pathway and
lectins) (15%), transport and catabolism (i.e., endocytosis and lysosome) (18%), immune (i.e., antigen
processing and presentation) (15%), endocrine (8%) and digestive (i.e., pancreatic secretion) (15%)
systems, aging (9%), and cancers (i.e., chemical carcinogenesis) (12%); whereas down-regulated genes
were assigned to carbohydrate (i.e., starch and sucrose) (20%) and amino acid (i.e., glycine, serine,
and threonine) (17%) metabolism, membrane transport (i.e., transporters) (10%), and digestive system
(i.e., protein digestion and absorption) (20%) (Figure 3).
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Figure 3. KEGG functional group classification of Calanus helgolandicus DEGs. Percentage of
up-regulated and down-regulated DEGs assigned to KEGG functional groups within metabolism (1),
genetic information processing (2), environmental information processing (3), cellular processes (4),
organismal systems (5), and human diseases (6).

Overall, the information gathered on GO annotation, KEGG pathway analysis, and enrichment
analysis was used for selection of Genes Of Interest (GOIs) belonging to different biological processes
to be tested in RT-qPCR analysis. These processes were: response to stimulus/stress, lipid and
carbohydrate metabolism, folate and methionine metabolism, embryogenesis, and signaling. Folate
and methionine metabolism, named “one carbon pool by folate” in KEGG pathways, was also
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chosen because, starting from folate, it is involved in the metabolism of nucleotides and amino acids,
in particular methionine.

2.3. RT-qPCR of Selected GOIs

Thirteen DEGs were chosen to validate RNA-Seq and differential expression results between
C. helgolandicus females feeding on S. marinoi with respect to females feeding P. minimum, using
RT-qPCR analysis (Table 3). These genes were selected according to FDR value and log2 Fold Change
(log2 FC), as well as according to significantly enriched GO terms following the Fisher’s Exact
Test. In particular, the following unigenes were chosen: (i) folate and methionine metabolism/one
carbon pool by folate: 10-formyltetrahydrofolate dehydrogenase (10-FTHFDH), betaine homocysteine
s-methyltransferase 1 (BHMT1) and methylenetetrahydrofolate reductase (MTHFR); (ii) embryogenesis
and signaling: vitelline membrane outer layer protein 1 (VMO1), patched domain-containing protein 3
(PTCHD3) and palmitoleoyl-protein carboxylesterase NOTUM (NOTUM); (iii) lipid and carbohydrate
metabolism: elongation of very long-chain fatty acids protein AAEL008004 (ELOVL), prosaposin
isoform X2 (PSAP), pancreatic triacylglycerol lipase (PTL) and facilitated trehalose transporter 1
(TRET1); (iv) response to stimulus/stress: prophenoloxidase activating enzyme (PPAE), microsomal
glutathione s-transferase 3 (MGST3), zinc finger protein OZF-like zinc finger protein OZF-like (OZF).

Table 3. Genes of interest selected from DE unigenes in Calanus helgolandicus females fed Skeletonema
marinoi comparedt to females fed Prorocentrum minimum. Gene name, primer F and R sequences,
amplicon size (As) in base pairs (bp) and amplification efficiency (E) are shown.

Name Primer Sequence 5′–3′ As (bp) E (%)

