

1 Supporting Information

2 Applying a Chemogeographic Strategy for Natural

3 Product Discovery from the Marine Cyanobacterium

4 Moorena bouillonii

5 Christopher A. Leber ¹, C. Benjamin Naman^{1,2}, Lena Keller^{1,3}, Jehad Almaliti^{1,4}, Eduardo J. E.

6 Caro-Diaz^{1,5}, Evgenia Glukhov¹, Valsamma Joseph^{1,6}, T. P. Sajeevan^{1,6}, Andres Joshua Reyes⁷,

7 Jason S. Biggs⁷, Te Li², Ye Yuan², Shan He², Xiaojun Yan², and William H. Gerwick ^{1,8,*}

8 ¹ Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of 9 California San Diego, La Jolla, California 92093, United States; cleber@ucsd.edu (C.A.L.); 10 bnaman@nbu.edu.cn (C.B.N.); le.keller85@gmail.com (L.K.); jalmaliti@ucsd.edu (J.A.); 11 eduardo.caro1@upr.edu (E.J.E.C.D.); eglukhov@ucsd.edu (E.G.); valsamma@cusat.ac.in (V.J.); 12 sajeev@cusat.ac.in (T.P.S.) 13 ² Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine 14 Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China; 15 telinbu@163.com (T.L.); 23yuanye@163.com (Y.Y.); heshan@nbu.edu.cn (S.H.); yanxiaojun@nbu.edu.cn 16 (X.Y.) 17 ³ Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), 18 Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany 19 ⁴ School of Pharmacy, The University of Jordan, Amman, Jordan 20 ⁵ Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico – Medical Sciences 21 Campus, San Juan, Puerto Rico 00921 22 ⁶ National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala 23 682016. India 24 University of Guam Marine Laboratory, Mangilao, Guam 96923; reyes.andresjoshua@gmail.com (A.J.R.); 7 25 biggs.js@gmail.com (J.S.B.) 26 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, 27 California 92093, United States 28 29 30 * Correspondence: wgerwick@health.ucsd.edu (W.H.G.) 31 Received: XX; Accepted: XX; Published: XX 32

33 Table of Contents

34	Figure S1. Molecular network of <i>M. bouillonii</i> crude extracts	S3
35	Figure S2. Predicted ¹³ C shifts for candidate structure 1a	S4
36	Figure S3. Predicted ¹³ C shifts for candidate structure 1b	S4
37	Figure S4. Compound 1 derived 2-methyoctanoic acid compared to standards	S5
38	Figure S5. Compound 1 derived lysine compared to standards	S6
39	Figure S6. Doscadenamide A (1) consensus MS ² spectrum	S7
40	Figure S7. Molecular network cluster of compound 1 and analogs, highlighting m/z 168 frag. peak	S8
41	Figure S8. Structure of compound 1 with structure proposals for analogs (2-10)	S9
42	Figure S9. Doscadenamide B (2) consensus MS ² spectrum	S10
43	Figure S10. Doscadenamide B (2) proposed fragmentation	S11
44	Figure S11. Doscadenamide C (3) consensus MS ² spectrum	S10
45	Figure S12. Doscadenamide C (3) proposed fragmentation	S13
46	Figure S13. Doscadenamide D (4) consensus MS ² spectrum	S14
47	Figure S14. Doscadenamide D (4) proposed fragmentation	S15

