Supplementary data

Table 1: Preparative methods to separate COS according to physiochemical properties.

Methods to recover and isolate chitin derivatives	COS length (DP),	Product	Specifics	Reference
Colorer postion of remote groups (CDC) coupled with		quantity	Concretion according to M. donandant	(Chai Aba Las Duwa & Dark 2002)
Get permeation chromatograpy (GPC) coupled with	DP 2 - 6	< 2 g	separation according to M _W -dependent	(Choi, Ann, Lee, Byun, & Park, 2002)
	5 0010		retention time using a pullulan standard.	
Ultrafiltration	5 – 30 kDa		High weight chitosan was fractionated.	(S. A. Lopatin, Derbeneva, Kulikov,
				Varlamov, & Shpigun, 2009)
Capillary electrophoresis	DP 2 - 6	< 5 μM	Very low detection limit, requires	(Hattori, Anraku, & Kato, 2010)
			derivatisation with fluorescence marker.	
Nanofiltration	DP 6 - 8	16 L of < 5 %	Large scale preparative method, able to	(H. Dong et al., 2014)
		chitosan	yield up to 82,2 % pure COS.	
Immobilised metal anion chromatography (IMAC)	DP 2 - 4	< 40 mg	60 – 95 % yield with 95 % (DP 2 -3) and 90%	(Le Dévédec et al., 2008)
			(DP 4) purity.	
High performance liquid chromatography (HPLC)			UV detector: GlcN only detectable through	
With amino-column + UV/RI detector	DP 2 - 6	NA	coupling of a chromophore. RI-detector:	(Lv et al., 2016)
With reversed-phase column + UV detector	DP 2 – 7	300 mg/ml	GlcN and GlcNAc, low sensitivity. Generally:	(Sergey A. Lopatin et al., 1995)
With carbohydrate-column + UV detector	DP 1 - 8	< 2,2 mg/ml	expensive, limited to low DP COS.	(Jung, Souleimanov, Park, & Smith,
				2007)
Hydrophilic interaction chromatography (HILIC)				
coupled with an evaporative light-scattering detector	DP 2 - 6	5 ml of 100	High M _w chitosan is insoluble in organic	(M. Jiang et al., 2014)
(ELSD)		mg/ml	solvents, no large scale application.	
HILIC with weak cation exchange chromatography	DP 2 - 6	5 μl	Resolution of ion exchange columns drops	(X. Dong, Shen, Gou, Chen, & Liang,
mixed mode (WCX)			with increasing DP of COS.	2012)
Size exclusion chromatography (SEC)	DP 4 – 20	200 mg	COS separation independent of P_A and D_D .	(Sørbotten, Horn, Eijsink, & Vårum,
	-	5 5		2005)
Ion-exchange chromatography (IEX)	DP 5	20 µg	Separation of D_2A_3 isobars according to P_A .	(Haebel, Bahrke, & Peter, 2007)
High performance an-ionic exchange chromatography	DP 1 - 6	< 10 mg/L	GlcN with DP < 6, no acetylated	(Cao et al., 2016)
with pulsed amperometric detection (HAPAEC PAD)	DP 1 - 5	3 ml of 0,5%	glucosamine detection.	(Santos-Moriano, Woodley, & Plou,
		chitosan		2016)
Immobilised lysozyme affinity chromatography	Mixture with	20 mg	Acetyl-group dependent interaction,	(Sasaki, Kristiansen, Fukamizo, &
	DP 22 in average		separates GlcN from GlcNAc.	Vårum, 2003)

Methods to analyse and identify COS	COS length	Product	Specifics	Reference
UHPLC coupled to an evaporative light scattering detector (ELSD) and an electrospray ionization mass spectrometry (ESI–MS detector)	(DP), or weight DP 1 - 6	quantity 1 μl of 1 mM solution	Information about the pattern of acetylation (P_A) within the COS.	(Hamer et al., 2015)
Mass spectroscopy coupled with a hybrid QTOF analyser	DP 1 - 4	NA	The DP, but not the P _A is retrieved.	(Santos-Moriano et al., 2016)
The matrix-assisted laser desorption/ionization time- of-flight mass spectrometry (MALDI-TOF MS)	DP 3 - 6	1 μl	Information about DP and residue distribution within COS of consistent DP as	(Doan, Tran, Nguyen, Nguyen, & Wang, 2018)
	DP 3 - 7	1 μL of 0,5 g/L COS	function of D _A .	(Trombotto, Ladavière, Delolme, & Domard, 2008)
¹ H NMR	DP 2	15 mg/ml In DCl	Information about F_A (¹ H NMR) and P_A (¹³ C NMR); the frequency and nature of diads	(Einbu & Vårum, 2007)
¹³ C NMR	DP 30 in average < 28,7 kg/mol	NA 5 and 50 mg	and triads is obtained. No definitive structure, but models of statistical distribution of diads can be calculated.	(Martinou, Bouriotis, Stokke, & Vårum, 1998) (Weinhold, Sauvageau, Kumirska, & Thöming, 2009)
	NA	NA		(Paul et al., 2015)
Acid-base tritration with bromocresol green and first order derivative UV spectroscopy	DP 2 – 20 with ≤1 kDa and ≤3 kDa samples	0,5 g and 0.1 g respectively	Information about degree of deacetylation (D _D) of COS.	(Y. Jiang et al., 2017)

Table 2: Analytical methods to analyse physiochemical properties or sequences of COS.