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Abstract: Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant
family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential,
including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative
named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea,
along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different
chromatographic techniques. The structure of the new compound was established based on 1D and
2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the
literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential
against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with
IC50 values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1
explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in
both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using
liquid chromatography combined with high-resolution electrospray ionization mass spectrometry
(LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides,
as well as di- and triglycerides.
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1. Introduction

Seagrasses are marine flowering plants that grow underwater along temperate and tropical
coastlines, providing shelter or food for other marine organisms. They are important components
of the near-shore ecosystem and are used as biological indicators of environmental quality [1].
In East Africa, seagrasses are used as fertilizers and medicinally for the management of fever and skin
diseases [2]. Thalassodendron ciliatum (Forssk.) Den Hartog (Family Cymodoceaceae) is a sub-tidal or
shallow-depositional seagrass species that is generally found in extensive and monotonous meadows.
This sickle-leaved cymodocea, commonly known as "Majani kumbi", grows in the Red Sea, the
western Indian Ocean, and the Indo-Pacific region [3]. T. ciliatum has both horizontal and vertical
rhizomes, with a cluster of leaves at the top of each living stem [4]. The leaves of T. ciliatum are
characterized by the presence of many tannin-containing cells and are rich in phenolic constituents [5].
Pharmacological studies showed that T. ciliatum possesses antioxidant, antiviral, and cytotoxic activities,
which are highly correlated to its flavonoid content [6–8]. Several flavonoids were reported from
T. ciliatum such as quercetin 3-O-β-d-xylopyranoside, asebotin, 3-hydroxyasebotin, rutin, and racemic
catechin [6]. Recently, a new diglyceride ester and asebotin were isolated from T. ciliatum, showing
antiviral activities against the H5N1 virus through inhibition of the virus titre by 67.26% and 53.81%,
respectively [7]. A new dihydrochalcone diglycoside was also identified from T. ciliatum, exhibiting
anti-influenza A virus activity [9]. In 2018, our group isolated a cytotoxic phytosphingosine-type
ceramide from T. ciliatum of the Red Sea in addition to different sterols with anti-inflammatory
effects [10]. Gas chromatography coupled to mass spectrometry analysis (GC-MS coupling) was
performed for identification of the lipoidal matter of the n-hexane fraction of T. ciliatum, revealing the
presence of saturated and unsaturated long-chain fatty acids, such as tetradecanoic acid, eicosanoic acid,
9,12-hexadecadienoic acid, and 8,11,14- eicosatrienoic acid, in addition to other volatile compounds,
as well as 1-heneicosanol, 2,6-bis (1,1-dimethylethyl)phenol, and 1-tridecanol [11]. Some genera
of Cymodoceaceae showed different steroidal profiles, among them compounds like cholesterol,
ß-sitosterol, stigmasterol, campesterol, and 22,23-dihydrobrassicasterol. Four 3-ketosteroids with a
24-ethyl cholestane side chain were also isolated from Cymodocea nodosa [12,13]. A comparative study
on five seagrasses of different families revealed a high percentage of stigmasterol and ß-sitosterol in both
Cymodocea serrulate and Halodule uninervis [14]. Our previous study was the only one that reported on
the isolation of different steroids from T. ciliatum with anti-inflammatory effects, including 7β-hydroxy
cholesterol, 7β-hydroxysitosterol, stigmasterol glucoside, and β-sitosterol glucoside [10]. Therefore, we
herein continue our chemical and biological investigation on T. ciliatum growing in the Red Sea, along
with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS)-assisted metabolic
profiling of this important seagrass.