10-Formyltetrahydrofolate
dehydrogenase 10-FTHFDH

CTTGCCAGGAACAGGAAGAG
170 111

AGATCAGCGGAGACTTTCCA

Betaine homocysteine
s-methyltransferase 1 BHMT1

TCGTGCTGGAGCTGATATTG
143 102

GGGTGTGATATGCCAGAGGT

Methylenetetrahydrofolate reductase MTHFR
TATCCACCAGGCAACACAGA

172 102
GGCAGGATCAGCAGAAAGTC

Vitelline membrane outer layer protein 1 VMO1
CTGGCATGAGGAACACCTTT

148 117
AGCAGCATCCAGGTCAGTTT

Patched domain-containing protein 3 PTCHD3
TGGAGGAATATCGGACTTGC

148 118
TGGTGATGTCCCAGAAGTGA

Palmitoleoyl-protein carboxylesterase
NOTUM

NOTUM
TTGTACACAGGCACCAGGAA

142 117
CACCAATGAGCACAAATTGC

Elongation of very long-chain fatty
acids protein ELOVL

GCCCAAGATTTATTGGTGGA
192 107

GCTGGATAGCGTGGAAGAAA

Prosaposin PSAP
AGACTTGGACAATTGGCTGGT

112 101
GCACATTGTTTCCAGGTCCTC

Pancreatic triacylglycerol lipase PTL
CTGGCTTGAGGCTATTCCTG

179 103
CTGAGCCTCCACTTGGGTAG

Facilitated trehalose transporter 1 TRET1
TTTGGCTGAAAGGATTGGTC

110 92
ACATCATCAAGGACGGGAAC

Prophenoloxidase activating enzyme PPAE
ATCTGCTGCCGAGTGTAACC

127 126
TCCCCCATTATCTGCATAGC

Microsomal glutathione s-transferase 3 MGST3
CCAGAGAGCACACCAGAACA

156 106
GGCTCGCCTGTGTAATATCC

Zinc finger protein OZF OZF
TGTTTGGCTGTGAAGTTTGC

153 101TCAATGTGTGGGTCTTCAGG
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Relative expression ratio of these GOIs in RT-qPCR strongly resembled those obtained from DE
analysis (Figure 4a), as indicated by the significant positive correlation between the two datasets
(Pearson’s correlation test, r = 0.9421, R2 = 0.888. p < 0.0001). More specifically, the three stimulus-related
genes were among those that were most strongly up-regulated, with prophenoloxidase activating
enzyme (PPAE) being 8-fold and 6-fold up-regulated in RNA-Seq and RT-qPCR analysis, respectively,
followed by microsomal glutathione s-transferase 3 (MGST3) (7.5-fold and 2.7-fold, respectively) and
the zinc finger protein OZF-like (OZF) (5.9-fold and 3.9-fold, respectively). Other up-regulated genes
were involved in metabolism of lipids, PSAP (4-fold and 3-fold, respectively) and ELOVL (4-fold
and 2.5-fold, respectively). The most down-regulated gene was the embryogenesis-related protein
vitelline membrane outer layer protein 1 (VMO1) (−4.7-fold and −4.5-fold, respectively), as were other
sugar- and amino acid metabolism-related genes such as TRET1 (-3-down regulated in both analysis),
10-FTHFDH (−1.4-fold and −2.4-fold, respectively) and BHMT1 (−2-down regulated in both analysis)
(Figure 4a).
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Figure 4. Relative expression ratio (log2 FC) of GOIs in Skeletonema marinoi-fed Calanus helgolandicus
versus Prorocentrum minimum-fed copepods. (a) Comparison of RT-qPCR and RPKM (RNA-Seq)
expression values for each GOIs. Gray bars represent RNA-Seq data, whereas black bars represent
RT-qPCR data normalized to GAPDH, S20, and EFA. (b) RT-qPCR values of additional GOIs belonging
to the same biological processes, normalized to GAPDH, S20, and EFA. Bars represent mean ± SD
values. All RT-qPCR ratios were statistically significant according to the Pair Wise Fixed Reallocation
Randomization Test (p < 0.05). Genes were grouped by biological process in which they are involved.
For gene abbreviation names see results.
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Relative expression ratio of additional fourteen GOIs within the same GO categories selected from
C. helgolandicus reference transcriptome, were tested in S. marinoi-fed copepods versus P. minimum-fed
copepods through RT-qPCR (Table 4, Figure 4b).

Table 4. Genes of interest selected from de novo assembled Calanus helgolandicus transcriptome. Gene
name, primer F and R sequences, amplicon size (As) in base pairs (bp) and amplification efficiency (E)
are shown.

Name Primer Sequence 5′–3′ As (bp) E (%)

Thymidylate synthase TS
CCGAATACACCAACATGCAC

184 109
TCTGCCACGTAGAACTGCAC

Methionine synthase MS
GGGACCTTTGATGAGTGGAA

152 95
ACAGTGCGGCTTGTCTTTCT

DNA (cytosine-5)-methyltransferase 1 DNMT1
ACAACAACTGGGCTGGTCTC

188 100
GGGTGTGCCGTAGAACTTGT

Thiamine transporter 1 THTR1
CCCGAACCAACTGTTCAAAT

189 88
ATGGGCTGGCTTTATCTCCT

Dihydrofolate reductase DHFR
GATCAAGTCTGAGCTGGCGT

154 112
CCTGGAGAGCACGATGTTGA

Aurora kinase B AUR
CTCAAGGAGAGCCACCATGT

193 122
CCTCAGGTCCACCCTTGTAA

Homeotic protein distal-less DLL
AGTTCCCATTCCCAGGAGGT

199 97
GGCAGAGCTAGGTACTGGGT

Embryonic polarity protein dorsal DORSAL
CAGCCAGCACCCAAGAGAAT

143 104
GCATCCTTCCTTCCCAACCA

Heat shock cognate protein 70 HSC70
TCGGAATTGATCTTGGAACC

149 103
TGCAGCATCTCCAACAAGTC

Sonic hedgehog protein HH
TCTGATCTCGGACTGGTTGA

189 116
CTGGCAGGGTAGAGAGCAAC

Transcriptional activator cubitus interruptus CI
TGCACGTTTGAAGGCTGTTG

153 100
ATTCTGGTGTTTCGCCCTGT

Protein smoothened SMO
AATGAGGTGGAGGAGTGTGG

184 100
AGAAGATTGCCAGAGCAGGA

Protein Wnt-4 WNT4
GACGCACAAGACAGACGAAA

123 107
GCACTTGCATTCAACCTTCA

Cellular tumor antigen p53 P53
AGACCCTTCCAACAGAGCAA

186 129
CAAGACCCGAGACACATGAA

The results showed that three genes related to folate and methionine metabolism/one carbon
pool by folate, such as thymidylate synthase (TS), methionine synthase isoform X1 (MS) and
DNA (cytosine-5)-methyltransferase 1 isoform X2 (DNMT1) were all significantly up-regulated in
S. marinoi-fed versus P. minimum-fed females (between 2.0- and 3.5-fold) (Pair Wise Fixed Reallocation
Randomization Test, p ≤ 0.05), while thiamine transporter 1-like (THTR1) and dihydrofolate reductase
isoform X2 (DHFR) were down-regulated (−1.2 and −0.5-fold) (Figure 4b). Similarly, all unigenes
related to embryogenesis, aurora kinase B-like (AUR), homeotic protein distal-less (DLL) and embryonic
polarity protein dorsal-like isoform X1 (DORSAL), were down-regulated (between −1 and −1.8-fold).
For both signaling and response to stimulus, there was no common trend in the selected genes, ranging
from −1-fold in the case of heat shock cognate protein 70 (HSC70) and 4-fold for sonic hedgehog
protein-like isoform X1 (HH), the remaining genes: transcriptional activator cubitus interruptus-like
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isoform X2 (CI), protein smoothened (SMO), protein Wnt-4 (WNT4) and cellular tumor antigen p53-like
isoform X (P53), included in this range of log2 FC (Figure 4b).