48	Figure S15. Doscadenamide E (5) consensus MS ² spectrum	S16
49	Figure S16. Doscadenamide E (5) proposed fragmentation	S17
50	Figure S17. Doscadenamide F (6) consensus MS ₂ spectrum	S18
51	Figure S18. Doscadenamide F (6) proposed fragmentation	S19
52	Figure S19. Doscadenamide G (7) consensus MS ² spectrum	S20
53	Figure S20. Doscadenamide G (7) proposed fragmentation	S21
54	Figure S21. Doscadenamide H (8) consensus MS ² spectrum	S22
55	Figure S22. Doscadenamide H (8) proposed fragmentation	S23
56	Figure S23. Doscadenamide I (9) consensus MS ² spectrum	S24
57	Figure S24. Doscadenamide I (9) proposed fragmentation	S25
58	Figure S25. Doscadenamide J (10) consensus MS ² spectrum	S26
59	Figure S26. Doscadenamide J (10) proposed fragmentation	S27
60	Figure S27. Representative structures from compound families similar to the doscadenamides	S28
61	Figure S28. Results of compound 1 in Griess assay – biological replicate 1	S29
62	Figure S29. Results of compound 1 in Griess assay – biological replicate 2	S29
63	Figure S30. Results of compound 1 in Griess assay – biological replicate 3	S30
64	Figure S31. UV/Vis absorbance spectrum (200-400 nm) for compound 1	S30
65	Figure S32. IR spectrum for compound 1	S31
66	Figure S33. ¹ H NMR spectrum for compound 1	S31
67	Figure S34. ¹³ C NMR spectrum for compound 1	S32
68	Figure S35. ¹ H- ¹ H COSY spectrum for compound 1	S33
69	Figure S36. ¹ H- ¹³ C HSQC spectrum for compound 1	S33
70	Figure S37. ¹ H- ¹³ C HMBC spectrum for compound 1	S34
71	Figure S38. 1H-13C HSQC-TOCSY spectrum for compound 1	S34
72	Figure S39. ¹ H- ¹³ C Long-range HSQMBC spectrum for compound 1	S35
73		
74 '	Table S1. Known compounds isolated from M. bouillonii	S36
75	Table S2. Average relative abundances and feature selection scores for top 10 Saipan MS ¹ features	S37
76	Table S3. Putative identifications for top 30 MS ¹ features in the <i>M. bouillonii</i> crude extract dataset	S38
77 '	Table S4. In silico antibiotic screening results for the doscadenamides and tetramic acids	S38
78 ' 70	Table S5. M. bouillonii crude extract sample metadata	S39
/9	Table S6. ORCA parameter set for MS ¹ feature dendrogram	S39
80	Table S7. ORCA parameter set for GNPS MS ² feature presence/absence dendrogram Table S7. ORCA parameter set for GNPS MS ² feature presence/absence dendrogram	S40
81	Table S8. ORCA parameter set for MS ¹ feature selection Table S0. ONDC	S40
02 83	Table S9. GNPS parameter set for <i>M. bouillouii</i> crude extract molecular network	541 641
83 84	Table S10. GNTS parameter set for <i>Ni</i> . <i>bountonii</i> crude extract NiS ² feature bucket table	541
85	A ANNAL AND A MARKATANA AND AND AND AND AND AND A MARKATANA AND A MARKATANA AND AND AND AND AND AND AND AND AND	
00	molecular network	512
86 '	molecular network Table S12 . VLC fractionation solvent systems	S42 S42
86 87	 Table S11. Give S parameter set for Sarpan and Guain crude extracts and nactions molecular network Table S12. VLC fractionation solvent systems Table S13. ¹H and ¹³C NMR Data for doscadenamide A (1) in CDCl₃ 	S42 S42 S43

- 89
- 90

92 Figure S1. Molecular network of M. bouillonii crude extracts

GNPS classical molecular network of *M. bouillonii* crude extracts showing clusters of regionally specific
 nodes. Grey nodes represent MS² features that are present in samples from more than one geographically
 region. Nodes are scaled to summed precursor intensity. Red: Papua New Guinea, Orange: Guam, Gold:
 American Samoa, Green: Saipan, Blue: Kavaratti (Lakshadweep Islands, India), Purple: Xisha (Paracel)

97 Islands in the South China Sea. See Table S9 for network parameters.

98

99

100

- 104 **Figure S2.** Predicted ¹³C shifts for candidate structure **1a**
- 105 ¹³C NMR shifts were calculated using ACD/Labs 2019.2.1 (ACD/C+H Predictors and DB 2019.2.1)
- 106 (https://www.acdlabs.com/index.php).

 $\begin{array}{c} 107 \\ 108 \end{array}$

- 8 **Figure S3.** Predicted ¹³C shifts for candidate structure **1b**
- 109 ¹³C NMR shifts were calculated using ACD/Labs 2019.2.1 (ACD/C+H Predictors and DB 2019.2.1)
- 110 (https://www.acdlabs.com/index.php).

113 LC-MS TIC traces comparing (S)-(+)-2-phenylglycine methyl ester derivatized racemic 2-methyloctanoic

114 acid and (S)-2-methyloctanoic acid standards to sample-derived 2-methyl octanoic acid, indicating the

115 sample-derived 2-methyl octanoic acid to be of the *R* configuration.

117 Figure S5. Compound 1 derived lysine compared to standards

118 LC-MS TIC traces comparing L-FDAA derivatized racemic lysine and L-lysine standards to

119 sample-derived lysine, indicating the sample-derived lysine to be of the *S* configuration (L-lysine).

120

116

121

122

123

126 Figure S6. Doscadenamide A (1) consensus MS² spectrum

127 Consensus MS² spectrum representing a cluster of 100 scans for precursor mass m/z 457 and displaying the

128 fragmentation spectrum for doscadenamide A (1).

130 **Figure S7.** Molecular network cluster of compound 1 and analogs, highlighting m/z 168 frag. peak

131 A cluster of 33 MS² spectral nodes, including compound **1** (m/z 457.084), as visualized in the GNPS in 132 browser network visualizer. This cluster is a part of a GNPS classical molecular network generated with

133 crude extracts and fractions from two *M. bouillonii* samples: one from Saipan and one from Guam. All

nodes colored red (23 out of 33) possess a fragment peak at m/z 168, suggesting that the structures they

135 represent include a heterocyclic core identical to compound 1.

1369 doscadenamide I10 c137Figure S8. Structure of compound 1 with structure proposals for analogs (2-10)

- 138 The doscadenamides: compound 1, along with analogs whose proposed structures were annotated via
- 139 informative patterns in the MS² fragmentation data (See Figures S9-S26).

141 **Figure S9.** Doscadenamide B (2) consensus MS² spectrum

142 Consensus MS^2 spectrum representing a cluster of 20 scans for precursor mass m/z 461, representing the

143 fragmentation spectrum of the proposed analog doscadenamide B (2).