2. Results and Discussion

2.1. Metabolic Profiling

Metabolic profiling of the crude extract of T. ciliatum using the LC-ESI-HR-MS technique
(Figures S1 and S2) revealed the presence of a broad variety of metabolites such as flavonoids, chalcones,
phenolic acids, sterols, fatty acids, anthraquinones, and terpenoids. The LC-ESI-HR-MS profiling for
the rapid identification of natural metabolites resulted in the annotation of 20 compounds identified by
comparison of their data, particularly their accurate masses, with those from some databases, e.g., the
Dictionary of Natural Products (DNP) and the Metabolite and Chemical Entity (METLIN) database,
as shown in Figure 1. Mass accuracy was calculated as [measured mass-expected mass/expected
mass]× 106 and expressed in parts per million (ppm) error [15]. The herein-characterized metabolites of
T. ciliatum were found to be in accordance with those obtained in previous phytochemical studies, which
reported the isolation of several phenolic compounds and sterols [6,10]. From Table 1, protocatechuic
acid, butein, kaempferol, catechin, 1,4,5-trihydroxy-7-methoxy-3-methyl anthraquinone, quercetin,
2-ω-dihydroxy emodin, isorhamnetin, quercetin-3-O-β-d-xylopyranoside, asebotin, and rutin were
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reported to have antioxidant activity that can protect from cardiovascular diseases, liver damage,
and proliferation of abnormal cells [6,16–20]. Butein showed an aromatase inhibition activity that
can be effective in breast cancer treatment [21]. A long-chain polyunsaturated fatty acid, namely
6E,8E,10E,12E-octadecatetraenoic acid, as well as the diterpene linearol, exhibited antimicrobial and
anticancer activities [22,23]. Likewise, both sphaerollane I and ergosterol inhibited proliferation of
various malignant cell lines [24,25]. Linearol and rutin were reported to have antioxidant, cytotoxic
and antiviral activities [18,23]. It is worth noting that the aforementioned antioxidant, antiviral,
and cytotoxic activities of the crude extract of T. ciliatum may be correlated to the activities of the
identified metabolites.
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Table 1. Metabolic analysis of a crude extract of Thallasodendron ciliatum.

Polarity
Mode

Retention
Time (min)

MZmine
ID m/z * Measured

Mass
Expected

Mass
Mass Error

(ppm) Name Molecular
Formula ** Source Ref.

1 positive 1.51 9930 155.0347 154.0274 154.0266 5.2 Protocatechuic acid C7H6O4 Allium cepa [26]
2 negative 11.29 382 271.2269 272.2342 272.2351 −3.3 3R-Hydroxypalmitic acid C16H32O3 Saccharomycopsis sp. [27]
3 positive 5.07 9019 273.0748 272.0675 272.0685 −3.7 Butein C15H12O5 Dalbergia odorifera [17]

4 positive 5.63 9699 277.2153 276.2080 276.2089 −3.3 6E,8E,10E,12E-
Octadecatetraenoic acid C18H28O2 Anadyomene stellata [28]

5 negative 4.46 3937 285.0393 286.0466 286.0477 −3.8 Kaempferol C15H10O6 Fragaria chiloensis [29]
6 negative 2.18 3954 289.0705 290.0778 290.0790 −4.1 Catechin C15H14O6 T. ciliatum [6]

7 negative 5.43 4767 299.0551 300.0623 300.0634 −3.7
1,4,5-Trihydroxy-7-

methoxy-3-
methylanthraquinone

C16H12O6 Chaetomium globosum [30]

8 negative 5.07 4942 301.0341 302.0414 302.0427 −4.3 Quercetin C15H10O7 Fragaria chiloensis [29]
9 positive 3.37 9298 303.0503 302.0430 302.0427 0.9 2-ω-Dihydroxyemodin C15H10O7 Aspergillus nidulans [31]
10 negative 4.76 4129 315.0497 316.0570 316.0583 −4.1 Isorhamnetin C16H12O7 Stigma maydis [32]

11 negative 13.90 4382 347.2581 348.2654 348.2664 −2.9 Sphaerollane I C22H36O3
Sphaerococs
coronopifolis [33]

12 positive 8.66 12289 353.2706 352.2634 352.2614 5.7 Linearol C21H36O4 Sideritis condensata [23]
13 positive 12.71 9842 397.3452 396.3379 396.3392 −3.3 Ergosterol (2) C28H44O Ganoderma lucidum [25]
14 positive 13.60 10050 403.3528 402.3456 402.3498 −10.4 7β-Hydroxycholesterol C27H46O2 T. ciliatum [10]

15 positive 12.49 8715 407.3677 406.3604 406.3600 0.9 23-Methylstigmasta-
3Z,5Z,7Z,22E-tetraene C30H46 Suillus luteus [34]

16 positive 10.46 8941 427.3572 426.3499 426.3498 0.2 26-Methylergosta-5,24(28)-
diene-7-one-3-ol C29H46O2 Geodia japonica [35]

17 positive 15.43 320 429.3732 428.3659 428.3654 1.2 24R-Stigmasta-5,28-diene-
3β,24 -diol C29H48O2 Sargassum fusiforme [36]

