Immunostimulatory phosphatidylmonogalactosyldiacylglycerols (PGDG) from the marine diatom *Thalassiosira weissflogii*: inspiration for a novel synthetic Toll-like receptor 4 agonist

Emiliano Manzo¹⁺, Carmela Gallo¹⁺, Rossella Sartorius², Genoveffa Nuzzo¹, Angela Sardo¹, Piergiuseppe De Berardinis², Angelo Fontana¹, Adele Cutignano^{1*}

¹ CNR-Institute of Biomolecular Chemistry, via Campi Flegrei, 34 - 80078 Pozzuoli (Napoli) Italy

emanzo@icb.cnr.it; carmen.gallo@icb.cnr.it; nuzzo.genoveffa@icb.cnr.it; angela.sardo@icb.cnr.it; afontana@icb.cnr.it; acutignano@icb.cnr.it

² CNR- Institute of Protein Biochemistry, via Pietro Castellino, 111 - 80131 Napoli, Italy

r.sartorius@ibp.cnr.it; p.deberardinis@ibp.cnr.it

* Correspondence: acutignano@icb.cnr.it; Tel.: +39 081 8675313

⁺These authors have equally contributed

Supporting Information

1. NMR spectra

Figure S1. ¹H NMR spectrum of 1 (600MHz, CDCl₃/MeOD, 1:1). Figure S2. ¹³C NMR spectrum of 1 (600MHz, CDCl₃/MeOD, 1:1). Figure S3. ¹H, ¹H-COSY spectrum of 1 (600MHz, CDCl₃/MeOD, 1:1). Figure S4. ¹H, ¹H-TOCSY spectrum of 1 (600MHz, CDCl₃/MeOD, 1:1). Figure S5. HSQC spectrum of 1 (600MHz, CDCl₃/MeOD, 1:1). Figure S6. HMBC spectrum of 1 (600MHz, CDCl₃/MeOD, 1:1). Figure S7. ¹H NMR spectrum of 2 (600MHz, CDCl₃/MeOD, 1:1). Figure S8. ¹³C NMR spectrum of 2 (600MHz, CDCl₃/MeOD, 1:1). Figure S9. ¹H NMR spectrum of intermediate V (400MHz, CDCl₃). Figure S10. ¹H NMR spectrum of intermediate VI (400MHz, CDCl₃). Figure S11. ¹H NMR spectrum of intermediate VII (400MHz, CDCl₃). Figure S12. ¹H NMR spectrum of intermediate VIII (400MHz, CDCl₃). Figure S13. ¹H NMR spectrum of intermediate IX (400MHz, CDCl₃). Figure S14. ¹H NMR spectrum of intermediate X (400MHz, MeOD). Figure S15. ¹H NMR spectrum of intermediate XI (400MHz, CDCl₃). Figure S16. ¹H NMR spectrum of intermediate XII (400MHz, CDCl₃) Figure S17. ¹H NMR spectrum of intermediate XIII (400MHz, CDCl₃) Figure S18. ¹H NMR spectrum of intermediate XIV (400MHz, CDCl₃)

2. MS data.

Figure S19. HR-ESI-MS spectrum of bioactive lipid pool isolated from the marine diatom *T. weissflogii*.

Table S1. Fatty acid composition (methyl derivatives) of 1 by GCMS analysis after methanolysis. Table S2. Fatty acid composition of main species of the natural pool 1 by LC-ESI-/MS/MS analysis.

3. Biological assays

Figure S20. Expression of cell surface markers in MoDCs by stimulation with LH-20 bioactive fraction from *T. weissflogii*.

Figure S2. ¹³C NMR spectrum of 1 (600MHz, CDCl₃/MeOD, 1:1).

Figure S7. ¹H NMR spectrum of 2 (600MHz, CDCl₃/MeOD, 1:1).

Figure S8. ¹³C NMR spectrum of 2 (600MHz, CDCl₃/MeOD, 1:1).

Figure S9. ¹H NMR spectrum of intermediate V (400MHz, CDCl₃).

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

Figure S10. ¹H NMR spectrum of intermediate VI (400MHz, CDCl₃).

Figure S11. ¹H NMR spectrum of intermediate VII (400MHz, CDCl₃).

Figure S12. ¹H NMR spectrum of intermediate VIII (400MHz, CDCl₃).

Figure S13. ¹H NMR spectrum of intermediate IX (400MHz, CDCl₃).

Figure S14. ¹H NMR spectrum of intermediate X (400MHz, MeOD).

Figure S15. ¹H NMR spectrum of intermediate XI (400MHz, CDCl₃).

Figure S16. ¹H NMR spectrum of intermediate XII (400MHz, CDCl₃).

Figure S17. ¹H NMR spectrum of intermediate XIII (400MHz, CDCl₃).

Figure S18. ¹H NMR spectrum of intermediate XIV (400MHz, CDCl₃)

Fatty acid	% Area
C14:0	1.6
C16:3	16.1
C16:1+C16:2	38.7
C16:0	17.9
C18:2	4.1
C18:1	3.1
C18:0	3.2
C20:5	14.1
C22:6	1.3

Table S1. Fatty acid methyl ester relative composition by GC-MS analysis.