2.4. Effect of PUAs on Calanus helgolandicus Gene Expression

Relative expression ratio of DEGs and other unigenes selected by manual curation,
in C. helgolandicus females exposed for five days to a mixed solution of heptadienal and octadienal at a
final concentration of 10 µM, 15 µM, and 20 µM, with respect to females exposed to control methanol,
is shown in Figures 5–9. In particular, for unigenes involved in folate and methionine metabolism/one
carbon pool by folate, there was a PUAs concentration-dependent decrease in relative expression ratios
of 10-FTHFDH, TS and BHMT1, down to a minimum of −3.0-fold, and an increase for MTHFR and MS,
up to a maximum of 2.6-fold; whereas THTR1, DHFR, and BHMT1 did not show significant changes
(Figure 5).
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Figure 5. Relative expression ratio (log2 fold change) of GOIs related to folate and methionine
metabolism in Calanus helgolandicus females exposed for five days to a mixed solution of heptadienal
and octadienal at a final concentration of 10 µM, 15 µM, and 20 µM, with respect to females exposed
to methanol. Values are mean ± SD. Letters a, b and c denoted statistically different treatments after
Student’s t-test or One-way analysis of variance (ANOVA) for each gene (p < 0.05).
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Regarding transcripts involved in embryogenesis, all three genes VM01, AUR, and DLL were
down-regulated, with a dose-dependent decrease only for the latter gene (down to −2.8-fold) (Figure 6).
For transcripts involved in signaling, PTCHD3 had a concentration-dependent increase and SMO was
up-regulated at 10 µM and 20 µM, whereas CI was down-regulated at 15 µM and 20 µM and NOTUM
at 15 µM. The remaining genes WNT4 and HH did not show significant gene expression changes
with respect to controls and PUAs concentrations (Figure 7). Among transcripts involved in response
to stimulus, only MGST3 and HSC70 were significantly down-regulated (to −1.6-fold) (Figure 8).
Finally, genes involved in general metabolism, PTL, and TRET1, were significantly down-regulated,
while ELOVL and PSAP did not show significant changes (Figure 9).
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Figure 6. Relative expression ratio (log2 fold change) of GOIs related to embryogenesis in
Calanus helgolandicus females exposed for five days to a mixed solution of heptadienal and octadienal
at a final concentration of 10 µM, 15 µM, and 20 µM, with respect to females exposed to methanol.
Values are mean ± SD. Letters a, b and c denoted statistically different treatments after Student’s t-test
or One-way analysis of variance (ANOVA) for each gene (p < 0.05).
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Figure 7. Relative expression ratio (log2 fold change) of GOIs related to signaling in Calanus helgolandicus
females exposed for five days to a mixed solution of heptadienal and octadienal at a final concentration
of 10 µM, 15 µM, and 20 µM, with respect to females exposed to methanol. Values are mean ± SD.
Letters a, b and c denoted statistically different treatments after Student’s t-test or One-way analysis of
variance (ANOVA) for each gene (p < 0.05).
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Figure 8. Relative expression ratio (log2 fold change) of GOIs related to response to stimulus in
Calanus helgolandicus females exposed for five days to a mixed solution of heptadienal and octadienal
at a final concentration of 10 µM, 15 µM, and 20 µM, with respect to females exposed to methanol.
Values are mean ± SD. Letters a and b denoted statistically different treatments after Student’s t-test or
One-way analysis of variance (ANOVA) for each gene (p < 0.05).
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Figure 9. Relative expression ratio (log2 fold change) of GOIs related to metabolism in
Calanus helgolandicus females exposed for five days to a mixed solution of heptadienal and octadienal
at a final concentration of 10 µM, 15 µM, and 20 µM, with respect to females exposed to methanol.
Values are mean ± SD. Letters a and b denoted statistically different treatments after Student’s t-test or
One-way analysis of variance (ANOVA) for each gene (p < 0.05).

3. Discussion

The present study reports the first whole-body RNA-Seq analysis of the copepod Calanus helgolandicus,
generating more than 30 Gb of raw sequence data and 30,339 assembled unigenes. Former studies
on C. helgolandicus transcriptome analysis were performed using EST sequencing (SSH library) and
Sanger sequencing methods, which produced only a few hundred nucleotide sequences [28,30]. As for
transcriptome functional annotation, our study indicated that 70.3% (21,337 out of 30,339) of unigenes
had homologs in the nr database, much more than those reported for Calanus finmarchicus [32],
Temora longicornis [35], Acartia tonsa [36], and Calanus sinicus [33]. This could be attributed to the quality
of the assembly and/or to the application of more stringent filtering parameters.

GO and KEGG classifications revealed that the assembled C. helgolandicus unigenes have diverse
molecular functions and are involved in many metabolic and cellular pathways, thus reflecting gene
richness of the global landscape of the transcriptome. Overall, the highest number of annotated
unigenes were involved in cellular and metabolic processes, developmental processes, response to
stimulus, and signaling, similar to that which has been reported previously [30,32,35,37]. Interestingly,
the KEGG pathway classification analysis showed the highest number of unigenes was classified into
signal transduction and human diseases, especially infectious diseases. Aquatic organisms may often
have to deal with the challenges imposed by parasitic, bacterial, and viral infections in water; thus the
presence of such signal transduction pathways in copepod transcriptomes could have evolved as a
defense mechanism against infection, as suggested for the white-leg shrimp Litopenaeus vannamei [42].