S11 of S43

149 Figure S11. Doscadenamide C (3) consensus MS² spectrum

150 Consensus MS² spectrum representing a cluster of 18 scans for precursor mass m/z 459, representing the

151 fragmentation spectrum of the proposed analog doscadenamide C (3).

S13 of S43

153

Figure S12. Doscadenamide C (3) proposed fragmentation

N

m/z 168

156 Figure S13. Doscadenamide D (4) consensus MS² spectrum

157 Consensus MS² spectrum representing a cluster of 47 scans for precursor mass m/z 459, representing the

158 fragmentation spectrum of the proposed analog doscadenamide D (4).

S15 of S43

160

Figure S14. Doscadenamide D (4) proposed fragmentation

Consensus MS2 spectrum for cluster 1 of m/z 461, based on 5 scans

162

163 Figure S15. Doscadenamide E (5) consensus MS² spectrum

164 Consensus MS² spectrum representing a cluster of 5 scans for precursor mass m/z 461, representing the

165 fragmentation spectrum of the proposed analog doscadenamide E (5). The expected fragmentation

166 spectrum would have a fragment peak at m/z 321 that is more intense than the fragment peak at m/z 325,

167 indicating the apparent propensity for side chains acylated to the terminus of the lysine side chain to

168 fragment. The inlay in the top right hand corner reports the ratio of the m/z 321 peak relative intensity to

 $169 mtext{m/z} 325 ext{ peak relative intensity for the 5 scans represented in the consensus. These ratios reveal that in 2}$

170 scans, the fragment peak at m/z 321 is indeed more intense than the fragment peak at m/z 325.

S17 of S43

176 Figure S17. Doscadenamide F (6) consensus MS₂ spectrum

177 Consensus MS² spectrum representing a cluster of 14 scans for precursor mass m/z 461, representing the

178 fragmentation spectrum of the proposed analog doscadenamide F (6).

180

181

S19 of S43

183 Figure S19. Doscadenamide G (7) consensus MS² spectrum

184 MS^2 spectrum captured in one scan for precursor mass m/z 463, representing the partial fragmentation

185 spectrum of the proposed analog doscadenamide G (7). The expected m/z 305 and m/z 168 peaks were

186 detected at too low of intensity to appear in this output. However, the m/z 305 peak is detected in several

187 of the scans that make up the consensus spectrum representing doscadenamide H (Figure S20) - the

188 relative intensity of these m/z 305 fragment peaks are displayed in the above figure inlay. Detection of this

189 m/z 305 peak is important because doscadenamides G and H coelute and such a fragment peak would not 190

be produced by doscadenamide H. Therefore, this lends further support to the structural proposal for

191 doscadenamide G.

S21 of S43

196 Figure S21. Doscadenamide H (8) consensus MS² spectrum

197 Consensus MS² spectrum representing a cluster of 7 scans for precursor mass m/z 463, representing the

198 fragmentation spectrum of the proposed analog doscadenamide H (8).

200

201

S23 of S43

203 Figure S23. Doscadenamide I (9) consensus MS² spectrum

204 Consensus MS² spectrum representing a cluster of 36 scans for precursor mass m/z 475, representing the

205 fragmentation spectrum of the proposed analog doscadenamide I (9).

S25 of S43

Figure S24. Doscadenamide I (9) proposed fragmentation

209 Figure S25. Doscadenamide J (10) consensus MS² spectrum

210 Consensus MS² spectrum representing a cluster of 16 scans for precursor mass m/z 475, representing the

211 fragmentation spectrum of the proposed analog doscadenamide J (10).

S27 of S43

Figure S26. Doscadenamide J (10) proposed fragmentation

S28 of S43

215

Figure S27. Representative structures from compound families similar to the doscadenamides

- 216
- 217
- 218
- -
- 219

222 Reagents were applied at the following concentrations: EtOH (1.5%), LPS (0.5 µg/mL), DMSO (1.0%), and 223 doxorubicin (3.3 µg/mL). One-way ANOVA applied to the survival data indicated statistically significant 224 differences between conditions (p-value < 0.01). Tukey's method was used to determine significance 225 groups: EtOH (a), EtOH + LPS (b), DMSO (c), DMSO + LPS (ac), doxorubicin (d), 28 μ M (b), 28 μ M + LPS 226 (e), 14 μ M (c), 14 μ M + LPS (e), 7 μ M (a), 7 μ M + LPS (d). This result indicates that when compound 1 is 227 applied with LPS, it has a statistically significant negative impact on cell survival, as compared to 228 compound 1 or LPS applied individually, at all three concentrations tested and in a dose-dependent 229 fashion (e.g. when compound 1 was applied at 28 μ M and 14 μ M, with LPS, it had a statistically significant 230 more negative impact on cell survival than when it was applied at 7 µM with LPS). 231

