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Abstract: Marine algae have gained much importance in the development of nutraceutical products
due to their high content of bioactive compounds. In this work, we investigated the activity of Padina
pavonica with the aim to demonstrate the pro-osteogenic ability of its extract on human primary
osteoblast (HOb). Our data indicated that the acetonic extract of P. pavonica (EPP) is a safe product
as it did not show any effect on osteoblast viability. At the same time, EPP showed to possess a
beneficial effect on HOb functionality, triggering their differentiation and mineralization abilities. In
particular EPP enhanced the expression of the earlier differentiation stage markers: a 5.4-fold increase
in collagen type I alpha 1 chain (COL1A1), and a 2.3-fold increase in alkaline phosphatase (ALPL),
as well as those involved in the late differentiation stage: a 3.7-fold increase in osteocalcin (BGLAP)
expression and a 2.8-fold in osteoprotegerin (TNFRSF11B). These findings were corroborated by the
enhancement in ALPL enzymatic activity (1.7-fold increase) and by the reduction of receptor activator
of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) ratio (0.6-fold decrease). Moreover,
EPP demonstrated the capacity to enhance the bone nodules formation by 3.2-fold in 4 weeks treated
HOb. Therefore, EPP showed a significant capability of promoting osteoblast phenotype. Given its
positive effect on bone homeostasis, EPP could be used as a useful nutraceutical product that, in
addition to a healthy lifestyle and diet, can be able to contrast and prevent bone diseases, especially
those connected with ageing, such as osteoporosis (OP).
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1. Introduction

Bone is a specialized form of connective tissue and its functions include locomotion, protection
and mineral homeostasis. Osteoblasts, osteocytes, and bone lining cells are bone-forming cells, whereas
osteoclasts are involved in the bone resorption process. The retention of homeostasis is based on
the balance between these opposite activities. Therefore, bone is a very dynamic tissue due to the
continuous balance between mineralization and resorption processes, that guarantee tissue homeostasis
and functions [1]. With ageing, a net loss of bone is observed due to the increment of the resorptive
activity of osteoclasts that is not balanced by novel bone tissue formation. This condition leads to
pathological processes, such as osteoporosis (OP), a devastating bone disease [2] characterized by
thinning of the tissue, changes in skeletal architecture, and significant increase of fracture risks. OP
affects both women and men (even if it is more frequently observed in postmenopausal women), and
the healthy and socio-economic issues connected to this pathology are expected to grow due to the
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increase of life expectancy. Due to the inefficiencies of current treatment options and related side effects,
alternative therapies and preventive agents are highly desirable [3]. Osteogenic bioactive compounds
have been isolated from many marine organisms, mainly macroalgae, such as brown algae Sargassum
horneri and Undaria pinnatifida, so that OP could benefit from a novel and more efficient marine-based
treatment. Compounds from marine organism are known to have a wide range of osteogenic effects,
including stimulation of osteoblast functions and mineralization, as well as suppression of osteoclast
activity [3,4].

Many previous studies have focused on the beneficial protective effects of seaweeds on human
health and against chronic disease as they represent a source of unique bioactive compounds, such as
proteins, peptides and amino acids, lipids and fatty acids, sterols, polysaccharides, oligosaccharides,
phenolic compounds, photosynthetic pigments, vitamins, and minerals [5,6].

For the extraction of all the above-mentioned compounds, many different methods and solvents
have been used. The process parameters of each method and the solvent must be chosen and
optimized in order to obtain the extracts with the targeted bioactive compounds [7]. Parameters such
as techniques, solvent, temperature, and raw material are known to notably affect the yield of extracted
compounds from a quantitative and a qualitative point of view [6,8]. As the demand of macroalgae
in the development of PUFA-related dietary supplements is growing, Kumari P. et al. performed a
comparison of different lipid and fatty acid extraction and derivatization methods [9].

P. pavonica is a marine brown seaweed, a member of the Dictyotaceae family that is widespread
throughout the world in warm temperate to tropical locations, including North Carolina to Florida in
the United States, the Gulf of Mexico, throughout the Caribbean and tropical Atlantic and the Eastern
Atlantic, Mediterranean, and Adriatic Seas [10]. In marine biology, P. pavonica is used above all as sensor
or marker to study pollution levels in the sea and, in general, in the marine environment [11]. Regarding
the functional and positive influence of P. pavonica on human health, sterols, lipids, polysaccharides,
carotenoids, polyphenols, and fibers are the main bioactive compounds found in Padina species [12].