Our differential expression analysis of C. helgolandicus females following an oxylipin-producing
diatom diet was helpful for the identification of candidate genes underlying the response of
C. helgolandicus to the diatom diet and their PUAs. In particular, within the 280 differentially expressed
unigenes between Skeletonema marinoi-fed and Prorocentrum minimum-fed C. helgolandicus females,
several key processes and/or metabolic pathways, such as response to stimulus/stress (e.g., detoxification
mechanism), protein folding, signal transduction, transport, immune response, carcinogenesis,
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carbohydrate, lipid, protein, and aminoacid/tetrahydrofolate metabolism, were significantly altered in
copepod females after five days of feeding on S. marinoi. More importantly, incubation experiments
with pure PUAs supported results obtained during copepod feeding on the diatom, suggesting
that the observed molecular responses were related to the ingestion of oxylipins and their direct
impairment or stimulation of specific gene expression. This is the first study reporting the molecular
effects of the diatom PUAs octadienal and heptadienal on copepods and will help to link molecular
responses to phenotypic responses observed in copepods due to oxylipin-producing diatoms.
Although the concentrations of PUAs in the incubation experiment are higher than the concentrations
theoretically offered to the copepods in the feeding experiment, considering the daily algal supply
of 45.000 cells mL−1 and the potential PUAs production of 2 fmol cell−1 measured in the same
S. marinoi strain used in our study [43], for a total of about 0.1 µM of PUAs, it has to be pointed out
that quantification of oxylipins in algal cultures is always a potential production, based on a fixed
incubation time during which free fatty acids are converted into oxylipins. On the contrary, oxylipin
production in the copepod is an active process occurring continuously in the copepod gut, starting
from algal ingestion, crushing of cells, and release of the oxylipins. It is, therefore, possible that the
actual amount of oxylipins ingested by the copepod during the feeding experiment is higher than the
potential production by the algal culture. Moreover, concentrations of 10–20 µM of PUAs induced the
same reduction of egg viability and increase of naupliar abnormality in C. helgolandicus embryos as
observed during algal feeding experiments with S. marinoi [13].

The activation of drug (xenobiotics) metabolism and detoxification systems is one of the most
common responses to exogenous chemical compounds. In this study, several sequences similar to
detoxification system genes were up-regulated in C. helgolandicus following feeding of S. marinoi,
including microsomal glutathione s-transferase 3 (MGST3), pyrimidodiazepine synthase and xanthine
dehydrogenase/oxidase. The same was observed for several genes coding for proteins involved in
generic stress/stimulus response and protein folding, such as prophenoloxidase activating enzyme
(PPAE), zinc finger protein OZF-like (OZF), heat shock cognate protein 70 (HSC70), E3 ubiquitin-protein
ligase SINAT3 and dnaJ protein homolog 1. These results were confirmed by the KEGG pathway
reconstruction of up-regulated genes which showed high percentages in folding, sorting and
degradation, xenobiotics biodegradation and chemical carcinogenesis, the latter likely associated
with the shared reactive functional group of heptadienal and octadienal with malondialdehyde and
4-hydroxy-2-nonenal, well-known PUAs having carcinogenic activity [44].

Interestingly, our findings differed from those described in [28], which reported down-regulation
of genes involved in stress response and defense (glutathione S-transferase and cytochrome P450
enzymes) in C. helgolandicus feeding on the same S. marinoi strain. This could be related to the shorter
feeding period as compared to the present experiment (2 days vs. 5 day), thus suggesting that prolonged
ingestion of the diatom might induce stronger toxic effects eliciting activation of detoxification systems.
Up-regulation of genes associated with repair/degradation systems in the present study confirm
findings by [30] that S. marinoi induced over-expression of genes involved in protein folding or
degradation in C. helgolandicus, thus protecting the adult copepod from the direct toxic effect of the
diatom diet. Cellular chaperones (i.e., heat shock proteins) can transfer irreparably damaged proteins
for degradation through the ubiquitin–proteasome pathway [45]. Similar up-regulation of transcripts
encoding proteins involved in the ubiquitin–proteasome pathway has also been shown in the copepod
C. finmarchicus following exposure to diethanolamine [46]. Our incubation experiments with pure
PUAs in general confirmed results induced by the diatom diet, with 2–3-fold up-regulation of PPAE
and OZF, although opposite trends were observed for MGST3 and HSC70. It is possible that the
amount of PUAs indirectly ingested by copepod females in this in vitro test was too low to induce the
activation of such a detoxification system, thus resembling shorter feeding trials [28].

The gene showing the highest up-regulation in C. helgolandicus females feeding on S. marinoi was the
prophenoloxidase activating enzyme PPAE (8-fold), an enzyme with endo-peptidase activity involved
in proteolysis. In crustaceans, activation of prophenoloxidase, together with pattern recognition
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proteins, complement, and coagulation cascade, is part of the organism immune response [47]. In the
current study, the sequence complement C1q tumor necrosis factor-related protein 3-like was part
of the up-regulated gene set, which also showed a high number of sequences allocated to KEGG
pathway category “antigen processing and presentation,” related to the immune system. We also
identified in the whole transcriptome transcripts belonging to pattern recognition protein lectins (c-type
lectin domain family 4 member k). A similar immune response was reported for the Chinese shrimp
Fennropenaeus chinensis during white spot syndrome virus (WSSV) acute infection [48] and in white
shrimp Litopenaeus vannamei exposed to nitrite [49]. Hence, these immune response-related genes can
be activated as part of the defensive system of the copepod to cope with the harmful effects of a diatom
diet, potentially associated with lipid peroxidation production induced by PUAs and other oxylipins.