233 Figure S29. Results of compound 1 in Griess assay – biological replicate 2

234 Reagents were applied at the following concentrations: EtOH (1.0%), low LPS (0.5 µg/mL), high LPS 235 (1.5 µg/mL), DMSO (1.0%), and doxorubicin (3.3 µg/mL). One-way ANOVA applied to the survival 236 data indicated statistically significant differences between conditions (p-value < 0.01). Tukey's 237 method was used to determine significance groups: EtOH (a), EtOH + low LPS (b), EtOH + high LPS 238 (bc), DMSO (d), DMSO + low LPS (e), DMSO + high LPS (de), doxorubicin (f), 28 μ M (eg), 28 μ M + 239 low LPS (c), 28 μM + high LPS (bc), 14 μM (g), 14 μM + low LPS (bc), 14 μM + high LPS (bc), 7 μM + 240 low LPS (bc), 7 μM + high LPS (bc). No statistically significant difference was found between LPS 241 conditions and compound 1 plus LPS conditions. However, the results still reveal a trend towards 242 compound 1 synergistic cytotoxicity when applied with $0.5 \ \mu g/mL LPS$, producing an average 243 survival percentage of 17.1, 23.9 and 23.7% at 28, 14 and 7 µM, respectively. In comparison, 0.5 244 µg/mL LPS applied with EtOH resulted in an average survival of 31.8%.

245

248 Reagents were applied at the following concentrations: EtOH (1.0%), LPS (1.5 µg/mL), DMSO (1.0%), and 249 doxorubicin (3.3 µg/mL). Additional control conditions were included in this assay run; 250 phosphate-buffered saline (PBS) with and without LPS was tested. One-way ANOVA applied to the 251 survival data indicated statistically significant differences between conditions (p-value < 0.01). Tukey's 252 method was used to determine significance groups: EtOH (a), EtOH + LPS (ab), PBS (ab), PBS + LPS (ab), 253 DMSO (a), DMSO + LPS (ab), 55 μ M + LPS (c), 28 μ M + LPS (c), 14 μ M + LPS (b), 55 μ M (ab), doxorubicin 254 (b). This result illustrates the dose-dependent cytotoxicity of compound 1 when applied with LPS. 255 Statistically significant negative impacts on cell survival were observed when compound 1 was applied 256 with LPS at concentrations of 55 μ M and 28 μ M, as compared to LPS applied with negative control (EtOH 257 or PBS) and compound 1 applied at 55 µM without LPS.

