New Antiproliferative Cembrane Diterpenes from the Red Sea *Sarcophyton* Species

Hossam M. Hassan ¹, Mostafa E. Rateb ^{1,2}, Marwa H. Hassan ¹, Ahmed M. Sayed ³, Samah Shabana ⁴, Mai Raslan ⁵, Elham Amin ^{1,3}, Fathy A. Behery ^{6,7}, Osama M. Ahmed ⁸, Abdullatif Bin Muhsinah ⁹, Tobias A. M. Gulder ^{10,*} and Usama Ramadan Abdelmohsen ^{11,*}

Contents

Dereplicated metabolites from Sarcophyton sp.	2
The HRESIMS spectrum of 1	3
The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 1	4
The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 1	5
The HSQC (600 MHz, CDCl ₃) spectrum of 1	6
The ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of 1	7
The HMBC (600 MHz, CDCl ₃) spectrum of 1	8
The expanded HMBC (600 MHz , CDCl ₃) spectrum of 1	9
The NOESY (600 MHz, CDCl ₃) spectrum of 1	10
The expanded NOESY (600 MHz, CDCl ₃) spectrum of 1	11
The HRESIMS spectrum of 2	12
The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 2	13
The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 2	14
The HSQC (600 MHz, CDCl ₃) spectrum of 2	15
The ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of 2	16
The HMBC (600 MHz, CDCl ₃) spectrum of 2	17
The HRESIMS spectrum of 3	18
The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 3	19
The ${}^{13}C$ NMR (150 MHz, CDCl ₃) spectrum of 3	20
The HSQC (600 MHz, CDCl ₃) spectrum of 3	21
The ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of 3	22
The HMBC (600 MHz, $CDCl_3$) spectrum of 3	23
The NOESY (600 MHz, $CDCl_3$) spectrum of 3	24
The HRESIMS spectrum of 4	25
The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 4	26
The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 4	27
The HSQC (600 MHz, CDCl ₃) spectrum of 4	28
The ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of 4	29
The HMBC (600 MHz, CDCl ₃) spectrum of 4	30
The NOESY (600 MHz, CDCl ₃) spectrum of 4	31
The HRESIMS spectrum of 5	32
The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 5	33
The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 5	34
The HSQC (600 MHz, CDCl ₃) spectrum of 5	35
The ¹ H- ¹ H COSY (600 MHz, CDCl ₃) spectrum of 5	36
The HMBC (600 MHz, CDCl ₃) spectrum of 5	37
The NOESY (600 MHz, CDCl ₃) spectrum of 5	38

No.	Molecular formula	Identification
1	$C_{14}H_{22}O$	Lobocalone
2	C ₁₈ H ₃₇ NO	NO HITS from Sarcophyton
3	$C_{20}H_{26}O_3$	lobophytolide C
4	$C_{20}H_{26}O_3$	Glaucopine C
5	$C_{20}H_{28}O$	Sinulobatin B
6	$C_{20}H_{28}O_2$	Kaurenolide; ent-16-Kauren-19,6 β -olide
7	$C_{20}H_{28}O_3$	Sarcophine
8	$C_{20}H_{28}O_4$	9β -hydroxysarcophine
9	$C_{20}H_{30}O$	Sarcophytonin-A
10	$C_{20}H_{30}O_2$	16-Deoxysarcophine
11	$C_{20}H_{30}O_{6}$	Sinulariolone
12	$C_{20}H_{31}O_5N$	5α,12-Dihydroxy-1-tremulen-11-yl 2(S)-
		pyroglutamat
13	$C_{20}H_{31}O_4N$	lepadin C
14	$C_{20}H_{33}O_4N$	NO HITS from Sarcophyton
15	$C_{20}H_{33}O_6N$	NO HITS from Sarcophyton
16	$C_{20}H_{34}O_8$	Botcinolide
17	$C_{21}H_{36}O_4$	Sclerophytin F methyl ether
18	$C_{22}H_{30}O_5$	Lobophytol acetate
19	$C_{22}H_{42}O_4$	NO HITS from Sarcophyton
20	$C_{24}H_{24}O$	NO HITS from Sarcophyton
21	$C_{24}H_{24}O_7$	NO HITS from Sarcophyton
22	$C_{24}H_{36}O_4$	Secosarcophinolide
23	$C_{24}H_{46}O_7$	NO HITS from Sarcophyton
24	$C_{26}H_{24}O$	NO HITS from Sarcophyton
25	$C_{26}H_{24}O_2$	NO HITS from Sarcophyton
26	$C_{26}H_{28}O_3$	NO HITS from Sarcophyton
27	$C_{26}H_{42}O_4$	Dihydroxy-24-methylscalaran-25,24-olide
28	$C_{26}H_{44}O_7$	24-methyl-bisnor-cholest-22-ene-heptol
29	$C_{26}H_{47}O_5N_3$	NO HITS from Sarcophyton
30	$C_{26}H_{48}O_2$	NO HITS from Sarcophyton
31	$C_{28}H_{44}O$	NO HITS from Sarcophyton
32	$C_{28}H_{46}O_{2}$	NO HITS from Sarcophyton
33	$C_{28}H_{46}O_4$	$3\beta,5\alpha,6\beta,9\alpha$ -Tetrahydroxy-ergosta-7.22-diene
34	$C_{28}H_{51}O_5N_3$	NO HITS from Sarcophyton
35	$C_{32}H_{44}O_{8}$	NO HITS from Sarcophyton
36	$C_{47}H_{60}O$	NO HITS from Sarcophyton
50		