18 negative 3.37 4110 433.0765 434.0838 434.0849 −2.5 Quercetin-3-O-β-D-
xylopyranoside C20H18O11 T. ciliatum [6]

19 positive 6.10 705 451.1642 450.1570 450.1526 9.8 Asebotin C22H26O10 T. ciliatum [6]
20 negative 2.33 5311 609.1466 610.1539 610.1534 0.8 Rutin C27H30O16 T. ciliatum [6]

* m/z is expressed in negative or positive formula; ** Molecular formula is expressed in a neutral formula.
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2.2. Identification of the Isolated Metabolites

Compound 1 (Figure 2) was obtained as a white powder and its molecular formula was determined
by ESI-HR-MS as C30H49O5 (found at m/z 489.3573 [M − H]− (Figure S3), calculated for 489.3579),
indicating the presence of six degrees of unsaturation in the molecule. The NMR spectral data
of compound 1 (Table 2) (Figures S4–S7) also closely matched those reported in the literature for
ergostane-type steroids [27,37], showing signals characteristic of four secondary methyl groups
resonating at δH 1.06 (CH3-21), 0.92 (CH3-28), 0.877 (CH3-27), and 0.873 (CH3-26), as well as one tertiary
methyl group at δH 1.03 (CH3-19), along with their carbon resonances at δC 19.9, 18.4, 22.9, 23.1, and
14.1, respectively. The two geminally coupled (J = 12.2 Hz) one-proton doublets at δH 3.75 and 3.65, and
the corresponding oxygenated methylene carbon at δC 60.6 were indicative of the presence of a hydroxy
group at C-18, which was corroborated by the observed Heteronuclear Multiple Bond Correlation
(HMBC) correlations of H2-18 with C-12, C-13, and C-17 (Figure 3) (Figure S8). Additionally, the NMR
data of compound 1 displayed two one-proton doublets of doublets at δH 5.12 (J = 15.2, 6.5 Hz) and 5.23
(J = 15.2, 7.2 Hz), ascribable to the olefinic protons H-22 and H-23, together with their corresponding
methine carbons at δC 137.5 and 133.1, respectively.
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Table 2. 1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data of compound 1 (CD3OD, δ in ppm,
J in Hz).

No. δH δC

1 1.42, 2.09, m 39.1
2 4.72, br. d (J = 2.2) 76.0
3 4.75, br. d (J = 2.2) 76.3
4 1.60, 1.80, m 30.4
5 1.59, m 40.2
6 1.25, 1.50, m 28.9
7 0.96, 1.59, m 32.3
8 1.74, m 32.4
9 0.83, m 56.8

10 —- 36.5
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Table 2. Cont.

No. δH δC

11 1.37, 1.56, m 21.8
12 0.96, 2.62, m 36.2
13 — 48.8
14 1.20, m 59.8
15 4.99, m 74.4
16 1.30, 2.46, m 39.9
17 1.14, m 58.1

18 3.65, d (J = 12.2)
3.75 d (J = 12.2) 60.6

19 1.03, br. s 14.2
20 1.72, m 36.6
21 1.06, d (J = 6.4) 19.9
22 5.15, dd (J = 15.2, 6.5) 137.5
23 5.21, dd (J = 15.2, 7.2) 133.2
24 1.84, m 44.4
25 1.51, m 29.2
26 0.873, d (J = 6.64) 23.2
27 0.877, d (J = 6.64) 23.0
28 0.92, d (J = 6.8) 18.4

-CO-CH3 2.00, s 21.2
-CO-CH3 —- 172.6
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Nuclear Overhauser Effect Spectroscopy (NOESY) correlations observed between H-2/H-3, H-2/H-5, 
H-2/H-4a, H-3/H-1a, H-3/H-2, and H-3/H-5 (Figures 4 and S10). On the other hand, the three-proton 
singlet at δH 2.0, along with its corresponding carbon resonating at δC 21.2 and the quaternary 
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three-bond connectivities to both C-13 and C-17, were also in good agreement with the acetylation of 
compound 1 at C-15, while the observed NOESY correlations between H-15 and both H-7b and H-8 
verified the α-orientation of that acetoxy group (Figure 4). Based on the above-mentioned 
assignments, which were totally supported by the DEPT-135, 1H-1H COSY, HSQC, HMBC, and 
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tetrahydroergosterol, or, in other words, as (2β,3β-dihydroxy-13β-hydroxymethyl-10β-methyl-17β-
(1,4,5-trimethyl-hex-2E-enyl)-hexadecahydro-cyclopenta[α]phenanthren-15α-yl acetate) (Figure 2). 
To the best of our knowledge, this molecule is a new compound, henceforth named thalassosterol.  
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)
interactions in thalassosterol (1), (2β,18-dihydroxy-15α-acetoxy-5,6,7,8-tetrahydroergosterol). Blue bold
line represents 1H-1H COSY correlations between H1/H2, H2/H3, H3/H4, H14/H15, H15/H16, H16/H17,
H22/H23 and H23/H24, while red single-head arrow represents HMBC correlations between H1/C19,
H1/C3, H2/C3, H2/C5, H15/C13, H15/C17, H15/CO, H18/C12, H18/C17, H18/C13, H22/C17, H22/C24,
H27/C24 and H28/C23.

