

Supplementary Materials

Therapeutic Potential of (–)-Agelamide D, a Diterpene Alkaloid from the Marine Sponge *Agelas* sp., as a Natural Radiosensitizer in Hepatocellular Carcinoma Models

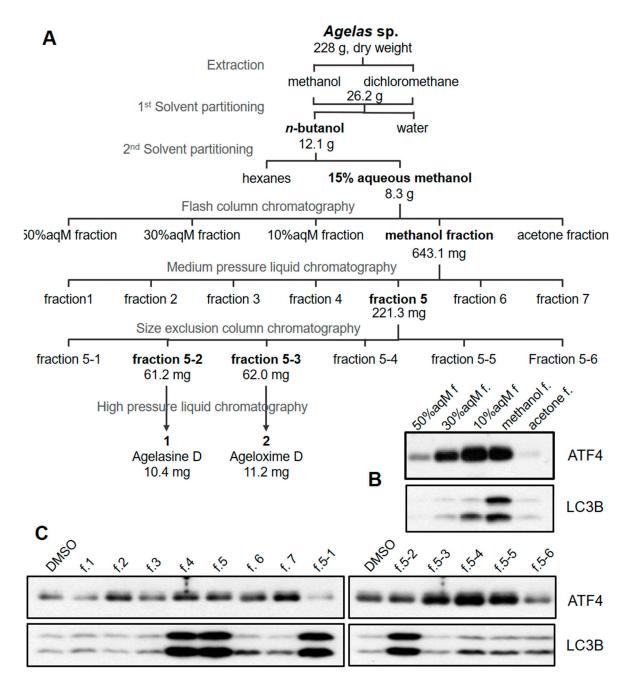
Changhoon Choi 1 , Yeonwoo Cho 2,3 , Arang Son 1 , Sung-Won Shin 1,4 , Yeon-Ju Lee 2,3,* , and Hee Chul Park 1,4,*

- ¹ Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; chchoi93@gmail.com (C.C.); onlyshohow@naver.com (A.S.); camuserik@gmail.com (S.-W.S.)
- ² Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Korea; yeonwoo@kiost.ac.kr
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Korea
- ⁴ Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- * Correspondence: yjlee@kiost.ac.kr (Y.-J.L.); hee.ro.park@samsung.com (H.C.P.)

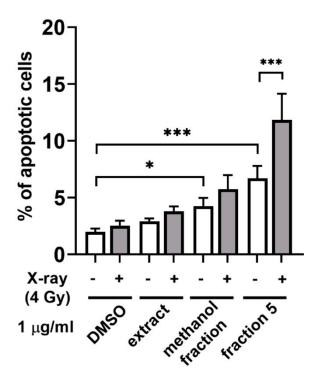
Tables of Contents

- **Table S1.** Serum biochemical parameters in two groups of mice that received radiation therapy (RT) or RT plus (–)-agelamide
- **Figure S1.** Underwater (**A**) and *in situ* (**B**) photographs of *Agelas* sp. used in this study
- Figure S2. Bioassay-guided isolation of compounds 1 and 2 from Agelas sp.
- **Figure S3.** Enhancement of apoptosis by combined treatment with fractions from *Agelas* extract and radiation
- Figure S4. ¹H and ¹³C NMR spectra (600 MHz and 150 MHz, methanol-*d*₃) of compound 2
- Figure S5. COSY and HSQC spectra of compound 2
- Figure S6. HMBC spectra of compound 2
- Figure S7. Selective COSY and HMBC correlations for compound 2

Table S1. Serum biochemical parameters in two groups of mice that received radiation therapy (RT) or RT plus (–)-agelamide


Parameters	Unit	RT	RT plus (–)-agelamide
Aspartate transaminase	U/L	81.0 ± 26.3	81.3 ± 7.1
Alanine transaminase	U/L	28.7 ± 2.1	26.0 ± 4.4
Alkaline phosphatase	U/L	99.3 ± 20.2	91.0 ± 11.5
Total protein	g/dL	4.8 ± 0.5	4.9 ± 0.2
Albumin	g/dL	2.6 ± 0.3	2.7 ± 0.2
Total bilirubin	mg/dL	0.1	0.1
Blood urea nitrogen	mg/dL	22.2 ± 4.0	25.6 ± 1.8
Creatine	mg/dL	0.5 ± 0.1	0.5
Glucose	mg/dL	247.7 ± 74.7	224.7 ± 64.1
Cholesterol	mg/dL	69.0 ± 3.6	74.7 ± 7.6
Triglyceride	mg/dL	65.0 ± 4.6	70.3 ± 14.6
Phosphorus	U/L	7.4 ± 1.6	5.6 ± 1.0
Ca ²⁺	mg/dl	8.8 ± 0.7	8.5 ± 0.3
Creatine phosphokinaset	U/L	232.1 ± 69.0	485.4 ± 147.3
A/G ratio		1.2 ± 0.2	1.3 ± 0.3

[†]Statistically not significant


Figure S1. Underwater (**A**) and *in situ* (**B**) photographs of *Agelas* sp. used in this study

Mar. Drugs **2020**, 18, 500 4 of 8

Figure S2. Bioassay-guided isolation of compounds 1 and 2 from *Agelas* sp. **A**, Extraction and isolation scheme for compounds 1 and 2 from *Agelas* sp. **B**, Levels of ATF4 and LC3B induced by the fractions obtained through flash column chromatography. **C**, Levels of ATF4 and LC3B induced by the fractions obtained through medium pressure liquid chromatography (MPLC) (fractions 1–7) and size exclusion column chromatography (fractions 5.1–5.6).