In a previous in vivo study conducted on 40 postmenopausal women and based on the initial
founding by Gilles Gutierrez [13], P. pavonica demonstrated the ability to increase bone mineral density
(BMD) and to exert a positive effect on collagen control (ICP Ltd., personal communication based
on the study performed by Professor Mark Brincat). Nevertheless, based on our literature research,
in vitro biochemical and molecular evaluation supporting osteogenic beneficial effects from P. pavonica
extracts are nonexistent Therefore, in this study, we aimed to demonstrate the activity of EPP on bone
homeostasis, providing the first report on French Polynesian P. pavonica effects on HOb metabolism. In
particular, we undertook biochemical and molecular analyses to demonstrate if this vegetal substance
may increase the uptake and the fixation of calcium by osteoblasts, and thus can induce a mass
increment of bone tissue.

2. Results

2.1. Chemical Composition and Antioxidant Capacity of EPP

EPP was chemically characterized for its total phenolic, flavonoid, and tannin content [6]. The
total phenolic, flavonoid, and tannin contents of the seaweed were 27.0, 54.8, and 54.3 mg per g of
extract, respectively, corresponding to 0.81, 1.64, and 1.63 mg per g of dry material, respectively. The
antioxidant activity resulted as 256 ± 2 µmol of Fe2+ per g of extract.

EPP was also examined for its lipid content by GC-MS [6]. Hydrocarbons represented 79.88%
of the total extract, among which 68.83% corresponded to fatty acids (FAs), 0.19% corresponded to
squalene, and 10.86% to other hydrocarbon species (Figure 1). Sterols represented 8.37% of the extract
and included fucosterol and cholesterol at percentages of 7.40% and 0.97%, respectively (Figure 1).
GC-MS analysis was also performed with a different sample preparation approach consisting in a
saponification and an extraction by dispersive liquid-liquid microextraction (DLLME) of EPP, in order
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to analyze the most lipophilic compounds. This analysis mostly confirmed the presence of several
already identified compounds (Figure 1).
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Figure 1. Padina pavonica extract (EPP) lipid content by GC-MS. For the analysis of the most lipophilic
compounds, EPP was submitted to saponification and DLLME. Experiments were performed in
triplicate. Data are presented as mean ± SD.

EPP’s FA profile (Figure 2) showed that the presence of saturated FAs (SFAs) corresponded to
43.45% of total EPP (63.13% of total FAs). Among these, the most abundant FA was palmitic acid with
a total percentage of 34.15%, followed by stearic (3.25%), pentadecanoic (1.95%), arachidic (0.74%),
myristic (0.43%), lauric (0.47%), and behenic (0.04%) acids. Monounsaturated FAs (MUFAs) made up
23.67% of total EPP (34.40% of total FAs). The most abundant MUFA was palmitelaidic acid (16:1 n-7 E,
7.82%), followed by oleic acid (18:1 n-9, 7.79%) and palmitoleic acid (16:1 n-7 Z, 6.29%). Polyunsaturated
FAs (PUFAs) corresponded to 1.70% of EPP (2.47% of total FAs). The main PUFA found in EPP was
arachidonic acid (20:4 n-6, 0.64%), followed by linoleic (18:2 n-6, 0.53) and eicosapentanoic acid (20:5
n-3 0.24%) [6].

2.2. EPP Effects on HOb Viability

EPP did not exhibit significant effects on HOb viability at the concentrations used (1, 10, 20 µg/mL)
after 24 h treatment (Figure 3). We detected a minor effect on HOb viability only at the highest
concentrations tested. Therefore, having verified that EPP had no remarkable toxic effects at the
concentrations tested, we focused on analyzing its functional activity on HOb.