Overall, our results suggest the occurrence of a mechanism of transient impairment of early stress
defense response in C. helgolandicus females, induced by short-term feeding on oxylipin-producing
diatoms (2 days), followed by later activation of detoxification, protein repair, and immune systems
genes during longer feeding on the diatom diet (5 days). This concerted response might explain the
high C. helgolandicus female survival observed in the present study (data not shown) and also reported
in previous laboratory feeding experiments over fifteen days [7].

Ingestion of S. marinoi and exposure to PUAs also led to deregulation of folate and methionine
metabolic processes, as well as of signaling pathways involved in oogenesis/embryogenesis, cellular
proliferation and patterning, possibly leading to reduced embryo viability, teratogenesis, and apoptosis.

Folate (vitamin B9), is an essential cofactor for the de novo synthesis of purines and pyrimidines
and hence DNA synthesis, methylation of DNA and proteins, through one-carbon metabolism and
methionine cycle, respectively [50]. This complex metabolic pathway is well known in vertebrates,
where its alteration is associated with increased risk for neural tube defects and other transgenerational
developmental defects [51,52]. In arthropods, altered folate metabolism is associated with abnormal
body patterning in Drosophila [53] and Artemia larvae [54]. Additionally, maternal exposure to the
folate inhibitor drug methotrexate produced leg and wing deformities in surviving progeny of
Drosophila [53,55]. To date, the genes involved in folate metabolism are not characterized in crustaceans,
except for thymidylate synthase (TS) in L. vannamei [56]. Therefore, this is the first report of folate
metabolism genes in a planktonic crustacean.

Our data showed that C. helgolandicus females feeding on S. marinoi or incubated with pure
PUAs, had decreased expression level of genes encoding for 10-formyltetrahydrofolate dehydrogenase
(10-FTHFDH) and dihydrofolate reductase (DHFR), both involved in replenishment of tetrahydrofolate
(THF), the active form of folate [56]. Reduced expression of these genes might lead to decreased levels
of THF and, hence, of downstream substrates for the production of 5,10-methylene THF, the donor
cofactor for the transfer of one carbon units for purine and pyrimidine biosynthesis catalyzed by TS [57].
Inhibition of DHFR activity in zebrafish has been linked to occurrence of abnormal embryos [51],
whereas 10-FTHFDH knock-out in the embryos, lead to delayed early development and subsequent
anomalies [58]. Calanus helgolandicus females feeding on S. marinoi and exposed to PUAs also showed
up-regulation of the methylenetetrahydrofolate reductase (MTHFR) gene, which is responsible for
the irreversible conversion of 5,10-methylene THF into 5-methyl THF. This substrate is converted
back into THF by the methionine synthase (MS), via methylation of homocysteine into methionine,
thus linking the one carbon folate cycle to the methionine cycle and, hence, to DNA methylation [56].
Over expression of MTHFR in C. helgolandicus, therefore, might increase shuttling of 5,10-methylene
THF towards the methionine cycle at the expense of purine and pyrimidine biosynthesis. Reduced
conversion of dUMP to dTMP has been associated with increased uracil misincorporation, DNA
damage, and apoptosis in humans [59]. In addition, treatment of mouse embryos with the known
teratogen valproic acid induced an increase in MTHFR gene expression and was associated with
higher risk of congenital malformations [60]. In concert with higher expression of MTHFR gene
we also observed up-regulation of MS gene, probably as a response to higher substrate availability,
and down-regulation of betaine-homocysteine methyltransferase 1 (BHMT), a likely compensatory
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mechanism to re-equilibrate methionine levels, being the enzyme responsible for the methylation of
homocysteine into methionine using the amino acid betaine [57]. The potential effect of S. marinoi and
PUAs on the methylation cycle is further supported by the up-regulation of DNA methyltransferase
1 (DNMT1) gene, involved in the methylation of cytosine residues, possibly leading to increased
methylated products. DNA hyper-methylation may affect epigenetic control of gene transcription and,
in turn, embryogenesis and development [61].

Taken together, our results suggest that the adverse effects on C. helgolandicus oocytes and
developing embryos, induced by maternal exposure to diatoms and oxylipins PUAs [7], could be due
to an altered folate and methionine metabolism in the females. Folate-dependent reactions are, in fact,
essential for early growth and development in arthropods [62]. Since PUAs accumulate selectively in
copepod gonads [63], it is possible that diatom oxylipins may directly target reproductive tissues and,
in turn, affect embryogenesis [64].

The present study also showed that several transcripts involved in oogenesis, vitellogenesis,
and developmental signal transduction pathways, were modulated in C. helgolandicus females after
diatom feeding and direct PUAs incubation. For example, strong down-regulation was observed in
both S. marinoi-fed and PUAs-exposed females of the gene coding for the vitelline membrane outer
layer protein 1 homolog (VMO1). The vitelline membrane plays a major role in preventing mixing
of yolk and albumen in eggs, whose incomplete separation has been associated with the production
of abnormal oocytes and delayed development [65]. It also provides positional information to the
developing embryos, being the spatial repository for dorso-ventral and antero-posterior embryonic
patterning determinants produced by follicle cells during oogenesis [66,67]. In crustaceans, VMO1
proteins are synthesized by extraovarian tissues and then transported via the hemolymph to the
developing oocytes [65]. Its role is still not fully known, although it has been suggested that altered
expression of this gene in Daphnia magna females exposed to ibuprofen, was associated with failed
oogenesis, abnormal oocytes possibly being re-absorbed and blocked embryogenesis [68]. It is therefore
possible that reduced expression of VMO1 genes could play a role in the arrested oocyte maturation
and oocyte degradation previously observed in C. helgolandicus females feeding on oxylipin-producing
diatoms [69].