Mar. Drugs **2020**, 18, 500 5 of 8

Figure S3. Enhancement of apoptosis by combined treatment with fractions from *Agelas* extract and radiation. Hep3B cells were pre-treated with the same amount (1 μ g/mL) of the samples from each purification step for 3 h, followed by irradiation with 4 Gy of X-rays. After 48 h, the samples were collected, and the apoptotic cell population was analyzed through flow cytometry with Annexin V/propidium iodide co-staining. Data are mean \pm standard deviation (SD) from two independent experiments (n = 6). * p < 0.05; *** p < 0.001.

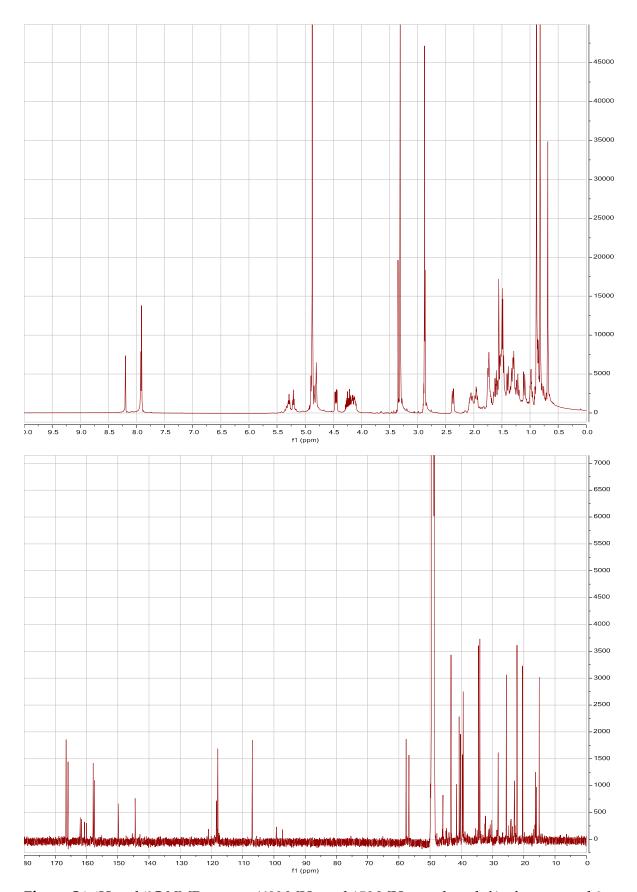


Figure S4. ¹H and ¹³C NMR spectra (600 MHz and 150 MHz, methanol-*d*₄) of compound 2

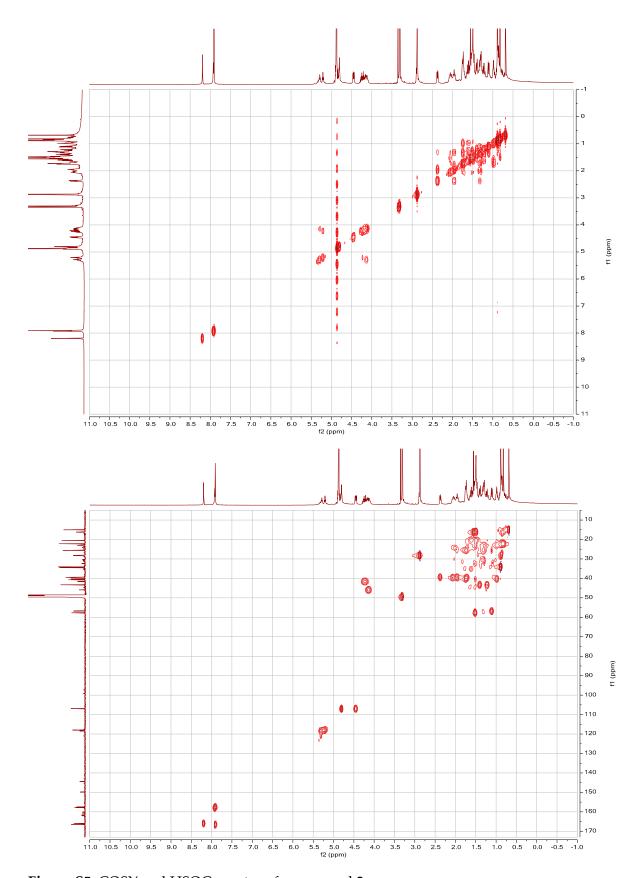


Figure S5. COSY and HSQC spectra of compound 2

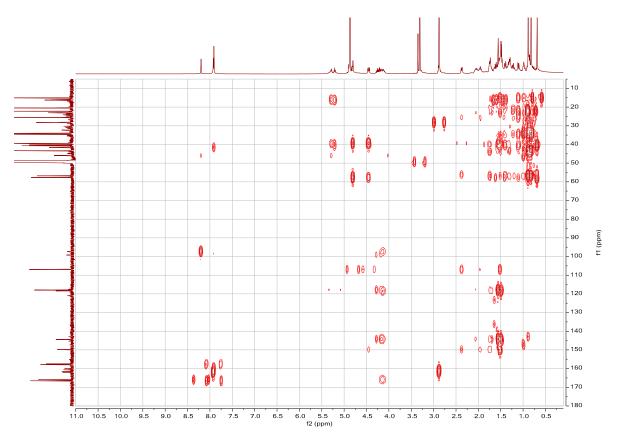


Figure S6. HMBC spectra of compound 2

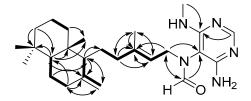


Figure S7. Selective COSY and HMBC correlations for compound 2