2.3. Expression Analysis of Bone Differentiation Markers

To evaluate the effect of EPP at the molecular level, we extracted RNAs from EPP-treated cells and
performed RT-qPCR analysis of osteoblastic-specific genes. Expression of genes coding for osteocalcin
(BGLAP), osteoprotegerin (TNFRSF11B), collagen type I alpha 1 chain (COL1A1), alkaline phosphatase
(ALPL) and Sox9 after 24 h of treatment with EPP at different concentrations (1, 10, and 20 µg/mL) was
assessed. These mRNA species were chosen for our study as they represent recognized markers of the
different osteoblast differentiation stages. Sox9 mRNA was also monitored as a transcription factor
involved in cartilage growth during chondrogenesis. At the molecular level, Sox9 directly interacts
with RUNX2, a transcription activator of osteoblast-specific genes, decreasing RUNX2 binding to
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its target sequences and inhibiting its activity. During osteochondroprogenitor cells’ differentiation
toward the osteoblastic phenotype, Sox9 expression levels decrease and RUNX2 increases [14].
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Figure 2. Padina pavonica extract (EPP) fatty acids (FAs) profile: PUFAs (polyunsaturated FAs), MUFAs
(monounsaturated FAs) and SFAs (saturated FAs). Experiments were performed in triplicate. Data are
presented as mean ± SD.
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Figure 3. Viability of human primary osteoblasts (HOb) following 24 h treatment with EPP. Experiments
were performed in triplicate. Data are expressed as percentage of control and presented as mean ± SD.
Statistically significant differences from untreated control are denoted by * p < 0.05.

2.3.1. BGLAP

EPP treatment induced an increment of BGLAP expression in HOb at all the concentrations tested
(Figure 4). In particular, a nearly two-fold increase of BGLAP was observed at 1 and 10 µg/mL, and of
around 3.7-fold at 20 µg/mL.

2.3.2. TNFRSF11B

EPP treatment induced an increase of TNFRSF11B expression in HOb. In particular, all the
concentrations tested induced statistically significant increase of the gene expression: 1.7-fold at
1 µg/mL, 2.8-fold at 10 µg/mL, and nearly two-fold at 20 µg/mL (Figure 5).
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Untreated cells were used as controls. Experiments were performed in triplicate. Results are shown as
a mean of fold change in gene expression ± SD using untreated osteoblasts as a control. Statistically
significant differences from untreated control are denoted by * p < 0.05 or § p < 0.01.
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COL1A1 was expressed in larger amounts in EPP-treated HOb in respect to control (Figure 6).
EPP treatment induced a dose-dependent increase in COL1A1 expression: 2.7-fold at 1 µg/mL, 3.8 at
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untreated control are denoted by § p < 0.01.
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2.3.4. ALPL

HOb showed an increase expression of ALPL following EPP treatment (Figure 7). The expression
of the gene was enhanced by nearly 1.9-fold at 1 µg/mL, 2.3-fold at 10 µg/mL, and nearly two-fold at
20 µg/mL.
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2.3.5. Sox9

EPP treatment of HOb resulted in a dose-dependent reduction of Sox9 expression compared to
control (Figure 8): 0.8-fold at 1 µg/mL, 0.4-fold at 10 µg/mL, and 0.3-fold at 20 µg/mL.
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Figure 8. Relative expression of the Sox9 gene from HOb following 24 h treatment with EPP. Experiments
were performed in triplicate. Results are shown as a mean of fold change in gene expression ± SD
using untreated osteoblasts as a control. Statistically significant differences from untreated control are
denoted by § p < 0.01.

2.4. Receptor Activator of Nuclear Factor-κB Ligand (RANKL) and Osteoprotegerin (OPG) Ratio
(RANKL/OPG Ratio)

The RANKL/OPG ratio is the main determinant of bone mass and better reflects the bone
remodeling condition [15]. In EPP-treated HOb, we detected a reduction in RANKL/OPG ratio
with increasing EPP concentrations (Figure 9). In particular, EPP at 20 µg/mL caused a reduction in
RANKL/OPG ratio of nearly 0.6-fold compared to untreated HOb (CTR).
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ALPL activity was detected following 96 h treatment with EPP. Compared with control cell
cultures, EPP treatment significantly upregulated ALPL activity in HOb (Figure 10). In particular, EPP
treatment at 1, 10, and 20 µg/mL led to an increase in ALPL enzymatic activity of 1.25, 1.5, and 1.7-fold
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Figure 10. ALPL activity in HOb following 96 h treatment with EPP. Experiments were performed
in triplicate. Data are expressed as percentage of control and presented as mean ± SD. Statistically
significant differences from untreated control are denoted by § p < 0.01.