In most animals, the early embryonic development depends on maternally provided mRNA,
which is crucial for cell cycle progression, axis patterning, and cell fate specification events [70].
Hence, maternally encoded transcripts might play a role in diatom-derived effects on C. helgolandcus.
The aurora A kinase (AUR) is a maternally supplied cell cycle regulator which plays an important
role in cell-cycle progression of fertilized eggs and early embryos of mouse [71]. Silencing of
AUR gene leads to asynchronous mitotic cycles and fusion of mitotic spindles leading to larval
lethality [72]. Similarly, the maternal transcript distal-less (DLL) functions as a homeodomain
transcription factor and plays one of the major roles in limb development throughout the animal
kingdom [73]. DLL has been found in insects and crustaceans, where it specifies distal structures and
promotes outgrowth of the segmented appendages [74]. Finally, the Drosophila gene dorsal (DORSAL)
is a maternal transcription factor essential for the establishment of dorsal-ventral polarity in the
developing embryo [75]. Overall, down-regulation of these maternally-encoded transcription factors in
C. helgolandicus females feeding on S. marinoi and exposed to PUAs, might thus contribute to impaired
embryonic development of early non-feeding nauplii.

As for the signal transduction Hedgehog pathway, this developmental pathway plays a key
role in invertebrate development and early embryogenesis [76]. In Drosophila, hedgehog signaling
controls patterning of imaginal disc-derived adult structures such as appendages [77]. In the present
study, we observed up-regulation of the gene encoding for the extracellular ligand sonic hedgehog
protein-like isoform X1 (HH), homologous to hedgehog in Drosophila, and this matched the increase in
expression level of the gene encoding for its receptor, patched domain-containing protein 3 (PTCHD3).
However, the down regulation of the downstream cytoplasmic signal transducer smoothened (SMO)
and transcription factor cubitus interruptus (CI) genes, suggests possible down-regulation of Hedgehog
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signaling pathway in C. helgolandicus after five days feeding on S. marinoi and PUAs incubation. This is
also supported by the observed down-regulation of the DLL gene, one of the targets of Hedgehog.
Reduction of DLL activity causes defects of distal leg segments in arthropods, including insects [78]
and the crustaceans Parhyale hawaiensis [79], Daphnia magna [80] and Daphnia pulex [81].

In conclusion, the present study indicates that maternal ingestion of S. marinoi and exposure
to PUAs by C. helgolandicus for five days leads to de-regulation of folate metabolism, possibly
leading to decreased DNA synthesis and altered gene methylation, as well as disturbance of
oogenesis/embryogenesis signaling pathways involved in cellular proliferation and patterning, thus,
causing reduced embryo viability and teratogenesis. A summary of the genes and processes affected in
C. helgolandicus is depicted in Figure 10. These results add new insights to the chemically-mediated
ecological interactions between diatoms and copepods, providing novel information on the molecular
mechanism of action of oxylipins on maternally-mediated teratogenesis of copepod embryos.
Our results will also prompt further exploration of the molecular effects of less studied oxylipins,
such as hydroxyacids, epoxyalcohols, and fatty-acid hydroperoxides, on copepod reproduction.
These oxylipins have been found to impair copepod reproduction in the laboratory by inducing
naupliar apoptosis similar to PUAs [7,13]. Recently, reduced hatching success and increased expression
of stress-related genes have also been measured in C. helgolandicus females collected during diatom
blooms in the Northern Adriatic Sea, when high oxylipin concentrations were measured in the natural
phytoplankton assemblage [8]. Therefore, our results will also contribute to the evaluation of the
expression of new biomarker genes associated with diatom-related reproductive failure in the natural
copepod population at sea.
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4. Materials and Methods

4.1. Phytoplankton Culture

The centric diatom Skeletonema marinoi (strain FE6) and the dinoflagellate Prorocentrum minimum
(strain FE100), were grown in f/2 medium and K medium, respectively. Phytoplankton cultures were
grown as semi-continuous batch cultures to late-exponential phase of growth in 2-L glass jars kept
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in a temperature-controlled room under 18 ◦C, on a 12:12 Light: Dark cycle and an irradiance of
100 µE m−2 s−1.

4.2. Copepod Collection and Feeding Experiments

Calanus helgolandicus specimens were sorted from zooplankton samples collected in the Gulf of
Naples during May 2012 by using 200 µm Nansen net in oblique tows. Adult C. helgolandicus females
were isolated under a Leica stereomicroscope, transferred to 1L jars (n = 20–30 copepods) filled with
0.22 µm filtered sea water (FSW) and enriched with either S. marinoi (45,000 cells mL−1, 1 mg C L−1),
or P. minimum (5000 cells mL−1, 1 mg C L−1). Jars were kept in a temperature-controlled room under
18 ◦C, on a 12:12 Light: Dark cycle. The algal medium was changed daily with addition of fresh FSW
and either S. marinoi or P. minimum diet. After five days, the copepods were transferred to clean jars
containing 0.22 µm FSW for 24 h in order to allow gut evacuation. Three independent experiments
were performed on different occasions during May 2012, each one with both the diatom and the control
treatment and were considered as biological replicates. Ten females per replicate diet were transferred
into 1.5 mL Eppendorf tube containing 500 µL of RNAlater® reagent and processed according to
manufacturer’s instructions.