258

260

Figure S31. UV/Vis absorbance spectrum (200-400 nm) for compound 1

Mar. Drugs **2020**, *18*, x FOR PEER REVIEW

Mar. Drugs 2020, 18, x FOR PEER REVIEW

Figure S38. ^{1}H - ^{13}C HSQC-TOCSY spectrum for compound 1

Table S1. Known compounds isolated from M. bouillonii

Name	Monoisotopic	Protenated	Sodiated	Location of initial	Reference	Notes
15-norlyngbyanentin A	683 3716	684 3786	706.3608	Palau Guam	[11]	1
18F-lyngbyaloside C	648 2509	649 2579	671 2401	Guam	[11]	1
18Z-lyngbyaloside C	648 2509	649 2579	671 2401	Guam	[12]	
27-deoxylyngbyahellin A	674 1766	675 1836	697 1658	Guam	[12]	
2-epi-lyngbyaloside	660 2509	661 2579	683 2401	Guam	[12]	
7-epilyngbyabellin I	544 1105	545 1175	567 0997	Palmyra Atoll	[12]	
alotamide A	587 3393	588 3463	610.3285	Papua New Guinea	[10]	
apramide A	976 5819	977 5889	999 5711	Guam	[15]	
apramide B	962 5663	963 5733	985 5555	Guam	[15]	
apramide C	978.5976	979.6046	1001.5868	Guam	[15]	
apramide D	1002.5976	1003.6046	1025.5868	Guam	[15]	
apramide E	988.5819	989,5889	1011.5711	Guam	[15]	
apramide F	1004.6132	1005.6202	1027.6024	Guam	[15]	
apramide G	827.5343	828.5413	850.5235	Guam	[15]	
apratoxin A	839.4866	840.4936	862.4758	Guam	[16]	2
apratoxin A sulfoxide	855.4816	856.4886	878.4708	Red Sea	[17]	3
apratoxin B	825.471	826.4780	848.4602	Guam	[18]	4
apratoxin C	825.471	826.4780	848.4602	Palau	[18]	4
apratoxin D	882.5415	883,5485	905.5307	Papua New Guinea	[19]	5
apratoxin E	795.4604	796.4674	818.4496	Guam	[20]	
apratoxin F	827.4866	828.4936	850.4758	Palmyra Atoll	[21]	
apratoxin G	813.471	814.4780	836.4602	Palmyra Atoll	[21]	
apratoxin H	853.5023	854,5093	876.4915	Red Sea	[17]	3
apratyramide	804.4309	805.4379	827.4201	Guam	[22]	
bouillonamide	817.49896	818.5060	840.4882	Papua New Guinea	[23]	
bouillomide A				1		
(lyngbyastatin 9)	960.4956	961.5026	983.4848	Guam	[24]	
bouillomide B	1000 10/0	1000 (100			(a. ()	
(lyngbyastatin 10)	1038.4062	1039.4132	1061.3954	Guam	[24]	
columbamide A	465.2413	466.2483	488.2305	Papua New Guinea	[25]	
columbamide B	499.2023	500.2093	522.1915	Papua New Guinea	[25]	
columbamide C	423.2307	424.2377	446.2199	Papua New Guinea	[25]	
columbamide D	451.262	452.2690	474.2512	Malaysia	[26]	
columbamide E	485.223	486.2300	508.2122	Malaysia	[26]	
columbamide F	493.2726	494.2796	516.2618	Malaysia	[27]	
columbamide G	527.2336	528.2406	550.2228	Malaysia	[27]	
columbamide H	417.301	418.3080	440.2902	Malaysia	[27]	
cyanolide A	832.482	833.4890	855.4712	Papua New Guinea	[28]	
doscadenamide A	456.2988	457.3058	479.2880	Guam	[29]	
kakeromamide A	790.4088	791.4158	813.3980	Japan	[30]	
kakeromamide B	790.4088	791.4158	813.3980	Fiji	[31]	6
kanamienamide	492.3563	493.3633	515.3455	Japan	[32]	
laingolide	351.2773	352.2843	374.2665	Papua New Guinea	[33]	
laingolide A	337.2617	338.2687	360.2509	Papua New Guinea	[34]	
laingolide B	369.2071	370.2141	392.1963	Guam	[12]	
lyngbouilloside	584.356	585.3630	607.3452	Papua New Guinea	[35]	
lyngbyabellin A	690.1715	691.1785	713.1607	Guam	[36]	2
lyngbyabellin B	678.1715	679.1785	701.1607	Guam	[37]	2
lyngbyabellin C	608.082	609.0890	631.0712	Palau	[38]	1
lyngbyabellin D	895.2553	896.2623	918.2445	Palau, Guam	[11]	1
lyngbyabellin J	863.2291	864.2361	886.2183	Guam	[12]	
lyngbyabellin K	578.0715	579.0785	601.0607	Palmyra Atoll	[13]	
lyngbyabellin L	544.1105	545.1175	567.0997	Palmyra Atoll	[13]	
lyngbyabellin M	624.1133	625.1203	647.1025	Palmyra Atoll	[13]	
lyngbyabellin N	904.292	905.2990	927.2812	Palmyra Atoll	[13]	
lyngbyaloside	660.2509	661.2579	683.2401	Papua New Guinea	[39]	
lyngbyaloside B	648.2509	649.2579	671.2401	Palau	[40]	1
lyngbyapeptin A	697.3873	698.3943	720.3765	Papua New Guinea	[41]	
lyngbyapeptin B	721.3509	722.3579	744.3401	Palau	[38]	1
lyngbyapeptin C	735.3665	736.3735	758.3557	Palau	[38]	1
lyngbyapeptin D	683.3716	684.3786	706.3608	Guam	[12]	

Mar. Drugs 2020, 18, x FOR PEER REVIEW

S37 of S43

lyngbyastatin 2	1058.6878	1059.6948	1081.6770	Guam	[42]	2
mandangolide	377.561	378.5680	400.5502	Papua New Guinea	[34]	
mooreamide A	389.293	390.3000	412.2822	Papua New Guinea	[43]	
norlyngbyastatin 2	1044.6722	1045.6792	1067.6614	Guam	[42]	2
palau'imide	428.2675	429.2745	451.2567	Palau	[38]	1
ulongamide A	627.309	628.3160	650.2982	Palau	[44]	1
ulongamide B	643.3039	644.3109	666.2931	Palau	[44]	1
ulongamide C	691.3039	692.3109	714.2931	Palau	[44]	1
ulongamide D	671.3352	672.3422	694.3244	Palau	[44]	1
ulongamide E	685.3509	686.3579	708.3401	Palau	[44]	1
ulongamide F	607.3403	608.3473	630.3295	Palau	[44]	1

¹Reported as Lyngbya sp.; cited in subsequent publications as M. bouillonii

²Reported as Lyngbya majuscula; cited in subsequent publications as M. bouillonii

³Reported as Moorea producens; 16S classification inconclusive; chemistry associated with M. bouillonii

⁴Reported as Lyngbya sp.; but cited in subsequent publications as M. bouillonii and reported to grow with Alpheus

frontalis

⁵Reported as Lyngbya majuscula and Lyngbya sordid; 16S classification inconclusive; chemistry associated with M.

bouillonii

⁶Reported as *Moorea producens;* manuscript includes a photo of woven *M. bouillonii;* 16S classification inconclusive;

compound isolated along with known compounds previously isolated from M. bouillonii

Table S2. Average relative abundances and feature selection scores for top 10 Saipan MS¹ features

m/z	relative rt	F-value ¹	p-value ¹	American Samoa ²	China ²	Guam ²	India ²	PNG ²	Saipan ²	
721.10	0.6065	0.869	0.5371	0.045	0.025	0	0	0.007	0.210	
457.05 ³	0.4852	17.402	0.0002	0.012	0.023	0.006	0	0.005	0.176	
1368.03	0.5654	5.049	0.0176	0.011	0.035	0.014	0.008	0.005	0.175	
609.10	0.6263	1.229	0.3704	0.049	0.028	0.050	0.126	0.010	0.172	
535.10	0.6177	2.073	0.1613	0.065	0.034	0.214	0.005	0	0.158	
1367.06	0.5626	2.314	0.1296	0.008	0.027	0.030	0.069	0	0.136	
459.06	0.5141	31.678	< 0.0001	0	0.024	0.006	0.005	0	0.112	
536.10	0.6270	3.205	0.0617	0.094	0.014	0.034	0.006	0.006	0.102	
1687.01	0.4942	1.086	0.4296	0.005	0.008	0	0.019	0.005	0.100	
722.04	0.5938	0.703	0.6356	0.035	0.010	0.015	0.008	0.004	0.096	