2.6. Bone Nodule Formation and Mineralization

Detecting the formation of mineralized nodules in EPP-treated HOb cultures has provided a
means to assess mature osteoblast cells’ function and the status of the cultures.

EPP treatment of HOb for 3 or 4 weeks induced the deposition of mineralized nodules (Figure 11a).
The nodules appeared three-dimensional under a phase contrast microscope and continued to grow
until the end of the culture period.

Quantifying the mineralized nodules after 3 weeks indicated no significant difference in HOb
treated with EPP at 1 and 10 µg/mL compared to the control, whereas 20 µg/mL EPP induced a
2.6-fold increase in calcium deposition (Figure 11b). At 4 weeks EPP treatment, a larger increase in
calcium deposition was observed at all the concentrations of EPP tested: 1.4-fold at 1 µg/mL, 3.1-fold
at 10 µg/mL, and 3.2-fold at 20 µg/mL (Figure 11c).
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Figure 11. Detection (a) and quantification (b,c) of mineralized nodules formed in HOb cultured
for 3 weeks (b) or 4 weeks (c) in the presence of EPP at different concentrations. Experiments were
performed in triplicate. Bars represent mean ± SD. Original magnification: 10×.

3. Discussion

OP is a silent disease which leads to feeble quality of life and increased mortality in aged people,
especially in postmenopausal women [16]. The balance between bone resorption and bone formation is
the key point in bone homeostasis and health and an imbalance of these events causes OP. Loss of bone
matrix and mass and microarchitectural deterioration are the main features of OP that increase the
rate of fractures [16]. Nowadays, finding the proper treatment for bone-related disease is a matter of
great interest. Due to the inefficiencies of current treatment options and related side effects, alternative
therapies and preventive agents are highly desirable [3]. Since natural products are showing lower
side effects and are more suitable for long-term use, they are quickly replacing traditional synthetic
drugs [16].

Osteogenic bioactive compounds have been isolated from many marine organisms, mainly
macroalgae, such as brown algae Sargassum horneri and Undaria pinnatifida, so that OP could benefit
from a novel and more efficient marine-based treatment. Compounds from marine organisms are
known to have a wide range of osteogenic effects, including stimulation of osteoblast functions and
mineralization, as well as suppression of osteoclast activity [3,4].

Marine algae have been demonstrated to be strong candidates for the extraction and enforcement
of novel drugs [17] and in recent years, significant development has been achieved in the isolation of
these active compounds with several activities, such as anticancer, anti-inflammation, antioxidant, and
having an inhibitory effect on ROS generation [18].

Numerous macroalgae have shown potent cytotoxic activities and some authors have suggested
the utilization of algae as a chemopreventive agent against several cancers. Among these, extracts
from Laurencia viridis and Portieria horemanii, containing dehydro-thrsiferol and halomon, have been
tested in preclinical trials [19,20]. Recently, the methanolic extract of P. pavonica from the Adriatic Sea
(Montenegro) was demonstrated to possess antitumoral activities on human cervical and breast cancer
cell lines [21], inducing high DNA damage and cell growth inhibition due to apoptosis. Moreover, we
previously demonstrated the proapoptotic activity of French Polynesian P. pavonica extract on human
osteosarcoma cells. These finding suggests that EPP could be of special interest for developing novel
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therapeutic agents for osteosarcoma, a rare highly malignant bone cancer, whose cells phenotypically
present an early stage of differentiation [2].

Extract or bioactive compounds from macroalgae have been shown to possess a noticeable effect
on regulation of bone metabolism as proved by enhanced bone mass, trabecular bone volume, number
and thickness and lower trabecular separation, resulting in a higher bone strength [17]. Such anti-OP
effects seem to be mediated via antioxidant or anti-inflammatory pathways and their downstream
signaling mechanisms, leading to osteoblast mineralization and osteoclast lack of activity [17].

Seaweeds not only consist of organic bio-active compounds such as phenols, flavonoids and
tannins, fatty acids, polysaccharides, proteins, and fibers, but they are also a valuable source of minerals
such as calcium, magnesium, and other bone-supporting elements [22]. Mineral-rich extracts have
been isolated from the red marine algae Lithothamnion calcareum and tested as a dietary supplement
for prevention of bone mineral loss [22]. The extract of the brown algae Sargassum horneri has been
demonstrated to possess an anabolic effect on bone elements, due to its capacity to stimulate bone
deposition and inhibit bone degradation in rat femoral tissues in vitro and in vivo [23].