4.3. Transcriptome Sequencing

Total RNA was extracted from C. helgolandicus females using the RNeasy Micro Kit (Qiagen,
Germany) following manufacturer’s procedure [82]. RNA concentration (ng µL−1) and purity were
assessed through Nanodrop ND-1000 UV-Vis spectrophotometer (Marshall Scientific, Hampton,
NH, USA), whereas RNA Integrity Number (RIN) was checked on a 6000 Nano LabChip of Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). A total of 3 µg of RNA per sample
(300 ng µL−1) was delivered to the Genomics Core Facility of the European Molecular Biology
Laboratory (EMBL, Heidelberg, Germany), for library preparation using TruSeq RNA Sample Prep
Kit (Illumina, San Diego, CA, USA). Fragments >200 bp were selected, purified and subsequently
PCR amplified to create the final cDNA library template for sequencing. RNA-Seq was conducted
on Illumina HiSeq 2000 platform with 50 bp paired end option. Two cDNA libraries obtained from
copepods fed with either S. marinoi or P. minimum from one replicate experiment, were sequenced
individually in two single lanes of the Illumina flow cell to obtain a deep and high qualitative coverage
of C. helgolandicus transcriptome. The other four cDNA libraries obtained from copepods fed with
either S. marinoi or P. minimum during two other independent experimental replicates were used for
multiplexed sequencing in one single lane of an Illumina flow cell.

The Raw Reads generated are publicly available in the NCBI Sequence Read Archive (SRA)
repository (accession number PRJNA64,0515; https://www.ncbi.nlm.nih.gov/sra/PRJNA640515).

4.4. De novo Transcriptome Assembly and Functional Annotation

Cleaning, trimming, quality filtering and removal of the adapters was performed with
the program Trimmomatic [83] combined with custom scripts [84] with the following options:
ILLUMINACLIP set at 2:40:15 with the use of standard Illumina adapters sequences used as filter,
LEADING and TRAILING set at 5, SLIDINGWINDOW at 5:20 and MINLEN at 30 (Script can be
found here: https://github.com/silverkey/transcriptome/blob/master/preprocess_fastq_for_trinity.pl).
The remaining high quality paired-end reads across the six samples were assembled using Trinity [85]
(version 2013-02-25) with default plus the following parameters: –seqType fa –JM 200G –inchworm_cpu
20 –bflyHeapSpaceInit 20G –bflyHeapSpaceMax 200G –bflyCalculateCPU –CPU 20 &. This ‘reference’
C. helgolandicus transcriptome consisted of de novo assembled Trinity transcripts with unique TR#_c#_g#
identifiers (‘Trinity predicted genes’ or unigenes) and contained either singletons (transcripts with
a single isoform, ‘i’) as well as the longest isoform of transcripts having multiple ‘Trinity predicted
isoforms’ (TR#_c#_g#_i#) [86]. To exclude contaminations, poorly supported transcripts and artifacts,
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the assembled unigenes were further filtered based on a minimum expression level of more than 1 read
per million mapped reads (RPKM) in at least 2 samples.

Unigenes were further assigned a putative protein function by a sequence similarity search using
the BLASTx algorithm (e-value ≤ 10−3) against the NCBI non-redundant protein sequence database (nr)
and Swissprot database, followed by Gene Ontology (GO) functional annotation (e-value ≤ 10−6), using
Blast2GO PRO version 5 [87]. The Web Gene Ontology Annotation Plot (WEGO) software [88] was then
used to plot and compare the GO annotation results among related organisms. Additionally, Kyoto
Encyclopedia of Genes and Genomes (KEGG) Automatic Annotation Server (KAAS) database [89]
was also searched using BLASTx algorithm (e-value ≤ 10−5), to provide information about metabolic
pathways in the dataset.

4.5. Differential Gene Expression Analysis

To identify differentially expressed unigenes between S. marinoi-fed and P. minimum-fed
C. helgolandicus cDNA libraries, normalized raw reads from each replicate feeding treatment were
firstly mapped back on the reference transcriptome using BOWTIE [90] and then counted using RSEM
software [91] to estimate the gene expression level (https://github.com/silverkey/transcriptome/blob/

master/launch_mapping_trinity_analysis_folder.pl). The three replicate samples from each treatment
were used to generate mean expression levels using RPKM method. Statistical analysis was performed
using R/Bioconductor and the EdgeR package to identify differentially expressed genes (DEGs).
Significance values were obtained by performing a hypergeometric test and corrected p-value using
the false discovery rate (FDR) method [92]. Genes having a FDR ≤ 0.05 were considered differentially
expressed and further annotated against nr and Swissprot using Blast2GO, and against KEEG database
using KAAS, according to the procedure described for the reference transcriptome. Functional
enrichment analysis for up- and down-regulated genes in S. marinoi-fed versus P. minimum-fed
C. helgolandicus females, with respect to all DEGs, was also performed by Blast2GO using the Fisher’s
exact test with multiple testing correction of false discovery rate (FDR ≤ 0.05).

4.6. RT-qPCR of Genes of Interest (GOIs)

A series of functionally annotated genes of interest (GOIs) were selected from the list of DEGs
according to their FDR and log2 fold change and used for validation of RNA-Seq analysis through real
time-quantitative PCR (RT-qPCR). Other functionally annotated GOIs were also selected from the de
novo assembled transcriptome, according to their putative involvement in the response of copepods to
diatoms and tested by RT-qPCR. Specific forward and reverse oligonucleotide primers were designed
using Primer3 software (v. 0.4.0) as in [27] and synthesized by Primm Labs (Milan, Italy).