The position of this double bond between C-22 and C-23 was also supported by the obtained
Heteronuclear Multiple Bond Correlation (HMBC) cross peaks of H-22/C-17 and H-22/C-24, as well as
by the proton/proton Correlation Spectroscopy (1H-1H COSY) of H-22/H-23 and H-23/H-24 (Figure 3
and Figure S9), whereas the large coupling constant (15.2 Hz) between H-22 and H-23 typically
indicated a trans-configuration of that double bond. Moreover, the 1H NMR signals at δH 4.71 (1H,
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br. d, J = 2.2 Hz) and 4.74 (1H, br. d, J = 2.2 Hz) were attributed to H-2 and H-3, respectively, suggesting
that the hydroxylation in ring A of this sterol should be at C-2 and C-3, which was also confirmed by
Heteronuclear Single Quantum Correlation (HSQC). These assignments were also substantiated with
the aid of 1H-1H COSY, HSQC, and HMBC analyses (Figure 3).

The β-configuration of the hydroxy groups at C-2 and C-3 was clearly deduced from the observed
chemical shifts of both carbons (δC 75.9 and 76.3, respectively) [38], as well as through the Nuclear
Overhauser Effect Spectroscopy (NOESY) correlations observed between H-2/H-3, H-2/H-5, H-2/H-4a,
H-3/H-1a, H-3/H-2, and H-3/H-5 (Figure 4 and Figure S10). On the other hand, the three-proton singlet
at δH 2.0, along with its corresponding carbon resonating at δC 21.2 and the quaternary carbonyl
signal at δC 172.6 were consistent with the presence of an acetoxy group, which was unambiguously
allocated at C-15 based on the marked downfield shift of both H-15 (δH 4.98) and C-15 (δC 74.3) in
comparison with ergosterol (2) and other related ergostane derivatives [25,37]. The noticed HMBC
correlation of H-15 with the carbonyl carbon of this acetoxy group, in addition to its three-bond
connectivities to both C-13 and C-17, were also in good agreement with the acetylation of compound 1
at C-15, while the observed NOESY correlations between H-15 and both H-7b and H-8 verified the
α-orientation of that acetoxy group (Figure 4). Based on the above-mentioned assignments, which were
totally supported by the DEPT-135, 1H-1H COSY, HSQC, HMBC, and NOESY experiments, compound
1 was identified as 2β,18-dihydroxy-15α-acetoxy-5,6,7,8-tetrahydroergosterol, or, in other words,
as (2β,3β-dihydroxy-13β-hydroxymethyl-10β-methyl-17β-(1,4,5-trimethyl-hex-2E-enyl)-hexadecahydro-
cyclopenta[α]phenanthren-15α-yl acetate) (Figure 2). To the best of our knowledge, this molecule is a
new compound, henceforth named thalassosterol.Mar. Drugs 2020, 18, x  8 of 15 
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(1), (2β,18-dihydroxy-15α-acetoxy-5,6,7,8-tetrahydroergosterol). Green double-head arrow represents
NOESY correlations between H2/H3, H2/H5, H2/H4a, H3/H1a, H3/H2, H3/H5, H15/H7b and H15/H8.