¹F-values and p-values are generated in ORCA using the scikit learn (https://scikit-learn.org/stable/)

implementation of univariate feature selection. These scores should be interpreted cautiously, as the dataset does

not meet the assumptions necessary for univariate features selection, but can still help in generating hypotheses

about which features are driving differences between samples collected from different geographical regions.

²Average of the unit vector normalized integrated feature values for all samples from the geographical region. ³Compound **1** was detected in high abundance in samples from Saipan, ranking as the second most abundant MS¹

feature, while not being detected or being detected at very low levels in other samples.

2	0	n
Э	Z	Э

Table S3. Putative identifications for the top 30 MS¹ features in the *M. bouillonii* crude extract dataset

	m/z	relative rt	max transformed integral	putative ids	difference
1	815.10	0.6383	0.857928	['apratoxin G [M+H]+']	[0.62]
2	814.06	0.5968	0.765564	['apratoxin G [M+H]+', 'kakeromamide A [M+Na]+', 'kakeromamide B [M+Na]+']	[0.42, 0.66, 0.66]
3	721.10	0.6065	0.572637	['lyngbyapeptin A [M+Na]+']	[0.73]
4	840.07	0.6350	0.510516	['apratoxin A [M+H]+', 'bouilllonamide [M+Na]+']	[0.43, 0.42]
5	862.08	0.5894	0.508103	['apratoxin A [M+Na]+']	[0.39]
6	623.10	0.6501	0.440651	['None']	[0]
7	611.09	0.5845	0.427792	['alotamide A [M+Na]+']	[0.77]
8	678.10	0.5988	0.386879	['None']	[0]
9	535.10	0.6177	0.382478	['None']	[0]
10	609.10	0.6263	0.369167	['lyngbyabellin C [M+H]+', 'ulongamide F [M+H]+']	[0.01, 0.75]
11	378.06	0.5832	0.35347	['mandangolide [M+H]+']	[0.5]
12	625.11	0.6320	0.334295	['lyngbyabellin M [M+H]+']	[0.01]
13	793.11	0.6292	0.326725	['None']	[0]
14	827.10	0.6185	0.312621	['apratoxin B [M+H]+', 'apratoxin C [M+H]+', 'apratyramide [M+Na]+']	[0.62, 0.62, 0.32]
15	744.09	0.6160	0.31144	['lyngbyapeptin B [M+Na]+']	[0.25]
16	836.08	0.6534	0.286632	['apratoxin G [M+Na]+']	[0.38]
17	1368.02	0.5654	0.280465	['None']	[0]
18	639.08	0.6220	0.279184	['None']	[0]
19	581.10	0.6134	0.277933	['None']	[0]
20	632.10	0.6188	0.274745	['None']	[0]
21	722.04	0.5938	0.266215	['lyngbyapeptin B [M+H]+']	[0.32]
22	886.05	0.6135	0.258829	['lyngbyabellin J [M+Na]+']	[0.17]
23	841.13	0.6118	0.24873	['apratoxin A [M+H]+', 'bouilllonamide [M+Na]+']	[0.63, 0.64]
24	651.11	0.6804	0.246204	['ulongamide A [M+Na]+']	[0.81]
25	1687.01	0.4942	0.245016	['None']	[0]
26	457.05	0.4852	0.242068	['None'] ¹	[0]
27	1367.06	0.5627	0.22625	['None']	[0]
28	816.09	0.6681	0.224017	['None']	[0]
29	494.07	0.6387	0.21453	['columbamide F [M+H]+', 'kanamienamide [M+H]+']	[0.21, 0.71]
30	863.09	0.6430	0.209889	['apratoxin A [M+Na]+']	[0.61]

³³⁰

¹No putative identifications were assigned to compound **1**, suggesting it to be a new natural product.

