## An Algal Metabolite-based PPAR-γ Agonist Displayed Anti-Inflammatory Effect via Inhibition of the NF-κB Pathway

Zhiran Ju<sup>1</sup>, Mingzhi Su<sup>1</sup>, Dandan Li<sup>1</sup>, Jongki Hong<sup>2</sup>, Dong-Soon Im<sup>1</sup>, Suhkmann Kim<sup>3</sup>, Eun La Kim<sup>1</sup>, and Jee H. Jung<sup>1,\*</sup>

<sup>1</sup> College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
<sup>2</sup> College of Pharmacy, Kyunghee University, Seoul 02447, Republic of Korea
<sup>3</sup> Center for Proteome Biophysics, Department of Chemistry, Pusan National
University, Busan 46241, Republic of Korea

\* Correspondence: jhjung@pusan.ac.kr (J.H.J.); +82-51-510-2803 (J.H.J.).

## List of Figures

| Figure S1. The <sup>1</sup> H-NMR spectrum of compound (+)-( <i>R</i> , <i>E</i> )-6a1                  |
|---------------------------------------------------------------------------------------------------------|
| Figure S2. The <sup>13</sup> C-NMR spectrum of compound (+)-( <i>R</i> , <i>E</i> )-6a1                 |
| Figure S3. The HRMS data and optical rotation result of compound (+)-( <i>R</i> , <i>E</i> )-6a14       |
| Figure S4. Design of PPAR-γ agonist using algal metabolites, and 15d-PGJ <sub>2</sub> 5                 |
| Figure S5. <i>In vitro</i> PPAR- $\gamma$ activation by compounds 31, 6a1, 6a2, and by rosiglitazone at |
| 5 μM or 10 μM in rat liver Ac2F cell line6                                                              |



Figure S1. The <sup>1</sup>H-NMR spectrum of compound (+)-(*R*,*E*)-6a1



Figure S2. The <sup>13</sup>C-NMR spectrum of compound (+)-(*R*,*E*)-6a1



| 🧾 6a1.bxt - 记事本 |             |                         |        |        |        |          |  | _ |  | $\times$ |
|-----------------|-------------|-------------------------|--------|--------|--------|----------|--|---|--|----------|
| 文件(E)           | 编辑(E) 格式(O) | 查看(V) 帮助(H)             |        |        |        |          |  |   |  |          |
| No.1            | 1 (1/5)     | <b>Optical Rotation</b> | 0.5698 |        |        |          |  |   |  | ^        |
| No.2            | 1 (2/5)     | <b>Optical Rotation</b> | 0.5619 |        |        |          |  |   |  |          |
| No.3            | 1 (3/5)     | <b>Optical Rotation</b> | 0.5679 |        |        |          |  |   |  |          |
| No.4            | 1 (4/5)     | <b>Optical Rotation</b> | 0.5708 |        |        |          |  |   |  |          |
| No.5            | 1 (5/5)     | <b>Optical Rotation</b> | 0.5659 | 0.5673 | 0.0035 | 0.6231 % |  |   |  |          |

## Figure S3. The HRMS data and optical rotation result of compound (+)-(*R*,*E*)-6a1

HRFABMS *m*/*z* 265.1797 [M+H]<sup>+</sup> (calcd for C<sub>16</sub>H<sub>24</sub>O<sub>3</sub>, 265.1759).

 $([\alpha]_D^{20} = +5.6, c = 0.1, CHCCl_3)$ 



Figure S4. Design of PPAR- $\gamma$  agonist using algal metabolites, and 15d-PGJ<sub>2</sub>. (A) An oxy fatty acid from the red alga, *Gracilaria verrucosa*. (B) A prostaglandin from the red alga, *Gracilaria verrucosa*. (C) J11-Cl. (D) 15-deoxy- $\Delta^{12, 14}$ -prostaglandin J<sub>2</sub> (15d-PGJ<sub>2</sub>). (E) The designed analogs with an exocyclic enone moiety.

(Ju, Z. R.; Su, M. Z.; Hong J. K.; Ullah, S.; Kim, E. L.; Zhao, C. H.; Moon, H. R.; Kim, S. M. *Eur. J. Med. Chem.* **2018**, *157*, 1192-1201)



Figure S5. *In vitro* PPAR- $\gamma$  activation by compounds 31, 6al, 6a2, and by rosiglitazone at 5  $\mu$ M or 10  $\mu$ M in rat liver Ac2F cell line. Cells were transiently transfected with pcDNA or PPRE with pFlag-PPAR $\gamma$ 1. NC: negative control, transfected with a plasmid containing PPRE and pcDNA3. Con: control, transfected with a plasmid containing PPRE and pFlag-PPAR- $\gamma$ 1. Rosi: rosiglitazone. Rosiglitazone was used as the positive reference control to monitor the activation of the luciferase reporter. Luciferase expressions (folds of the control) are presented as mean  $\pm$  SD (n = 3). \* p < 0.05, \*\* p < 0.01.

(Ju, Z. R.; Su, M. Z.; Hong J. K.; Ullah, S.; Kim, E. L.; Zhao, C. H.; Moon, H. R.; Kim, S. M. *Eur. J. Med. Chem.* **2018**, *157*, 1192-1201)