The effect of algae such as Undaria pinnatifida, Sargassum horneri, Eisenia bicyclis, Cryptonemia
scmitziana, Gelidium amasii, and Ulva pertusa Kjellman on bone calcification have been studied. Results
showed that bone calcium content was significantly increased [22,24].

The methanol extract of brown algae Ecklonia cava has been used for in vitro arthritis treatment [25].
Nevertheless, very few compounds have been analyzed and reported for bone-related disease

treatment and the effect of marine algae extracts on bone metabolism has not yet been entirely clarified.
Still much research work is needed for further elucidations.

In this work, we investigated the proanabolic activity of P. pavonica on HOb by monitoring the
effects of EPP on cell viability, differentiation, and mineralization.

EPP was previously characterized for its chemical composition; in particular, we determined the
total phenolic, flavonoid, and tannin content, antioxidant activity, lipid composition, and fatty acid
profile [6].

Regarding the effect of the brown algae P. pavonica on bone metabolism, in a previous in vivo
study, the activity of a marine algae-derived molecules on bone density and collagen synthesis markers
were investigated. Briefly, 40 postmenopausal women were recruited and randomly treated with
different dose of P. pavonica. Every 3 months, physical examination, including bone densitometry and
collagen markers measurement, was conducted. At the end of the 12-month period, an ultrasound
scan and cervical cytology analysis were conducted. P. pavonica demonstrated the ability to increase
BMD measured in lumbar spine and femur neck compared to the untreated group. Regarding collagen
analysis, procollagen I C-end terminal peptides and pyridinium crosslinks were investigated as markers
of bone formation and bone resorption, respectively. Results revealed that P. pavonica may have a
positive effect on collagen control. Finally, P. pavonica did not appear to affect other estrogen-sensitive
organs such as the endometrium or vaginal mucosa. Steroid structure compounds were suggested
as the active molecules responsible for the observed effects. Such results led to the hypothesis of a
selective estrogen receptor modulator-like molecules (ICP Ltd., personal communication based on the
study performed by Professor Mark Brincat).

Nevertheless, based on our literature research, in vitro biochemical and molecular evaluation
supporting beneficial osteogenic effects of P. pavonica extracts are nonexistent. Hence, in this study, for
the first time, the biological activity of EPP was evaluated on HOb.

Overall, our data indicate that EPP is a safe product regarding cell viability, showing no toxicity
against HOb. RT-qPCR was used to examine the expression of ALPL, collagen type I alpha 1
chain, osteoprotegerin, and osteocalcin. These mRNA species were chosen for our study as they
represent recognized markers of the different osteoblast differentiation stages. COL1A1 and ALPL
characterized the earlier stage; in the late stage, matrix mineralization occurs when the organic
structure is supplemented with osteocalcin, which stimulates deposition of mineral substances [26].
EPP exhibited the capacity to increase the expression of the earlier differentiation-stage markers
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(COL1A1 and ALPL) as well as those involved in terminally osteoblastic differentiation (BGLAP
and TNFRSF11B). In accordance with these findings, EPP also showed the ability to increase ALPL
enzymatic activity. Sox9 mRNA was also monitored. Sox9 is a chondrocyte-specific transcription
factor and it is required for prechondrogenic cell condensation and prechondrocyte and chondroblast
differentiation [27]. The SOX9 and RUNX2 expression ratio is crucial in determining the shift in
equilibrium toward osteogenesis or chondrogenesis [28]. RUNX2 regulates downstream genes that
determine the osteoblast phenotype and controls the expression of osteogenic marker genes such as
ALPL, Osteopontin (OPN), Osterix (OSX), COL1A1, Bone sialoprotein (BSP), and BGLAP [28].

Zhou G. et al. [14] in their study identified a transcriptional repressor function of Sox9 on RUNX2
acting during chondrogenic cell fate commitment and chondrogenesis. There are evidences on the
dominance of Sox9 function over RUNX2 during the early first step in the progenitor cell fate decision
between osteoblastic vs. chondrogenic lineages. It has been shown that Sox9 misexpression repressed
RUNX2 function and diverted cell fate from bone to cartilage in the craniofacial region [14]. Based
on these evidences, we selected Sox9 as a marker for the osteoblast phenotype maintenance in order
to prevent osteoblasts from shifting toward the chondrogenic lineage. Regarding EPP treatment, a
decrease in Sox9 expression was detected in treated osteoblast culture compared to untreated culture.