Table S4. In silico antibiotic screening results for the doscadenamides and tetramic acids

compound name	SMILES	score ¹
doscadenamides A	COC1=CC(N(C(C(C)CCCCC#C)=O)C1CCCCNC(C(C)CCCCC#C)=O)=O	0.031352468
doscadenamides B	COC1=CC(N(C(C(C)CCCCC=C)=O)C1CCCCNC(C(C)CCCCC=C)=O)=O	0.056482284
doscadenamides C	COC1=CC(N(C(C(C)CCCCC#C)=O)C1CCCCNC(C(C)CCCCC=C)=O)=O	0.038773874
doscadenamides D	COC1=CC(N(C(C(C)CCCCC=C)=O)C1CCCCNC(C(C)CCCCC#C)=O)=O	0.038728081
doscadenamides E	COC1=CC(N(C(C(C)CCCCC#C)=O)C1CCCCNC(C(C)CCCCCC)=O)=O	0.062902918
doscadenamides F	COC1=CC(N(C(C(C)CCCCCC)=O)C1CCCCNC(C(C)CCCCC#C)=O)=O	0.0636456
doscadenamides G	COC1=CC(N(C(C(C)CCCCC=C)=O)C1CCCCNC(C(C)CCCCCC)=O)=O	0.091586996
doscadenamides H	COC1=CC(N(C(C(C)CCCCCC)=O)C1CCCCNC(C(C)CCCCC=C)=O)=O	0.092198204
doscadenamides I	COC1=CC(N(C(C(C)CCCCC#C)=O)C1CCCCNC(C(C)CCCCC(C)=O)=O)=O	0.049369105
doscadenamides J	COC1=CC(N(C(C(C)CCCCC(C)=O)=O)C1CCCCNC(C(C)CCCCC#C)=O)=O	0.04936365
C12-tetramic acid	O=C(/C1=C(O)/CCCCCCCC)NC(CCO)C1=O	0.545725947
C14-tetramic acid	O=C(/C1=C(O)/CCCCCCCCCC)NC(CCO)C1=O	0.590775286

332

¹ Scores represent the probability that the screened compound would inhibit *E. coli* growth at 50 μ M [78].

³³¹

filename	alias	extract	collection	collection country/territor	collection	collection site	collection date
20170915_CBN_XSSCB	China	number	XSSCB201	y China/Xisha	Sanchay	16° 51' 05.52",	5/16/2017
2017_13.mzXML	_13	-	7_13	China/Aisha	Janshax	112° 20' 56.13"	5/10/2017
20170915_CBN_XSSCB 2017_24.mzXML	China _24	-	XSSCB201 7_24	China/Xisha	Sanshax	16° 51' 05.52", 112° 20' 56.13"	5/19/2017
20170915_CBN_XSSCB 2017 25.mzXML	China 25	-	XSSCB201 7 25	China/Xisha	Sanshax	16° 51' 05.52", 112° 20' 56.13"	5/19/2017
2019-08-23_CBN_KHI-1 8-1.mzXML	_ India_ KHI	-	KHT08AP R18-3	India/Lakshadw eep	Kavaratti	Heaven's Treat lagoon	4/8/2018
2019-08-23_CBN_KP-16 -1.mzXML	India_ KP	-	KP-16	India/Lakshadw eep	Kavaratti	Paradise Hut lagoon	2/6/2016
2019-08-23_CBN_KPL-1 8-1.mzXML	India_ KPL	-	KPL08AP R18-1	India/Lakshadw eep	Kavaratti	Paradise Hut lagoon	4/8/2018
2019-08-23_CBN_KSP-1 8-1.mzXML	India_ KSP	-	KSP07AP R18-1	India/Lakshadw eep	Kavaratti	south of Paradise Hut pier	4/7/2018
2200.mzXML	Saipan _00	2200	SPB31JA N13-1	Saipan	-	Laulau Bay	1/31/2013
2209.mzXML	_ Saipan _09	2209	SPD29JA N13-6	Saipan	-	Laulau Bay	1/29/2013
2220.mzXML	_ AmSa m_20	2220	ASA12JU L14-1	American Samoa	-	Afao	7/12/2014
2223.mzXML	AmSa m_23	2223	ASG15JU L14-1	American Samoa	-	Fagasa Bay	7/15/2014
2232.mzXML	Saipan _32	2232	SPB01FEB 13-1	Saipan	-	Laulau Bay	2/1/2013
2246.mzXML	Guam _46	2246	GBB21M AR16-1	Guam	-	Apra Harbor	3/21/2016
2247.mzXML	Guam _47	2247	GGG21M AR16-1	Guam	-	Apra Harbor	3/21/2016
Mb.mzXML	PNG_ c	-	PNG19M AY05-8	Papua New Guinea	New Ireland	Pigeon Island	5/19/2005

333

Table S5. M. bouillonii crude extract sample metadata

334

335

Table S6. ORCA parameter set for MS^1 feature dendrogram

parameter	value
bin_width	0.5
bin_offset	0
bins_start	200
bins_end	2000
peak_consecutivity	0
peak_cluster_size_cutoff	3
min_integral	100000
rt_setting	'relative'
rrt_tolerance	0.05
transforms	None
metric	'cosine'
method	'average'
color_cutoff	N/A (custom colorization)

Table S7. ORCA parameter set for GNPS MS² feature presence/absence dendrogram

parameter	value		
drop_columns	['#OTU ID']		
drop_rows	Ο		
transpose_buckettable	False		
transforms	presence_absence = True		
metric	'cosine'		
method	'average'		
color_cutoff	N/A (custom colorization)		

Table S8. ORCA parameter set for MS^1 feature selection

parameter	value		
bin_width	1		
bin_offset	0		
bins_start	200		
bins_end	2000		
peak_consecutivity	0		
peak_cluster_size_cutoff	3		
min_integral	100000		
rt_setting	'relative'		
rrt_tolerance	0.05		
transforms	None		
metric	'cosine'		
method	'average'		
color_cutoff	N/A (custom colorization)		