Compounds 2 and 3 (Figure 5) were identified as the known steroids ergosterol (2) and
stigmasterol (3), respectively, by comparing their spectral data with those reported in the
literature [25,37,39,40]. Both compounds were also detected in the metabolic analysis of T. ciliatum. It is
worth mentioning that it is the first time to report on the isolation of both ergosterol and stigmasterol
from the seagrass T. ciliatum.
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2.3. Docking Study

It can be observed generally through looking at the best score poses that binding of the new
ergosterol, thalassosterol (1), at the active site is similar to that of the endogenous aromatase substrate,
exemestane [41]. The binding interaction shows that the steroidal nucleus, overlapped with the
hydrophobic environment of the binding pocket with ring D, is oriented towards the Met 374 residue
and the β-face positioned towards the heme moiety. It can be clearly noticed that, while the hydroxy
group of the ring A engages one hydrogen bond donor with the backbone amide of Met 374 as reported
(3.82 Å) [42], the C15-keto oxygen atom of ring D acts as a hydrogen bond acceptor from Arg 115
(3.12 Å). Moreover, three extra hydrogen bond donors were involved via the interaction with Cys
417 residue with binding interaction score −8.219 kcal/mol (Figure 6). It is worth to mention that
the H-bond interaction of the targeted new compound with Met 374 represents the selectivity of the
latter with the active site of the aromatase. Moreover, the binding interactions of the target ergosterol
derivative with different amino acids of the binding site of the aromatase did not only confirm the
selectivity but also the possible binding interactions when compared with exemestane.Mar. Drugs 2020, 18, x  9 of 15 
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2.4. In Vitro Antiproliferative Activity

The SRB assay is a rapid, sensitive, and inexpensive method for screening for antitumor activities
of chemical agents against different malignant cell lines [43]. The antitumor effects of the isolated
compounds were assessed by determination of the concentration required for 50% of growth inhibition
(IC50). The cytotoxic potentials of the new compound 1 and of doxorubicin as a positive control
are shown in Table 3 against different malignant cell lines, including the human cervical cancer cell
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line (HeLa), a human breast cancer cell line (MCF-7), and a human liver cancer cell line (HepG2).
The efficacy of compound 1 follows the order of HeLa > MCF-7 > HepG2 malignant cell lines. The IC50

of compound 1 is 8.13 ± 0.21 µM (mean ± SD) against the HeLa cell line and this result is closely related
to the one obtained with doxorubicin as a positive control (Table 3). Moreover, compound 1 showed a
weak antiproliferative activity on cells of the normal Vero cell line (> 90 µM).

Table 3. IC50 values (µM) of thalassosterol (1) and doxorubicin against different human cell lines, HeLa,
human liver cancer cell line (HepG2), and human breast cancer cell line (MCF-7).

Human Cancer Cell Lines

HeLa
IC50 (µM)

HepG2
IC50 (µM)

MCF-7
IC50 (µM)

Thalassosterol (1) 8.13 ± 0.21 * 48.64 ± 0.22 * 14.26 ± 0.40 *
Doxorubicin 6.77 ± 0.07 9.02 ± 0.06 8.65 ± 0.03

Human cervical cancer cell line (HeLa), human liver cancer cell line (HepG2), human breast cancer cell line (MCF-7).
* Significantly different from doxorubicin as the positive control. Each data point represents the mean ± SD of three
independent experiments (significant differences at p < 0.05).

According to the US NCI (National Cancer Institute) plant screening program guidelines, a crude
extract is considered to have in vitro antiproliferative activity if the IC50 value after incubation between
48 and 72 h is smaller than 20 µg/mL, and less than 4 µg/mL for pure compounds [44]. Based on
these NCI guidelines, the new compound 1 exhibited a high cytotoxic potential against the HeLa cell
line, with an IC50 value of 8.13 ± 0.21 µM (less than 8.17 µM, equivalent to 4 µg/mL of the US NCI
guidelines). On the other hand, compound 1 showed a weak cytotoxic activity against the HepG2
cell line, with an IC50 value of 48.64 ± 0.22 µM. Moreover, it was found to have a moderate cytotoxic
activity against the breast cancer cell line MCF-7, with an IC50 value of 14.26 ± 0.40 µM when compared
with doxorubicin as a positive control (8.65 ± 0.03 µM). This cytotoxic activity against the mentioned
types of estrogen-responsive cancers, cervical cancer and breast cancer [41] was confirmed by the
previously discussed docking study by blocking the aromatase enzyme that synthesizes estrogens.

3. Materials and Methods

3.1. Plant Material

The seagrass T. ciliatum was collected from Sharm El Sheikh at the Egyptian Red Sea, then
air-dried and stored at a low temperature (-24 ◦C) until further processing. The plant was identified by
Dr. Tarek Temraz, Marine Science Department, Faculty of Science, Suez Canal University, Ismailia,
Egypt. A voucher sample (no. SAA-41) was deposited in the herbarium section of Pharmacognosy
Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.