 Table S1. Dereplicated metabolites from Sarcophyton sp.

Fig.S1. The HRESIMS spectrum of 1.

Fig.S2. The ¹H NMR (600 MHz, CDCl₃) spectrum of **1.**

Fig.S3.The ¹³C NMR (150 MHz, CDCl₃) spectrum of 1

Fig.S4.The HSQC (600 MHz, CDCl₃) spectrum of 1

Fig.S5.The ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of **1**

Fig.S6.The HMBC (600 MHz, $CDCl_3$) spectrum of 1

Fig.S7.The expanded HMBC (600 MHz, CDCl₃) spectrum of 1

Fig.S8. The NOESY (600 MHz, CDCl₃) spectrum of 1

Fig.S9. The expanded NOESY (600 MHz, $CDCl_3$) spectrum of 1

Fig.S10. The HRESIMS spectrum of **2**.

Fig.S11.The ¹H NMR (600 MHz, CDCl₃) spectrum of $\bf{2}$

Fig.S12.The ¹³C NMR (150 MHz, CDCl₃) spectrum of **2**

Fig.S13.The HSQC (600 MHz, CDCl₃) spectrum of ${\bf 2}$

Fig.S14.The ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of **2**

Fig.S15.The HMBC (600 MHz, $CDCl_3$) spectrum of **2**

Fig.S16. The HRESIMS spectrum of **3**.

Fig.S17.The ¹H NMR (600 MHz, CDCl₃) spectrum of $\bf{3}$

Fig.S18.The ¹³C NMR (150 MHz, CDCl₃) spectrum of **3**

Fig.S20.The ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of **3**

Fig.S21.The HMBC (600 MHz, CDCl₃) spectrum of **3**

Fig.S23. The HRESIMS spectrum of 4.

Fig.S24.The ¹H NMR (600 MHz, CDCl₃) spectrum of **4**

Fig.S25.The ¹³C NMR (150 MHz, CDCl₃) spectrum of 4

Fig.S27.The ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of **4**

Fig.28.The HMBC (600 MHz, CDCl₃) spectrum of 4

Fig.S29.The NOESY (600 MHz, CDCl₃) spectrum of 4

Fig.S30. The HRESIMS spectrum of **5**.

Fig.S31.The ¹H NMR (600 MHz, CDCl₃) spectrum of **5**

Fig.S32.The ¹³C NMR (150 MHz, CDCl₃) spectrum of **5**

Fig.S34.The ¹H-¹H COSY (600 MHz, CDCl₃) spectrum of **5**

Fig.S35.The HMBC (600 MHz, CDCl₃) spectrum of **5**

Fig.S36.The NOESY (600 MHz, CDCl₃) spectrum of **5**