Table S9. GNPS parameter set for *M. bouillonii* crude extract molecular network

parameter	value
workflow version	1.2.5
PAIRS_MIN_COSINE	0.7
ANALOG_SEARCH	1
tolerance.PM_tolerance	2.0
tolerance.Ion_tolerance	0.5
MIN_MATCHED_PEAKS	2
ТОРК	10
CLUSTER_MIN_SIZE	1
MAXIMUM_COMPONENT_SIZE	100
MIN_PEAK_INT	50
FILTER_STDDEV_PEAK_INT	0.0
RUN_MSCLUSTER	on
FILTER_PRECURSOR_WINDOW	1
FILTER_LIBRARY	1
WINDOW_FILTER	1
SCORE_THRESHOLD	0.7
MIN_MATCHED_PEAKS_SEARCH	2
MAX_SHIFT_MASS	100.0

353

Table S10. GNPS parameter set for *M. bouillonii* crude extract MS² feature bucket table

parameter	value
workflow version	release_22
PAIRS_MIN_COSINE	0.7
ANALOG_SEARCH	1
tolerance.PM_tolerance	2.0
tolerance.Ion_tolerance	0.5
MIN_MATCHED_PEAKS	4
ТОРК	10
CLUSTER_MIN_SIZE	1
MAXIMUM_COMPONENT_SIZE	100
MIN_PEAK_INT	0.0
FILTER_STDDEV_PEAK_INT	0.0
RUN_MSCLUSTER	on
FILTER_PRECURSOR_WINDOW	1
FILTER_LIBRARY	1
WINDOW_FILTER	1
SCORE_THRESHOLD	0.7
MIN_MATCHED_PEAKS_SEARCH	4
MAX_SHIFT_MASS	100.0

355	Table S11. GNPS parameter set for Saipan and Guam sample crudes and fractions	molecular network
		1

parameter	value
workflow version	release_17
PAIRS_MIN_COSINE	0.7
ANALOG_SEARCH	1
tolerance.PM_tolerance	1.0
tolerance.Ion_tolerance	0.5
MIN_MATCHED_PEAKS	4
ТОРК	10
CLUSTER_MIN_SIZE	2
MAXIMUM_COMPONENT_SIZE	100
MIN_PEAK_INT	0.0
FILTER_STDDEV_PEAK_INT	0.0
RUN_MSCLUSTER	on
FILTER_PRECURSOR_WINDOW	1
FILTER_LIBRARY	1
WINDOW_FILTER	1
SCORE_THRESHOLD	0.7
MIN_MATCHED_PEAKS_SEARCH	4
MAX_SHIFT_MASS	100.0

Table S12. VLC fractionation solvent systems

fraction	composition
A	100% hexane
В	90% hexane : 10% ethyl acetate
С	80% hexane : 20% ethyl acetate
D	60% hexane : 40% ethyl acetate
Е	40% hexane : 60% ethyl acetate
F	20% hexane : 80% ethyl acetate
G	100% ethyl acetate
Н	75% ethyl acetate : 25% methanol
Ι	100% methanol

Residue	Position	δc, type	δн, mult. (<i>J</i> , Hz)
	1	170.0, C	
	2	94.2, CH	5.04, s
	3	179.2, C	
	4	59.2, CH	4.64, dd (J = 5.7, 2.9 Hz)
		29.0, CH ₂	2.07, m
	5		1.84, m
pyLys-OMe		20 4 CU	1.19, m
	6	20.4, CH2	1.16, m
	7	29.6, CH ₂	1.44, m
		20.2.511	3.22, dp (J = 19.2, 6.4 Hz
	8	39.3, CH ₂	3.13, dp (J = 19.2, 6.4 Hz
	9	58.9, CH ₃	3.84, s
	NH		5.53, brs
	10	177.0, C	
	11	41.8, CH	2.13, m
	10	22.0 CH	1.62, m
	12 33.9, CH ₂	1.35, m	
	13	28.5, CH ₂	1.36, m
Moya-1	14	28.5, CH ₂	1.50, m
	15	18.5 ^b , CH ₂	2.18, m
	16	84.7, C	
	17	68.52°, CH	$1.934^{\rm b}$, t ($I = 2.7$ Hz)
		18 1ª CH3	111 d (I = 11 Hz)
	19	176.4 C	
	20	39.1. CH	3 75. m
		07.1, C11	1 75 m
	21	33.7, CH ₂	1.70, III
		267 CH	1,42, III
Moya-2		20.7, CH2	1.37, m
	23	20.4, CH2	1.44, m
	24	18.4°, CH2	2.18, m
	25	84.6, C	
	26	68.50°, CH	1.940 ^b , t (<i>J</i> = 2.7 Hz)
	27	16.3 ^d , CH ₃	1.12, d (J = 1.1 Hz)

^a Data recorded at 600 MHz (¹H NMR) and 125 MHz (¹³C NMR). ^{b,c,d} Assignments with the same superscripted letter could be

366 reversed.

367

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).