3.2. General Experimental Procedures

1H and 13C NMR spectra were obtained with a Bruker Avance III HD 400 spectrometer operating
at 400 MHz for 1H and 100 MHz for 13C. Both 1H and 13C NMR chemical shifts are expressed in δ values
in regard to the solvent peaks δH 3.3 and δC 49 ppm for CD3OD, and coupling constants are given in
Hertz (Hz). Thin layer chromatography (TLC) analysis was carried out on aluminum-backed plates
pre-coated with silica gel F254 (20 × 20 cm; 200 µm; 60 Å (Merck™, Darmstadt, Germany), while silica
gel 60/230–400 µm mesh size (Whatman™, Sanford, ME, USA) was used for column chromatography.
Sephadex® LH-20 (Sigma Aldrich, Bremen, Germany), and reversed-phase octadecyl silica (ODS) gel
(YMC, Kyoto, Japan) were also utilized.

3.3. Extraction and Isolation

The air-dried material of T. ciliatum (90 g) was ground and extracted with a 1:1 mixture of
CH2Cl2/MeOH (2 L × 3) at room temperature. The combined extracts were concentrated under
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vacuum to afford a dark-green residue (Tc, 21 g), which was then chromatographed over an open
silica gel column using n-hexane/ethyl acetate (EtOAc) as the eluent (95:5-0:100) and EtOAc/methanol
(90:10-50:50), with gradient elution giving seven fractions, Tc-A~Tc-G. The second fraction eluted using
25% EtOAc in hexane, Tc-B, was concentrated to afford a green residue (5 g) and was purified on silica
gel using hexane/EtOAc (95:5) giving nine subfractions, Tc-B-1~Tc-B-9. Among them, subfractions
Tc-B-2~Tc-B-4, having similar TLC patterns, were combined (Tc-B-1′, 90 mg) and re-chromatographed
on silica gel using hexane-EtOAc (95:5) giving four sub-subfractions, Tc-B-1′-1~Tc-B-1′-4. One of the
resulting sub-subfractions, Tc-B-1′-2, afforded compound 3 (11 mg). Another sub-subfraction, Tc-B-1′-3
(30 mg), was also applied to a Sephadex LH-20 column and eluted with CHCl3-MeOH (1:1) to afford
compounds 1 (14 mg, white powder) and 2 (16 mg). Compound 1 was finally purified on an open
ODS column using MeOH/H2O (8:2).

3.4. Metabolic Profiling

The metabolic study was performed using LC-ESI-HR-MS for dereplication purposes according
to the literature [45]. An aliquot of 10 µL of the methanolic extract of T. ciliatum (1 mg/mL) was
injected to an Accela HPLC (Thermo Fisher Scientific, Bremen, Germany) using an ACE C18 column
of 75 mm × 3 mm having 5 µm internal diameter (Hichrome Limited, Reading, UK) and equipped
with an Accela UV-visible detector. This compartment was coupled to an Exactive (Orbitrap) mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany). The gradient elution was done using
purified water (total organic carbon 20 ppb) and acetonitrile; each containing 0.1% formic acid with
a flow rate of 300 µL/min at ambient temperature. The gradient elution technique was assessed by
increasing the concentration of acetonitrile from 10% to 100% within 30 min, followed by an isocratic
period of 5 min and then reducing the concentration of acetonitrile to 10% within 1 min. ESI-HR-MS
analysis was performed in both positive and negative ionization modes, with a spray voltage of 4.5 kV
and a capillary temperature of 320 ◦C. The ESI-MS mass range was set at m/z 100–2000 using in-source
collision-induced dissociation (CID) mechanism and m/z 50–1000. The raw HR-MS data were imported
and analyzed using MZmine 2.12. Excel macros were also employed to dereplicate each m/z ion peak
with metabolites in the database, using the retention time and an m/z threshold of ± 5 ppm, to attain
the tentative identification of the compounds. A chemotaxonomic filter was applied to the obtained
hits in order to limit the number of identities per metabolite and to only include the relevant ones.
The compounds were identified by a comparison of their data, particularly their accurate masses,
with those from some databases, e.g. DNP and METLIN. The retention time, m/z, molecular weight,
molecular formula, MZmine ID, name, and biological source were determined.