RANK, RANKL, and OPG have a fundamental role in bone remodeling and the RANKL/OPG
ratio is the main determinant of bone mass and better reflects the bone remodeling condition [29].
Our results showed that EPP upregulated OPG expression in HOb compared to the control culture.
OPG acts as nonfunctional receptor to compete with the osteoclast activation receptor RANK for its
ligand RANKL. Therefore, EPP showed an indirect inhibition effect on osteoclast activation. Finally,
results showed a decrement in RANKL/OPG ratio as a demonstration of EPP capacity to inhibit
bone resorption.

In the final step, the mineralizing ability of EPP was evaluated by Ca2+ deposition assay through
an Alizarin red S (ARS) staining assay. EPP was found to significantly enhance mineralized nodule
formation in osteoblast cultures. After 3 or 4 weeks, considering the tested concentrations of EPP (1, 10,
20 µg/mL), the extract did not have toxic effects on the cultures as cells were still vital, visibly attached,
and occupying the entire bottom of the plate as compared with those of the control group. Mineralized
nodules were observed in cells cultured in the absence of common mineralization agents such as
dexamethasone and betaglycerophosphate, demonstrating the remarkably ability of the EPP to induce
mineralization and indicating that this product serves as a suitable mineralized-nodule-inducing factor.
Calcium level is crucial in the strengthening of bone and bone homeostasis. Regarding the therapeutic
potential of marine algae in calcium-mineralization of osteoblasts, some phlorotannins have been
identified as bioactive components in Ecklonia sp. [30].

Since there have been no previous reports, to our knowledge, this work can be considered the first
to demonstrate the osteogenic capacity of P. pavonica extract in vitro. In the present study, we have
shown EPP to be able to increase the deposition of mineralized organic matrix by osteoblasts through
an increase of osteoblastic differentiation. The present study is the first to investigate the direct effects
of EPP on bone-forming osteoblasts, providing evidences both at the molecular and cellular level. We
demonstrated that EPP has a strong modulatory effect on the expression of osteoblast-specific markers
such as: COL1A1, ALPL, BGLAP, TNFRSF11B genes, ALPL enzymatic activity, as well as on the
RANKL/OPG ratio and on formation of mineralized bone nodules in long-term HOb cultures. This is
important with regard to developing materials for bone repair or bone tissue engineering/regeneration,
or active nutritional supplements.

4. Materials and Methods

4.1. Chemical Composition of EPP

EPP was produced and chemically characterized as previously described [6]. Briefly, EPP was
produced by Soxhlet extraction using acetone as the solvent, starting from algae collected in French
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Polynesia in June 2014. EPP was first tested for its total phenolic, flavonoid, and tannin content
through spectrophotometric assay (Folin–Ciocalteu method, aluminum chloride colorimetric method,
Broadhurst vanillin–HCl method, respectively) [6]. The determination of the antioxidant activity of
the extract was performed using the method of FRAP assay [6]. Finally, EPP was examined for its
lipid content by GC-MS. For the analysis of the most lipophilic compounds, EPP was subjected to
saponification and dispersive liquid-liquid microextraction (DLLME) [6].

4.2. Isolation and Culture of HOb

HOb were isolated from the trabecular bone of adult knee samples obtained with ethical approval
and informed consent during routine replacement surgery. Trabecular bone fragments were widely
washed in PBS pH 7.4 to remove blood and bone marrow, and then transferred to culture containing
DMEM (PAN Biotech) supplemented with 10% v/v fetal bovine serum (FBS) (Ultra-low endotoxin,
Euroclone), and 1% v/v penicillin–streptomycin. Cultures were incubated at 37 ◦C in a humidified
atmosphere of 5% CO2. Bone fragments were maintained in culture by removing the conditioned
medium and replacing it with a fresh one, every 2 weeks. After 3–6 weeks in culture, a cellular
confluent monolayer of Hob had grown out from the bone fragments (E1 culture) [31].