A panel of seven putative reference genes (RGs), previously optimized in C. helgolandicus [27],
were screened to identify the most stable genes in the present experimental conditions: elongation factor
1a (EFA), histone 3 (HIST3), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal units
(18S, S7, S20) and ubiquitin (UBI). The web-based comprehensive tool RefFinder (http://www.leonxie.
com/referencegene.php) was used for evaluating the most stable reference genes using Ct values as
direct input. Based on these rankings, the best RGs were EFA, GAPDH and S20.

RT-qPCR reactions of reference genes as well as GOIs, were performed in MicroAmp Optical
384-Well reaction plate (Applied Biosystem, Foster City, CA, USA) with optical adhesive covers
(Applied Biosystem), using a Viia7 real-time PCR system (Applied Biosystem, Foster City, CA, USA).
First, cDNA template was retrotranscribed from 1 µg of total RNA remaining from RNA-Seq analysis,
using iScriptTM cDNA Synthesis Kit (BIORAD) and following the manufacturer’s instructions, in the
GeneAmp PCR System 9700 (Applied Biosystems). cDNA template (1 µL at 1:100 dilution) was then
mixed with 5 µL of Fast Start SYBR Green Master Mix (Applied Biosystem) and 0.7 pmol/µL of each
primer, for a final PCR sample volume of 10 µL. RT-qPCR reactions were carried out in triplicate,
including at least two no-template negative controls for each primer pair, using PCR conditions
previously reported in [30]. Serial dilutions of cDNA (1, 1:5, 1:10, 1:50, 1:100 and 1.500) were used to
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calculate reaction efficiencies (E) for all primer pairs using the equation E = 10−1/slope from a standard
curve between Ct values and the log10 for each dilution factor. The relative expression ratio (R) of each
GOI in the experimental conditions (copepods fed on S. marinoi) versus the control condition (copepods
fed on P. minimum) and its statistical significance was calculated using REST (Relative Expression
Software Tool) and the Pair Wise Fixed Reallocation Randomization Test [93]. The calculation is based
on the efficiencies (E) and the Ct deviation between the experimental and the control groups of the
target genes normalized to the reference genes EFA, GAPDH and S20, and is expressed as log2 fold
change. Differences were considered significant when Randomization Test p-value was ≤0.05.

4.7. PUAs Incubation Experiments and RT-qPCR of GOIs

Calanus helgolandicus adult females were collected in the Gulf of Naples during March–May 2013
and fed with P. minimum (5000 cells mL−1) before the start of the experiment. Stock solutions of
the polyunsaturated aldehydes (PUAs) 2-trans,4-trans-heptadienal and 2-trans,4-trans-octadienal
(Sigma-Aldrich, Italy) at 10 mM and 1 mM were prepared by diluting the proper amount of PUAs
in absolute methanol (J.T. Baker, Holland). Final working solutions were obtained by diluting stock
solutions in FSW and mixing carefully to ensure optimal distribution. Methanol has no negative effect
on copepod females and eggs up to 1% methanol in seawater [7]. The amount of aldehyde solution in
each test concentration was kept below this threshold (final concentration used: 0.2% of methanol).
PUA incubation experiments were performed by incubating individual C. helgolandicus female (n = 5−7)
in 100-mL crystallizing dishes containing P. minimum (5000 cells mL−1) and 1:1 PUA mixture of
heptadienal + octadienal (MIX) at final concentration of 10–15–20 µM in FSW. Females incubated in
P. minimum + methanol were used as controls. Females were kept at 18 ◦C in a controlled temperature
chamber under 12:12 Light: Dark cycle and transferred to new crystalizing dishes with fresh PUA
mixture and algal diet daily. After 5 days of incubation, females were placed in 500 µL RNAlater®

(5–7 females per treatment), frozen according to the manufacturer’s instructions and stored at −80 ◦C
until RNA extraction. A total of 3 experiments were performed during March–May 2013. Extraction of
total RNA, retrotranscription of cDNA and RT-qPCR analysis was performed as previously described.
Stability of reference genes was screened again in copepods exposed to PUAs by RefFinder and the
most stable genes identified were S20, GAPDH and UBI. Relative expression ratio (log2 fold change)
of the same GOIs selected previously were calculated between C. helgolandicus females incubated in
each PUAs MIX concentration (experimental condition) and C. helgolandicus females incubated in
P. minimum + methanol (control condition) using REST. Data are expressed as log2 fold change.

4.8. Statistical Analysis

Pearson’s correlation test was performed between log2 fold change of DEGs from RNA-Seq
analysis and log2 fold change of the same genes in RT-qPCR, using GraphPad Prism software v.6
(GraphPad Software Inc., San Diego, CA, USA). The same software was also used to perform Student’s
t-test or One-way analysis of variance (ANOVA), followed by Tukey’s multiple comparison test,
to evaluate statistically significant differences in log2 fold change among 10–15–20 µM PUAs MIX
treatments for each GOIs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/8/392/s1.
Figure S1: Size distribution of Calanus helgolandicus unigenes (reference transcriptome); Figure S2: BLASTx search
results for Calanus helgolandicus unigenes against the Nr database; Figure S3: Top-Hit Species distribution of
BLASTx similarity search for Calanus helgolandicus de novo assembled transcriptome; Figure S4: Comparative
analysis of GO classifications of Calanus helgolandicus annotated unigenes. Table S1: Functionally annotated DE
unigenes in Calanus helgolandicus females; Table S2: List of Gene Ontology (GO) terms for the category ‘Biological
Process’ associated to up-regulated Calanus helgolandicus DE unigenes; Table S3: List of Gene Ontology (GO) terms
for the category ‘Biological Process’ associated to down-regulated Calanus helgolandicus DE unigenes.
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