3.5. Modeling Study on the Binding Between the New Ergosterol Derivative 1 and the Aromatase Binding Site

Molecular Operating Environment (MOE) was adopted for docking calculations. The structures
of the compounds were generated by ChemDraw Ultra 11.0. Molecular docking calculations were
applied on human placental aromatase (PDB code 3S7S, http://www.rcsb.org/pdb/home/home.do).
Since the aromatase enzyme is complexed with the steroid exemestane as an inhibitor, this model was
chosen for steroidal scaffold inhibitors. Docking simulation was done on the test compounds with
the following protocol. Structure arrangement process was used to revise the protein errors, and a
reasonable protein structure was set up on default rules on MOE. Finally, the Gasteiger methodology
was used to calculate the partial charges of the protein [46]. The ligands were protonated and the
correction of atom and bond types were defined, hydrogen atoms were added, and finally minimization
was performed (MMFF94x, gradient: 0.01).

The default Triangle Matcher placement method was selected for docking. The GBVI/WSA dG
scoring function that determines the free energy of binding of the ligand from a given pose, was chosen
to rank the final poses. The ligand complex with the enzyme having the lowest S-score was selected.
The redocking of ligand with its target revealed an RMSD of 0.98 Å, which confirmed that the ligand
binds to the same pocket and assured the dependability of parameters of docking.

http://www.rcsb.org/pdb/home/home.do
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3.6. In Vitro Antiproliferative Assay

3.6.1. In Vitro Cell Culture

Human breast adenocarcinoma (MCF-7), cervical cancer (HeLa), and liver carcinoma (HepG2)
cell lines were purchased from the American Type Culture Collection (ATCC, Alexandria, MN, USA).
The tumor cell lines were preserved at the National Cancer Institute, Cairo, Egypt, by serial sub-culturing.
The cells were sub-cultured on RPMI 1640 medium supplemented with 1% penicillin/streptomycin
and 10% fetal bovine serum [47].

3.6.2. Sulforhodamine B Assay

The antiproliferative activity was determined by the sulforhodamine B (SRB) assay. SRB is a
fluorescent aminoanthracene dye with two sulfonic acid groups that bind to the amino groups of
intracellular proteins under mildly acidic conditions to provide a sensitive index of cellular protein
content. The test was performed as previously described in detail [48,49]. Cells were seeded in 96-well
microtiter plates at an initial concentration and left for 24 h to attach to the plates. Then, the three isolated
compounds were dissolved in dimethyl sulfoxide (DMSO) and added at different concentrations of
0, 5, 12.5, 25, and 50 µg/mL. After incubation for 48 h, 50 µL of 10% trichloroacetic acid were added
and incubated for 60 min at 4 ◦C to fix the attached cells. The plates were washed and stained with
50 µL of 0.4% SRB dissolved in 1% acetic acid for 30 min at room temperature. The plates were then
air-dried, and the dye was solubilized with 100 µL/well of 10 M tris base of pH 10.5 (AppliChem®,
Darmstadt, Germany). Optical density (OD) was measured spectrophotometrically at 570 nm using an
ELISA microplate reader (Sunrise Tecan reader, Crailsheim, Germany). The experiment was repeated
three times and IC50 values (concentration that causes 50% decrease in cell viability) were calculated.
Doxorubicin served as a positive control at the same concentration range.

4. Conclusions

From the CH2Cl2/MeOH extract of the Red Sea grass T. ciliatum, a new ergosterol
derivative, compound 1, was isolated. It was identified as 2β,18-dihydroxy-15α-acetoxy-5,6,7,8-
tetrahydroergosterol and named thalassosterol. The new compound displayed a significant cytotoxic
activity against cervical (HeLa) and breast cancer cell lines (MCF-7), with IC50 values of 8.12 and
14.24 µM, respectively. In addition, docking studies with compound 1 explained how it works as
an aromatase inhibitor, serving a protocol of cervical and breast cancer treatment. LC-MS based
metabolic analysis of T. ciliatum furthermore revealed the presence of phenolic compounds, sterols,
ceramides, and di- and triglycerides. Therefore, the presented work highlights T. ciliatum as an
important marine source of bioactive secondary metabolites that should attract further chemical and
pharmacological investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/7/354/s1,
Figures S1–S2: LC-ESI-HR-MS of the crude extract (positive and negative modes), Figures S3–S10: ESI-HR-MS,
1H NMR, 13C NMR, DEPT-135, HSQC, HMBC, COSY and NOESY of compound 1.
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