4.3. Cell Culture and Treatment

HOb were seeded at a density of 3000 cells/well into a 96-well multiplate for MTT assay, or at a
density of 15,000 cells/well into a 24-well multiplate for ARS assay or total RNA extraction, and cultured
in DMEM supplemented with 10% v/v FCS and 1% v/v penicillin–streptomycin. Subconfluent cells
were treated with EPP obtained as previously described [6] at 1 µg/mL, 10 µg/mL, and 20 µg/mL and
using DMSO as control, for 24 h for MTT assay or RNA extraction and for 96 h for RANKL and OPG
ELISA kit. Alternatively, for ARS assay, confluent cells were treated at the same EPP concentrations for
3 or 4 weeks; fresh medium (containing EPP or DMSO) was replaced twice a week.

4.4. MTT Assay

Cell viability was determined after 24 h of treatment. Culture medium was removed and cells
were incubated with MTT in white DMEM for 3.5 h. After incubation time, Formazan salts were
dissolved in DMSO and absorbance was evaluated by a microplate reader with at 550 nm.

4.5. RT-qPCR

Each cultured construct was independently collected after 24 h of treatment. Total RNA extraction
and cDNA synthesis were obtained using the FastLane Cell cDNA kit (Qiagen, Milano, Italy)
with a TProfessional Basic Thermocycler (Biometra, Cinisello Balsamo-Milano, Italy), following
manufacturer’s instruction. The RT-qPCR analyses were then performed with a RotorGene 6000
(Qiagen, Milano, Italy) using the SYBR®GreenERTM qPCR SuperMix Universal kit (Invitrogen Thermo
Fisher, Monza, Italy). Target genes were amplified using specific primer pairs obtained from KiCqStart™
Primers (Sigma Aldrich, Milano, Italy). For each sample, the quality of the PCR product was tested by
melting curve analysis. The results were expressed as fold change (increase or decrease) in expression
of the treated sample in relation to the untreated sample. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as reference gene to control for experimental variability and the level of mRNA
expression was normalized to GAPDH mRNA. RT-qPCR analysis was performed in duplicate on
samples taken from three independent cultures (i.e., six measurements for each gene).

4.6. ALPL Assay

After 96 h treatment, ALPL activity was quantified following the method described by Lowry and
modified by Tsai [32]. Briefly, cells were washed with PBS and cells were lysed with 100µL of 0.1%
SDS. A total of 100µL of the lysate was incubated with 250µL p-nitrophenyl phosphate in glycine
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buffer at 37 ◦C for 30 min. The enzymatic reaction was stopped by adding 100µL of ice-cold 3 M
NaOH, and the amount of p-nitrophenol liberated was measured spectrophotometrically (405 nm).
Each experiment was performed in triplicate and results were normalized to cell protein content.

4.7. Quantitative Detection of RANKL and OPG

OPG and RANKL release into the culture medium were measured after 96 h of treatment using
their respective ELISA kit (Abcam, Cambridge, UK) following the manufacturer’s instructions. Optical
density was read at 450 nm wavelength.

4.8. Nodules Formation and Mineralization Assay

Mineralized nodules formation and degree of mineralization were determined in HOb cells treated
with EPP at 1 µg/mL, 10 µg/mL, and 20 µg/mL and using DMSO as control, for 3 or 4 weeks, fresh
medium (containing EPP or DMSO) was replaced twice a week. After 3 or 4 weeks treatment, cells
were submitted to ARS staining as described [33]. Briefly, cells were fixed with 70% v/v cold ethanol for
1 h and stained with 40 mM ARS stain in dH2O (pH 4.1) at RT for 20 min. Cells were washed five times
with dH2O and two times with cold PBS. Mineralized ARS-positive nodules present in each well were
visualized using inverted microscope. For the quantification of mineralization, ARS was extracted with
10% cetylpyridinium chloride (CPC) in PBS for 1 h, followed by absorbance measurement at 550 nm.

4.9. Statistical Analysis

Experiments were performed in triplicate. Data were expressed as mean ± SD. Statistical
significance of differences was determined by ANOVA analysis, with a Bonferroni post hoc test.
Statistically significant differences from untreated control are denoted by * p < 0.05 or § p < 0.01.
Differences were considered significant at p < 0.05 (Graphpad; San Diego, CA, USA).
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