C:N	Measured	Calculated	Formula	MS/MS (m/z)	FA composition
	m/z	m/z			
64:10	1339.8646	1339.8582	C ₇₆ H ₁₂₄ O ₁₇ P ⁻	253.2180, 249.1867	3C16:3, C16:1
64.9	1341.8786	1341.8738	C ₇₆ H ₁₂₆ O ₁₇ P ⁻	253.2171, 251.2020, 249.1858	2C16:3, C16:2, C16:1
64:8	1343.8945	1343.8895	C ₇₆ H ₁₂₈ O ₁₇ P ⁻	253.2179, 249.1852	2C16:1, 2C16:3
64:7	1345.9086	1345.9051	C ₇₆ H ₁₃₀ O ₁₇ P ⁻	251.2020, 253.2176, 255.2321	C16:3, 2C16:2, C16:0
64:6	1347.9230	1347.9208	C ₇₆ H ₁₃₂ O ₁₇ P ⁻	253.2174, 251.2013	2C16:2, 2C16:1
66:9	1369.9081	1369.9051	C ₇₈ H ₁₃₀ O ₁₇ P ⁻	253.2184, 279.2351	C16:1, 2C16:3, C18:2
66:9	1369.9081	1369.9051	C ₇₈ H ₁₃₀ O ₁₇ P ⁻	227.2014, 249.1865, 277.2166	C14:0, C16:3, 2C18:3
66:8	1371.9229	1371.9208	C ₇₈ H ₁₃₂ O ₁₇ P ⁻	253.2174, 279.2326	C16:1, C16:2, C16:3, C18:2
66:8	1371.9229	1371.9208	C ₇₈ H ₁₃₂ O ₁₇ P ⁻	251.2013, 255.2335, 277.2177	C16:0, C16:2, C16:3, C18:3
66:8	1371.9229	1371.9208	C ₇₈ H ₁₃₂ O ₁₇ P ⁻	251.2013, 281.2485, 253.2174	C18:1, C16:3, 2C16:2
68:12	1391.8937	1391.8895	C ₈₀ H ₁₂₈ O ₁₇ P ⁻	253.2175, 249.1865, 301.2162	C20:5, C16:1, 2C16:3
68:11	1393.9078	1393.9051	C ₈₀ H ₁₃₀ O ₁₇ P ⁻	253.2174, 301.2173, 251.2020,	C20:5, C16:1, C16:2, C16:3
				249.1853	
68:11	1393.9078	1393.9051	C ₈₀ H ₁₃₀ O ₁₇ P ⁻	255.2329, 249.1865, 301.2180	C20:5, C16:0, 2C16:3
68:10	1395.9222	1395.9208	C ₈₀ H ₁₃₂ O ₁₇ P ⁻	253.2174, 251.2020, 301.2173	C20:5, 2C16:1, C16:2
68:10	1395.9222	1395.9208	C ₈₀ H ₁₃₂ O ₁₇ P ⁻	301.2175, 251.2020, 255.2326	C20:5, C16:0, 2C16:2
68:9	1397.9369	1397.9364	C ₈₀ H ₁₃₄ O ₁₇ P ⁻	253.2180, 277.2166	2C18:3, C16:1, C16:2
70:14	1415.8913	1415.8895	C ₈₂ H ₁₂₈ O ₁₇ P ⁻	277.2173, 301.2165, 251.2013	C16:4, C16:2, C18:3, C20:5
70.13	1417.9089	1417.9051	C ₈₂ H ₁₃₀ O ₁₇ P ⁻	279.2334, 301.2162, 249.1867	2C16:3, C18:2, C20:5
70:12	1419.9233	1419.9208	C ₈₂ H ₁₃₂ O ₁₇ P ⁻	279.2330, 249.1852, 301.2162,	C16:3, C16:2, C18:2, C20:5
				250.9681	
70:11	1421.9377	1421.9364	C ₈₂ H ₁₃₄ O ₁₇ P ⁻	279.2351, 253.2175	C16:3, C16:1, C18:2, C20:5
72:16	1439.8933	1439.8895	C ₈₄ H ₁₂₈ O ₁₇ P ⁻	301.2173, 249.1852	2C20:5, 2C16:3
72:15	1441.9067	1441.9051	C ₈₄ H ₁₃₀ O ₁₇ P ⁻	301.2173, 251.2005	2C20:5, C16:2, C16:3
72:14	1443.9220	1443.9208	C ₈₄ H ₁₃₂ O ₁₇ P ⁻	301.2165, 253.2175	2C20:5, C16:1, C16:3
74:17	1465.908	1465.9051	C ₈₆ H ₁₃₀ O ₁₇ P ⁻	275.5774, 301.2183, 249.1852	2 C20:5, C18:4, C16:3
74.16	1467.9211	1467.9208	C ₈₆ H ₁₃₂ O ₁₇ P ⁻	301.2176, 277.2172	2C20:5, C18:3, C16:3
74:15	1469.9211	1469.9364	C ₈₆ H ₁₃₄ O ₁₇ P ⁻	301.2133, 279.2332	2C20:5, C18:2, C16:3
76:18	1491.9239	1491.9208	C ₈₈ H ₁₃₂ O ₁₇ P ⁻	301.2173	3C20:5, C16:3
78:19	1517.9404	1517.9364	C ₉₀ H ₁₃₄ O ₁₇ P ⁻	301.2166	3C20:5, C18:4

Table S2. Fatty acid composition of main species of the natural pool 1 by LC-ESI-/MS/MS analysis

Figure S20. Expression of cell surface markers in MoDCs by stimulation with LH-20 bioactive fraction from *T. weissflogii*.

Expression of CD83, CD86 and HLA-DR by MoDCs stimulated with LH-20 bioactive fraction from the extract of *T. weissflogii* in the concentration range 10-50 µg/mL.

Results (mean +/- standard deviation) are reported as percentage of positive cells (for HLA-DR marker we considered an expression value over 10^4) out of the total DC population. Asterisks indicate significant differences from the cells treated only with vehicle (control, Ctrl) at a 95% (P<0.05) confidence level, as determined using one-way ANOVA analysis; **** p<0.0001.

